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Frenet-Serret description of gyroscopic precession
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The phenomenon of gyroscopic precession is studied within the framework of the Frenet-Serret
formalism adapted to quasi-Killing trajectories. Its relation to the congruence vorticity is high-
lighted with particular reference to the irrotational congruence admitted by the stationary, ax-
isymmetric spacetime. General precession formulas are obtained for circular orbits with arbitrary
constant angular speeds. By successive reduction, di8'erent types of precessions are derived for the
Kerr-Schwarzschild-Minkowski spacetime family. The phenomenon is studied in the case of other
interesting spacetimes, such as the de Sitter and Godel universes as well as the general stationary,
cylindrical, vacuum spacetimes.

PACS number(s): 04.20.Me

I. INTR.QDUCTION

The phenomenon of rotation exhibits interesting and
often intriguing physical eKects. This is even more so
within the framework of the general theory of relativity
which leads to novel features. ' These features, for in-
stance, are built into the structure of spacetime, such as
that of a rotating black hole. Dragging of inertial frames
is a typical example of rotational efI'ects incorporated into
the spacetime structure. Such efI'ects also manifest them-
selves in the intrinsic aspects of particle motion and re-
lated phenomena such as the gyroscope precession. These
aspects can be elegantly studied by the invariant geomet-
rical description of particle trajectories that follow the di-
rections of spacetime symmetries, or Killing vector fields,
provided of course that the spacetime admits such sym-
metries. This is accomplished by adopting the Frenet-
Serret formalism to characterize the Killing trajectories
of a four-dimensional spacetime. Of the three geomet-
ric parameters basic to this formalism, the curvature is
identified with the particle acceleration, while the two
torsions are directly related to the gyroscope precession.
Furthermore, the Prenet-Serret tetrad provides a conve-
nient reference frame for the description of all relevant
physical phenomena. Therefore, when the formalism is
applied to the timelike integral curves of spacetime sym-
metries, the phenomenon of gyroscope precession can be
completely analyzed in a natural and cogent manner.

The Prenet-Serret formalism applied to the Killing tra-
jectories can be extended in a straightforward manner to
what we may term as a quasi-Killing congruence. This
congruence consists of timelike curves following the di-
rection given by a combination of Killing vectors with
nonconstant coeKcients. An important example is the
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irrotational congruence admitted by the Kerr spacetime.
With the help of this extended formalism, a broad based
framework is provided for the study of gyroscope preces-
sion in a variety of circumstances.

The present; paper is organized as follows. In Sec. II,
we discuss the application of the Prenet-Serret formalism
to the quasi-Killing trajectories, precession of gyroscopes
transported along them and its relation to the vortic-
ity of the congruence. Section III considers the station-
ary, axially symmetric spacetimes and concentrates on
the globally timelike Killing trajectories followed by sta-
tionary observers. Specializing to the Kerr spacetime,
the gyroscopic precession with respect to the station-
ary observer a direct manifestation of inertial frame
dragging is displayed. By using rotating coordinates,
gyroscopic precession along circular orbits with arbitrary
constant angular speeds is investigated in Sec. IV. The
general formulas derived are first applied to the Kerr
spacetime to obtain particle acceleration and gyroscopic
precession without approximation. Then by successive
specialization, we obtain the SchifI' precession, preces-
sion in the Schwarzschild spacetime with Fokker —de Sit-
ter precession as a particular example, and Thomas pre-
cession in Minkowski spacetime. The irrotational congru-
ence is discussed and the Frenet-Serret parameters are
derived for the corresponding trajectories. The general
formalism is also applied to de Sitter spacetime. Section
V treats in detail the general case of stationary cylin-
drically symmetric spacetimes where the general quasi-
Killing trajectories are helical orbits. Included in this
study as special cases are the Godel universe and the
general vacuum metrics as given by Vishveshwara and
Winicour. Section VI comprises a summary and con-
cluding remarks.

Starting from Thomas precession, gyroscopic preces-
sion has been studied extensively by difI'erent approaches
both in special and general relativity [1—6]. We have pre-
sented here a unified, covariant, geometric treatment of
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this remarkable phenomenon. Furthermore, in this treat-
ment computations can be made in a straightforward and
complete manner. We have also highlighted the interrela-
tions among quantities such as vorticity, precession, and
Frenet-Serret torsions. In addition to the general formu-
las, exact expressions have been presented pertaining to
special and physically significant spacetimes. It is hoped
that the discussions and formalism of this paper ofFer ad-
ditional insight into the phenomenon of gyroscopic pre-
cession and that the formulas derived can be of use for
further elucidation and astrophysical applications.

Our metric signature is (+, —,—,—). Spacetime
indices are denoted by latin letters a, b, . . . , m, n, . . . ,
and run over 0, 1, 2, 3 while spatial indices are de-
noted by greek letters o. , P, . . . , p, v, . . . , and run
over 1, 2, 3. The corresponding tetrad [triad] in-
dices are indicated by enclosing them in parentheses:
(~)(~) "(~)(n) "[(~)(&)" (~)(~) "].

e(0) ——V e(1),

e{1) = KC(0) + rle(2)

&(2) — rl &(1) + r2 &(3),

t-(3) — r2 t-(2 (8)

r =rl ——r2 ——0,
~ a z, a b
e(,.)

——F be(, ).

Note that F b g e~ y, g. As before [7, 8],

(9)

(10)

where v is the curvature and rl, r2 the first and second
torsions, respectively. The Frenet-Serret equations (8)
together with Eqs. (5)—(7) imply, as in the Killing case,
that along trajectories of y the Frenet-Serret invariants
v, rl, and r2 are constants and the Frenet-Serret basis
vectors e(.)

satisfy a I.orentz-like equation:

II. THE QUASI-KILLING TRAJECTORIES
2 2 a b

K = E b e(0) e(o),

A. The Frenet-Serret formalism
2 2

71 = K
ah (0) (0)

K
(12)

In [7, 8] it was shown that the Frenet-Serret formal-
ism has some attractive formal properties in the case
of Killing trajectories that find elegant applications in
black hole geometries. We show below how these prop-
erties obtain in a more general case, which we call the
quasi-Killing case. Consider a spacetime with a timelike
Killing vector $ and a set of spacelike Killing vectors gl~l
(A = 1, 2, . . . , m). The combination

X = ( + ~(~)'Ql~l&

where summation over (A) is implied and

(2)

is called a quasi-Killing vector. The terminology is jus-
tified for our usage since as in the Killing case it follows
that, if u is the four-velocity associated with y (where
it is timelike) obtained by normalizing y,

e(,)
——u = e+g,

then

e '"=X.X, 4,.g =O,

and
~ a a b ~a b

where

(( 6+ ~(Al 9'(Al .b) .

It is easy to show, using the Killing equation and the
relation (~.q., = B~g~g (" for any Killing vector g, that

E b
———I'b, E b ——0.

Recall that the Frenet-Serret equations are [7, 8]

(K —'ri ) ub (0) (o)

1 1

where

(F") g=F 'F ' . F,a.

Moreover

2F b+a 1 2
1 a b 2 2 2

Before proceeding further we may mention some ex-
arnples of quasi-Killing congruences given by (1). In
the stationary axisymmetric spacetime vy can be cho-
sen as the axial Killing vector with w an arbitrary
function of r and 0 in adapted coordinates. For in-
stance, u can be chosen to make the congruence ei-
ther geodesic or irrotational. Spatially these will rep-
resent circular orbits. In cylindrically symmetric space-
times in addition to the axial Killing vector we can
add on the Killing vector generating z translations with
coeKcients as arbitrary functions of p in adapted coor-
dinates. Spatially these will represent helical orbits. In
spacetimes admitting other spatial Killing vectors such as
de Sitter and Godel Universes more complicated quasi-
Killing congruences can be generated whose spatial pro-
jections would not be simple curves such as circles or
helices. Along any particular trajectory belonging to a
quasi-Killing congruence u is a constant. With refer-
ence to the congruence in which a trajectory is embed-
ded we may call such a curve a quasi-Killing trajectory.
Of course, if u(~) are constants then ~ defines a Killing
trajectory.

B. Frenet-Serret torsions and gyroscopic precession

The transport law for an observer whose tetrad moves
along an arbitrary world line is written as [9]
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DT (e(,)) = —nbe(, ), (16)

D
D~ ( (v) (~)) (~) (i8)

where 0 decomposes into a Fermi-Walker piece and a
spatial rotation

(FM) + ~(SR)

FM (i7)
~ab cdab
"(SR) —~c

In the above, w is a vector orthogonal to the four ve-
locity u . It is possible to choose the time axis of the
tetrad along the four-velocity of the arbitrary world line
consistent with the transport law equations (16) and (17)
and following [9] we restrict ourselves to such tetrads. If
a frame f(b) is Fermi-Walker transported along the same
world line the spatial triad of e( ) rotates relative to the
spatial triad of f( } with angular velocity w, i.e.,

abed
e(o) b e(o);d0

2v' —g
1

2g —g
a ab
FS) + D e(o)b~

abed
e(o) b + d + e ~(~),d g(~}

where

(23)

(24)

a congruence of curves is deBned the notion of vorticity,
which geometrically measures the twisting of the con-
gruence. The gyroscopic precession along a trajectory is
related to the vorticity of the congruence. In this sec-
tion we shall explore this relation in some detail. It was
shown in [7] that the Frenet-Serret rotation for a trajec-
tory belonging to the Killing congruence is equal to the
vorticity of the congruence. Consequently, the gyroscopic
precession for a Killing trajectory is determined by the
vorticity of the Killing congruence.

As we shall show below, in this respect, the quasi-
Killing case differs from the Killing one. The vorticity
of a congruence is deBned as

Comparing the Frenet-Serret equations (8) with the
transport equations (16)—(18) it is easy to verify that the
Frenet-Serret frame rotates with respect to the Fermi-
Walker transported frame by

Dab abed Dcd ')2g—g
(A)D d = e co(~) [d 'g

~

(25)

+(g) = ~(FS) = ( 2 (~) + ~ (s))' (20)

Further, using the Frenet-Serret equation (8) one can
prove

a abM(FS): E e (p) b (21)

where E—:
&
—e "Ecd is the dual to I"cd. We refer

to w(FS) as Frenet-Serret rotation. It should be noted
that m(FS) is defined along one given curve. It is not tied
to the existence of a congruence. It gives the rotation
of the Frenet-Serret frame relative to the Fermi-Walker
transported frame.

We may mention in passing that from Eqs. (8) and
(10) we have

Ke(1} —E be(0) (22)

which indicates that in analogy with electromagnetism
E be(p} can be interpreted as the gravielectric Beld as
seen by the observer with four-velocity e(o). Moreover,
the precession equations (18) and (21) exhibit further
suggestive resemblance to the electromagnetic "spin pre-
cession" equations and indicate that E e(p)b is the cor-
responding gravimagnetic field.

C. Vorticity and gyroscopic precession

Given a trajectory it can be viewed as a member of
a suitable chosen congruence of curves. Associated with

4P(FS): T2 e(y) + 7 y e(3) .

The Fermi-Walker frame is physically realized by a
system of gyroscopes and hence the gyroscopic preces-
sion relative to the Frenet-Serret frame, one of the most
natural and intrinsic frames associated with an arbitrary
curve, is given by —m(FS).'

and antisymmetrization is defined as

A[~b]: 2 (Aab Abg).

As is well known, physically, vorticity 0 represents the
angular velocity of the connecting vector with respect to
an orthonormal spatial frame Fermi-Walker transported
along the congruence [10,11]. On the other hand, Frenet-
Serret rotation ~ FS represents precession of the intrin-
sic Frenet-Serret frame with respect to the nonrotating
Fermi-Walker frame. In general, for example, in the
quasi-Killing case, the two are not the same. Therefore
the gyroscopic precession along a quasi-Killing trajectory
difFers from the rotation of the connecting vector of the
corresponding quasi-Killing congruence. However, from
Eq. (23) it follows that if ur(&) are constants, the con-
gruence y becomes Killing, 0 = ~ FS, and the gy-
roscopic precession is locked on to the rotation of the
connecting vector [12].

The above difference between the two cases, namely,
Killing and quasi-Killing, may also be understood by ex-
amining the Lie derivative of the basis vectors along e(p)
in the two cases. In the Killing case

(26)

so that modulo e(o) (i.e. , if one projects normal to e(o))
the Frenet-Serret frame is Lie dragged along e(p}. In the
quasi-Killing case, on the other hand,

(~)g e( )
= Ke(p) 8( )

+ e
(o) 4 (-) )

x [(rl(~) e(o)) e(p) g(~)] (27)

so that the Frenet-Serret frame is not Lie dragged along
e(p). Recall, that by definition the connecting vector is
always Lie dragged, i.e.,
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pc=0.
(o)

(28)

III. STATIONARY AXIALLY SYMMETRIC
SPACETIMES

In the following sections, we shall discuss particular
examples to illustrate the application of the above con-
siderations.

Equations (33)—(36) completely describe the world line of
a stationary observer and the precession of a gyroscope
carried by him. K and w1 are chosen to be positive and
72 taken to be the positive square root of the right-hand
side of Eq. (35) so that eall, e~2i, e~sl, form a right-
handed triad. We shall now apply these formulas to the
special case of the Kerr spacetime.

In this section we specialize to spacetimes which are
stationary and axially symmetric. Such spacetimes have
in addition to the timelike Killing vector g, a spacelike
Killing vector g with closed orbits. Assuming further
orthogonal transitivity, in coordinates adapted to the
Killing vectors g and g, the most general form of the
metric may be written as

ds = gppdt + 2gpsdkdp + g33dp + glldr + g22do,

(29)

where g b are functions of r and 0 only.
The contravariant components of the metric may be

read oK &om

A. Kerr spacetime

The spacetime describing a rotating black hole is the
Kerr solution and its geometry is given by

ds2 =
~

1 —
~

dt2 ——dr2 —gdg2
~ )

4Mra sin 8

2M ' 0

where

where

g33 ~ 0 l g03 8 I9 goo & 0+
pity A3 Bt 0$ A3 qBQ)
/0)' 1 (cia'

+
I I

+
g» (err) (3o)

4 =— r +a —2Mr; Z—:r +a cos 0.

Substituting the above expressions for g b in Eqs.
(33)—(36) and simplifying we obtain

r = (Ae +4r a cos Osin 8).Zs (1 2M' )2

and

2+3 = gpp g33 gp3

det g b
= g = g» g222 3. (32)

= —
4 g (ln goo), (ln goo), b

11 2 22 2
goo, 1 + g goo, 2] I

4gpp

After a long but straightforward calculation using Eqs.
(ll) —(13) and Eqs. (29)—(32) it follows that along trajec-
tories of the timelike Killing vector g the Frenet-Serret
invariants are given by

27 1

4M2a2p2 cos2 0 ~2

g3
1

(Ae + 4r a cos 9 sin 0)

where e = r —a cos 0

M a sin 0

(1 2MI"
)

2

1
X

(Ae2 + 4r2a4 cos2 0 sin 0)
(39)

(40)

T1 4+3 [g goo, a goo, b]

[gpo, l g03, 2 g00, 2 g03, 1]
2

[g goo, o. gop, b]

2 — 1~2—
4+3g11g22

c(p)

a
'(&) =

C(2)

1
(1,0, 0, 0),

+goo
1 11 22(0I g goo, lI g g00, 2I 0)'I

2K gpp

1
( g03I I I goo) I

/goo 3

Qgll g22
'(3}— (0I g00, 2 I goo, l I 0) '

2K gpp

In this case the Frenet-Serret basis is given by

(34)

(35)

(36)

8 (p)
1

(1, 0, 0, 0),
2Mr

C(2)
~(1 2MI

)

2Mr )
'I 'I 'I

C (3) —(AE + 4r a 8 c )
(0, 2ra sc, e, 0),

where 8 = sinO, c = cos0.

1 2
8(1) (0, AeI —2ra 8c, 0),

QZ(Ae2 + 4r2a4s2c2)

(41)
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Equations (38)—(41) show that an observer with fixed
spatial coordinates, i.e. , a world line following t lines, is
not only accelerated (K g 0) but also has an angular
velocity relative to the local standards of nonrotation re-
alized by a set of gyroscopes. This is a manifestation of
the dragging phenomenon in the Kerr spacetime. For an
observer on the equatorial plane 0 = n/2 it reduces to

M f 2M)
(42)rs r )
(43)

The bases vectors of the Frenet-Serret frame of the sta-
tionary observer (g lines) are always pointed to the same
Axed stars since they are Lie-dragged along the Killing
trajectory. They may be visualized by a set of telescopes
locked on to the distant stars. They also form the con-
necting vectors of the Killing congruence de6.ning sta-
tionary observers. Thus the stationary observers will see
the gyroscopes precess with respect to the distant stars
with an angular velocity per unit proper time given by

In Sec. IV A 3 we shall discuss the precession of
a gyroscope carried once around a circular orbit as mea-
sured by a stationary observer in his rest frame. To mea-
sure the precession relative to a gyroscope carried by the
stationary observer the precession due to dragging men-
tioned above needs to be taken into account. Of course,
for static spacetimes the Frenet-Serret frame of the static
observer, locked on to the distant stars, does not precess
with respect to the gyroscopes.

It may be worth pointing out that a discussion ofF the
equatorial plane involves no extra work in this formalism.
Thus, we give general expressions in all cases when one
is ofF the equatorial plane.

where

go'o' = goo + 2~gos + ~ gas = +~2

gP'3' = gP3 + ~g33 = ~&

g3~3~ = g33&

(46)

(47)
(48)

(g11~2 + g22~2 )

4 2

l82

, ~g"+(1)~(1)+ g"&(2)~(2)

(49)

gll~2 + g22~2
(i) (2) (5o)

g"g"(&(1)~(2) —&(2)~(1))'
442 (g"A2(,

)
+g22A2 )

(1, 0, 0, 0) is a Killing vector of this metric and
we can use Eqs. (33)—(35) to obtain K, rl, and r2 along
this world line. However, g' corresponds to g + cup in
the unprimed coordinates so that we can compute r, ~q,
and r2 along trajectories g + farl by rePlacing gpp, gp3,
and gss in Eqs. (38)—(40) by gp o, gp 2, and gs 2 . More
importantly the prescription also works in cases where ~
is not a constant but only satisfies g ~ = 0. This can

be seen by noting that the expressions for the Frenet-
Serret invariants in the quasi-Killing case do not involve
derivatives of w. One can also check explicitly that the
same expressions for K, 7 i, 72 obtains whether one starts
from g + wrI or if one uses the expressions for g and
replaces g b by g b treating w as a constant. Thus along
trajectories of g + ug we obtain

IV. ROTATING COORDINATES AND
GYROSCOPIC PRECESSION ALONG

CIRCULAR ORBITS WITH CONSTANT
ARBITRARY ANGULAR SPEEDS

where

2
~(&) gpp ~ + 2&gp3 ~ + ca) g33 ~& a = 1, 2,

~(b) = gp3, b+wg33b 6 = 1, 2.
(52)
(53)

+mt', t =t
under which the metric becomes

(44)

In Sec. III, we have obtained v, ~~, ~2 for an observer
whose world line is along the integral curves of the time-
like Killing vector g of a stationary spacetime. Such an
observer is at a fixed value of r, g, and P. In this section
we show how the use of "rotating" coordinates allows
one to adapt the expressions of Sec. III to trajectories
belonging to a quasi-Killing congruence that represent
observers moving along circular orbits with constant ar-
bitrary angular speeds. This is in the spirit of the method
used by Rindler and Perlick [3j.

Starting from a stationary axially symmetric metric of
the form (29) adapted to the Killing vectors g and g, we
note that g + rug, where w is a constant, is also a Killing
vector. A coordinate system adapted to g' = g + wrI is
obtained by a coordinate transformation

e(i)

a
'(2) =

1 11 22

2+A~ (0, g A(, ), g A(2), 0),
1

(8, o, o, —(."),

ggll g22

2KA ( ~ +(2)~ +(l)r 0)r (54)

To obtain the Frenet-Serret tetrad associated with ~
we recall that with respect to the primed coordinates
~ is like g. Thus the Frenet-Serret tetrad in the primed
coordinates are obtained by replacing g b by g b in Eq.
(36). The components relative to the original unprimed
coordinates are obtained via a vector transformation and
finally we 6.nd

1
e(p)

— (1,0, 0, (u),
A

ds = go pi dt + 2gp 2 dP'dt' + gs 2 dP'

+ gig dr + g22 d0, (45)

where

C—:gPP + (dgP3.
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For later comparison we write down the dual bases
below. They are given by

(0) [Cdt —Bdg],

[~(~)dr + A(2)de],1 1
2r.A

' [~dt —d@],

~(3)
2KA

g22
A(,)dr-

g11
A(~) d8 . (55)

g22

We next apply the above formulas to various spe-
cial cases and retrieve well-known gyroscopic precessions.
Many of our formulas are more general in that they are
not confined to the equatorial plane but valid o8' it. The
formulas are moreover demonstrated in a unified frame-
work.

It should be recalled that in the above u can be any
arbitrary function of r and 0. This allows one to discuss
precession along a geodesic (where cu is not a constant) by
chosing u such that r = 0. Although the Frenet-Serret
equations are reduced to only one, 71 and w2 are defined
through u, e~2~, and e~3~ by considering the geodesic as

I

A. Kerr black hole

The general case

The general procedure outlined above may be applied
to obtain the acceleration and gyroscopic precession in
the case of an observer following a quasi-Killing trajec-
tory in the Kerr spacetime. A straightforward computa-
tion yields

2 =T2

K1
ZK2

'

S
Z K1K2
M K4

(56)

(57)

(58)

where

a particular limit of the congruence obtained by keep-
ing u constant corresponding to the geodetic value. The
Schwarzschild metric corresponds to a = 0 while Oat
spacetime corresponds to M = a = 0. In addition
if trajectories are confined to the equatorial plane then
0 = vr/2.

- 2 - 2

)Cq ——A (1 —acus ) —rs cu + c s
M~ 2 2 2 2 2 2 2 2 2 2

g2 g2 ((r + a )cu —a) (59)

12
)C2 —— 1 —(r + a )s cu — (1 —acus )

2Mr 2 2 (60)

M~ 2Mr 2K3= g2 (1 —acus ) —rs cu rcu — (1 —acus )cu— g2 (1 —acus )((r + a )cu —a)

2Mra 2Mr+c (1 —acus )' —cu, [(r + a2)cu —a]'+ Acu2 (61)

- 2

E (1 —acus ) —ecu(r + a )(1 —atus ) + 2as cur j(r + a )cu —a} (62)

The bases are given by Eq. (54) with A, A(z), A(2), 8, and C given by

A= 1 —cu s (r + a ) — (1 —acus ),2Mr 2 2

2M
A(q) = (1 —acus ) —2rcu s,

W(2)——2cs Acu + ((r + a )cu —a)
2Mr 2

2Mras 2
2 2 2 2(1 —acus) —(r +a)cus,

2Mr
C = 1 — (1 —acus ).Z (63)

As explained earlier for cu = 0, Eqs. (56)—(62) reduce to Eqs. (38)—(41) for motion along (c', the global timelike Killing
vector defining a stationary observer.
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2. The equatovia/ p/an e. 8 = 7r/2

On the equatorial plane the above expressions reduce to

2 p cd(a(d 1)

2m (~cd —1)2
(64)

Ma (T +2~ )~
2j1

1 —(r2 + a2)w2—

„(g aM) ~ M (3'+ ') '
)p2

- 22M(~~ —1)2
(65)

The bases are given by Eqs. (54)—(63) with s = 1,
c =- 0.

We note that the gyroscopic precession is about e(3~
which is normal to the orbital plane and the precession
frequency is given by w1 as above.

8. geodesic m, otion and Schiff precession

Along a geodesic, K = 0, whence

(67)

and Perlick [3]. The base line with respect to which the
precession is calculated in the rotating coordinates by
them coincides with the Frenet-Serret vector e(1~ on the
equatorial plane. Consequently, it leads to the same pre-
cession angle AP'. In order to compute the precession
relative to a stationary geometry ("frame of fixed stars" )
we need to subtract from the precession at the end of
one revolution the amount through which e(i) has ro-
tated with respect to the stationary observer, namely,
27t radians. Following this procedure we arrive at the
gyroscopic precession in the Kerr spacetime:

This yields the Keplerian frequency in the Kerr case and
the Frenet-Serret invariant for motion along this geodesic
is

M
r3 (68)

M 27t&4'' = +, geo o (69)

In Eq. (67) the + ( —) signs correspond to corotating
(counterrotating) orbits. The range of values of r for
which these orbits are timelike have been discussed in
Sec. 2.2 of [3]. Their analysis shows that the range of
r for which counterrotating orbits are timelike requires
that the absolute value of c be less than the modulus of

. It should be noted that as w approaches the Kep-
lerian value the combination A(i) jKA is still well defined
leading to e(1~ and e(3~ independent of w. This allows us
to extract the geodetic case as a special instance of our
more general motion.

The gyroscopic precession frequency, p~ri~, is thus

. This precession is about e(3~ which coincides
with the z direction. The orbitin. g (corotating) observer
measures precession relative to e(1~ which coincides with
her radius vector which rotates with angular velocity w

given by Eq. (67). The precession angle per unit proper
time as computed in the rotating coordinates is therefore

(7O)

In the linear approximation this reduces to the Schiff
precession. This agrees with the standard results quoted
in literature including Ref. [3].

As discussed earlier in Sec. III A one may want to
compute the precession of the orbiting gyroscope with
respect to the fiducial gyroscope of the stationary ob-
server. In one revolution of the orbiting gyroscope the
latter precesses due to dragging by an amount

27'
&(t(drag) = ( &i) +goo

where 7i is given by Eq. (42). This leads to [13]

2irMa ~
+&(dr ag)

(72)

B. Schwarzschild black hale

The Schwarzschild Inetric may be obtained from the
Kerr metric by setting a = 0. Correspondingly the most
general case of gyroscopic precession follows from the
Kerr expression for a = 0.

where u is the angular frequency of rotation per unit co-
ordinate time. This agrees with the results of Rindler

Genes al Schmarzachild caae

The a = 0 limit of Eqs. (56)—(63) yields
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[(1 2M
) (

M ~2 82) 2 + cd482c2]

2M

(1 —2M)[( ——cd 82)(1 — M) —cd c ]2
2M

& 2 2)2[(1 2M)(~M 2)2 + 4

(u M2C2

r6[(1 2M
) (

M cd282)2 + cd482c2]

(74)

The Frenet-Serret frame is given by

a'(o)—
1 — —7'2~2 82

(1,0, O, cd),

1 ~2cs
e(1) ——

2M M
—Ct) 8 ) , 0l&) [(1 2M)(~M 2 2)2 + 4 2 2]y/

~ ~
&

~
&2

e(2) = 1 (,
) )

rs (1 — )(1 — —cd r 8) ( ( "))
2M
r t'

2 M
2 M 0, cspcd

[(1 2vn)(M 2)2 + 8 I 0 (76)

2. The equatorial plane

r2(1 2M )( M cd2)2

2M

SM)2
2M

(77)

(78)

Most commonly, the precession is computed for orbits
in the equatorial plane for which 0 = vr/2. Equations
(73)—(75) reduce when 0 = —to

1/2

"r (s2).

In this case,

2 271 = Cd

so that the orbital gyroscopic precession frequency is u,
the same as the angular speed u. In one orbital revolu-
tion, the gyroscope rotates by

2 = 0. (79)
C. Minkowski spacetime

The bases vectors of the Frenet-Serret frame obtain by
inserting 8 = 1, c = 0 in Eq. (76). The cd independence
of e(1) and e(3) mentioned earlier may be noted more
transparently in this instance.

The gyroscopic precession in this case is

The general ease

This corresponds to M = 0 in Eqs. (73)—(75) whence

/' 3M / 2M
ry = Cd 1— 1—

'P

3M' f 2M1—
r )

g
—1/2

r
—r cd

(so)

2 = P M 8
K

(1 —r Cd28 )
2

(1 r2cd282)2 '

2 = 0,

while Eqs. (76) reduce to

(83)

(s5)

(s1)
e(o)

1
(1,0, 0, cd),'I 'I 'I

8. EokIcer-de Sitter precession

Along a geodesic K = 0 so that we recover the Keple-
rian frequency

e(1)
—— 0, —8, —,0

e~2l
—— (cdr 8, 0, 0, —1),t 8 1 —cd r s

8
e(3)

—— 0, c, ——,0
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Note that v2 vanishes identically. Therefore, the preces-
sion is about the normal to the orbital plane as should
be expected from the symmetry of the situation.

to

2. Thomas pf eee88ian

The above expressions reduce on the 0 = 7r/2 plane

P (d2 =
(1 —r 2~3) 2 '

2

(1 —r2(u2) 2 '

2 = 0,

(s7)

(88)

(s9)

D. Globally hypersurface orthogonal stationary
trajectories (GHOST's)

The Kerr spacetime admits an important congruence
which conforms to our definition of quasi-Killing vec-
tor fields. Observers adapted to this congruence have
been called locally nonrotating observers (LNRO's) or
zero angular momentum observers (ZAMO's). Consider-
able insight into the physical significance of phenomena
occurring in the Kerr spacetime is gained by studying
them with reference to the above observers [1]. In the
broader context of orthogonal transitivity, it was shown
[14] that this congruence consists of what we may term
as globally hypersurface orthogonal stationary trajecto-
ries or GHOST's, with t=const being the hypersurfaces
to which they are orthogonal. Therefore, the vorticity
of the congruence identically vanishes, so that the con-
necting vector between two adjacent trajectories does not
precess with respect to the Fermi-Walker transported gy-
roscopes.

The quasi-Killing vector correspond. ing to the LNRO,
ZAMO, or GHOST is defined by

x=6+~'9 (»)
go3

'g ' 'g g33

We note that ~ is timelike down to the event horizon on
which it becomes null.

As mentioned earlier, the vorticity of this congruence
is zero, so that

(92)

+GHOST = O =
2

1

abed &b+c.d

e2+
e ub +cd + e Eb'gc~, d2g —g

(93)

leading to the familiar expression for Thomas precession:

AP = —2vr [(1 —r (u2) ~ —1]. (9O)

As expected the "Keplerian" analogue is ~ = 0 in which
case there is no precession at all.

In the above sections we have shown how the general
Prenet-Serret formalism can be adapted to retrieve the
results discussed in, e.g. , Ref. [3]. Motions more general
than geodetic or confined to the equatorial plane are easy
to include and formulas corresponding to these cases have
also been exhibited.

a 0= ~(FS) + ~(prec) . (94)

Consequently, the connecting vector between two neigh-
boring trajectories belonging to this congruence does not
precess relative to the Fermi-Walker transported gyro-
scopes. Further, w&ps) is the precession of the Frenet-
Serret frame with respect to the gyroscopes. Therefore,
precession of the gyroscopes relative to the Frenet-Serret
frame is given by —

w~FS) which is equal to A~pzec) only
for the irrotational congruence. The expression for m~psi
is the same as one would obtain if the particular trajec-
tory is treated as a member of the Killing congruence
obtained by taking w of the trajectory as a constant for
the entire congruence. This also means that the Frenet-
Serret frame is rigidly attached to the connecting vector
associated with this Eilling congruence. The expression
O(precl is exactly the same as given in [1] which is the
precession of the gyroscope with respect to the locally
orthogonal triad of [1] adapted to the irrotational con-
gruence. To sum up, because of the vanishing vorticity,
the connecting vector between adjacent observers follow-
ing the irrotational congruence is locked on to the inertial
system of gyroscopes and does not precess with respect to
the latter. However, gyroscopes do precess relative to the
Prenet-Serret frame and the latter are not inertial. This
precession frequency in this case is given by two equiv-
alent expressions one of them involving derivatives of ~.
As we shall show later, the Frenet-Serret triad coincides
with the triad defined in [1] on the equatorial plane but
divers from it by a constant spatial rotation for 0 / —.

We may note in passing that in the case of a LNRO
Thorne and MacDonald [15] write down the Fermi-
Walker time derivative of any vector orthogonal to u
as

'[l:M+~gM+ -'(xn x V'~) x M],t m

(95)

where

m—:xi and n= g~ (96)

If M is taken as the Frenet-Serret spatial triad then
M = g M = 0 and. the formula reduces to the

t m
precession of the triad relative to the gyroscopes with
frequency 2 (xn x Vu) which is an equivalent form of
our expression for the precession frequency.

We now consider the congruence within the frame-
work of our formalism. It should be clear from our dis-
cussion of the quasi-Kilhng congruence and the section
on the use of rotating coordinates that all our formulas
are applicable when referring to a particular fixed curve
of any congruence in particular the GHOST. Conse-
quently, to calculate the precession of gyroscopes relative
to a GHOST we proceed exactly as in the earlier cases
and use for u the expression appropriate to a GHOST,
i.e. , w = —go3/g33 Since none of our formulas involve
diKerentiation of u the same expressions Eqs. (49)—(54)
give the formula for precession of a gyroscope relative to
the Frenet-Serret frame of the GHOST. Thus we obtain
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2 = g
2
332—

4+3g11g22

1 g'(„;),-(„;),~
4 (—„;)'

[(—„;),1(;;;),2
—(,—,; ),2(;;;),1]'

(98)

(gg)

g 1/2

a'(1)— 1

11( 3 )2 + g22( ~3 )2 ( ~g ),1 kg33 2, 2 ))

a
(3)

1
e(2) ———

~

0, 0, 0,
V' —g33 )

gg11g22 ( f ~3 ~

g11( +& )2 + g22( +3 )2 ( (g33) 2 ( g33) 1 )g33 g33

(100)

M [221 + AC22s2c2]

234832

Mas(ECZ +2raZAsc]
2382[22+ l:2As2c2]

4M r a s c a[E + (r + a )2 ]
Z3223[l:21 + l:22As2c2]

2Mra)
'I ) 'I

~ )
M

e(1)
—— (0, Z1, 22sc, 0),

e(2)
———(0, 0, 0, Qdss),

M
e(3) ——

~
0, —~AZ2sc, , o ~,.zr, q )

(101)

(lo2)

(lo3)

These observers accelerate (v g 0) and their Frenet-
Serret frames precess with respect to the gyroscopes
(r1, r2 g 0).

The above expression can be calculated explicitly for
the Kerr solution. This gives

2ra2(r2 + a2)
E

2Mra s
Q3 ——r +a + E
C4 —2r +(r +a)—.

Z

(106)

(lo7)

(108)

E. de Sitter universe

We next apply the formulas to the case of the de Sitter
universe whose metric we take in the form

r2 r2
ds = (1 ——

) dt —(1 ——) dr —r dg
CI

Specializing Eqs. (55) to the GHOST it is easy to see
after a little computation that the Frenet-Serret kame
coincides with the LNRO frame in [1] if 8 = vr/2. The
Frenet-Serret kame is in general oriented so that e~1)
is along the direction of the acceleration which is not
along the r direction, if the orbit is not confined to the
equatorial plane.

where —r sin Odg . (log)
2a2 ~2p2 +

C1 ——r —a
Z

(105) Along trajectories of g + wg in this case we obtain

2 =7 1

[(1 T )( 1 + ~2s2)2 + ~4s2c2]

(1 —7' —r2&2s2) 2

2
(u2s2(l ——,)(—', + (u2)2

(1 ~ r2~2s2)2[(1 ~
)( 1 + ~2s2)2 + ~4s2c2]

(llo)

2
~2

Ca) C

n4[(l ——"', )(—,+ (u2s2)2 + (u4s2c2]
(112)



5716 B. R. IYER AND C. V. VISHVESHWARA 48

1
(o)

1
(1)

(1, 0, 0, ~),

( (
~0, ]1— + LgJ s

1
(2) , 0, 0, —

1 ( 1 1
~o, use, —(—2+us), 0~,(3) g ( ' ' r

where 2 A 2~3 = goo g33 g03 ) ~2 = goo g22 go2 ~ (12o)

(114) Proceeding as before we first compute K, v1, and w2 for
an observer whose world line is g. We obtain

( r2') (1
82 —— 1 —— +cd s

~
+cd sc

)
11 2

g g00, 1
K )4 goo

2 (121)

It is easy to see that there is no analogue of the Keple-
rian orbits. This is related to the fact that the "potential
goo is proportional to a positive power of r rather than a
negative power as in the Schwarzschild case. An arbitrary
cd leads to precession analogous to Thomas precession in
fl.at space but more complicated due to the curvature of
the spatial sections.

27 1

—g
[ gpp(g02g03, 1 g03g02, 1)

4L23goO

g22(g03gpo, l gppg03, 1)
2

g33 (g02gpp, 1 gppg02, 1) ] )
2 (122)

27.
2

——0. (123)
V. STATIONARY CYLINDRICALLY

SYMMETRIC SPACETIMES
For completeness we also compute the Frenet-Serret
bases for these metrics. It is given by

In this section we extend the treatment of the previ-
ous section to spacetimes which in addition to the Killing
vector $ and vy have yet another Killing vector p repre-
senting translation invariance in the z direction. A well-
known example is the Godel solution as well as metrics
representing solutions with cylindrical symmetry. As dis-
cussec. in the beginning all our earlier results obtain in
this instance and hence we write down without proof the
main expressions.

We start with the standard form of the line element in
this case as given by

ds = gopdt + 2gp3 did p + g33 dp + 2gp2 dkdz

+g22dz + g11dP ) (116)

a
(3)

where

1
[ g22g03(g03gpp, l gppg03, 1)

goo

+g33g02(g02gpp, l gppg02, 1)])

1
(1, 0, 0, 0 ),

v'goo

e(,)
——(0, g—g", 0, 0),

gll
e(,)

—— (a„O, b„),c2
2+goo&23rl

gll
(a3, 0, 63, c3),

2goo V'&23&1
(124)

(125)

g = det(g b) = gllA23,
where

(117)

2 2~23 = goog33g22 g22go3 g33g02 ~

Further,
(11s)

where g b are functions of p only, since we are in coordi-
nates adapted to the Killing vectors g, g, and y, . In this
case we have

3 g03g02, 1 g02g03, 1 )

~3 goog03, 1 g03 goo, 1 )

C3 = g02goo 1 —goog02 1

~2 —g33(gpog02, 1 g02gpp, l) + g03(g02g03, 1 g03g02, 1) ~

(126)
C2 = g22(gppg0311 —g03goo)1) + g02(g03g02)1 —g02g03~1)1

(127)
(12s)
(129)
(13o)

( g22 g33 g03 g22 g02 g33

g
ab 1 —gO3 g22 +2 gO2gO3

+23 g02 g33 g02g03 +3
o o o

0
+23jgl1 )

It should be noted that since 72 = 0, e~3~ cannot be
obtained by the usual Frenet-Serret process of diKerenti-
ation but in this case has been obtained just by orthonor-
rnality with the e(;) (i = 0, 1, 2). Adapting the procedure
of Sec. II to the quasi-Killing congruence
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+vp —= e @ep, (131) ~(1) = g02, 1 + Vg22, 17 (148)

where

we obtain
~ a ~a b
(m) ~ b (m) 7

where

((~;s + ~'%;b + vP~;b),

(132)

(133)

(134)

(a'„0, b', + va'„c', + (ua', ),

1
e(p) (1) 0) V9 Ld)7

e(, )
——(0 Q-g" 0, 0),

gll
(2) 2v &&337i

11
e(3)

—— (a3, 0, b3 + va3 c3 + 4/a3),
2D

and

n = ~ +8'e(p)b (135)

where a'; and b,' (i = 2, 3) refer to a, and b; with g b

replaced by the corresponding g
The geodesics are determined by K = 0, i.e., D(1)

and in this case v1 simplifies to
where

and

a ab
cd = F e(p)b,

Hg, =—e [~( hark) + v( gp, ,). (136)

2
Tl

where

g11 2 2 2

17 [ (gp2»2&) 8(i) + (gp3 g33~)~(i)
23

—2KB 8(i)f(i)], (150)

The general quasi-Killing trajectories along g represent
helical orbits. Nevertheless, the computation of v, v1, w2

for ( involves a similar trick as before. Under the coor-
dinate transformation

gpp + 2Vgp2 + V g22. (151)

go2, p g22, p (152)

A further simplification obtains if the spacetimes under
consideration satisfy

t
7

p = p'+ (ut',

z =z'+ vt',

(137)
(138)
(139)

In this case the Keplerian orbits for g are determined by
A(i) = 0 as for the ~ congruence and ri reduces to

the metric transforms to

gpIpI ——gpp + 2ugp3 + & g33 + 2vgp2 + v g22 = P72 2

gP I 3I = gP3 + (dg33 = 8
go'2' = go2 + vg22

g3'3' g337 g2'2' g22 7

(140)
(141)
(142)
(143)

(1)
g11 ~2

4B2 (144)

where g Ig are independent of t', P', and z'. The Killing
vector g = (1,0, 0, 0) corresponds in the old coordinates
to g + wrl + v p and consequently we can use Eqs. (121)—
(123) to evaluate r, Ti& 'T2 by using g q instead of g~b in
the equations. This gives

g"8(,) (g,', —g22A)

4L23P
(153)

The further restriction gp2 = 0 finally leads to a form
useful for the Godel case:

2
T1

g"8' X(1)
4A3(A + v2g22)

(154)

The general expressions above may be simplified in three
particular cases: (i) gpss ——0, (ii) gp2 ~ = g22 ~

= 0,
(iii) gp2 = 0, g22~ = 0. The Godel universe belongs to
category (iii) while the cylindrical vacuum metrics of [16]
belong to class (i).

We next apply these general considerations to the
Godel case and finally, to the general cylindrically sym-
metric vacuum metrics.

2
7 1 17(ZB(i) —BE(i))

—g
4L23'V2

—g22(8&(i) —&8(i))

g33+1 (i) 1 ~(i)) (145)

A. Godel universe

The Godel universe is described by the line element

ds = 4B [ dt + 2~2S dPdt —(S —S ) dP
dr —dz ], — (155)

where S = sinh r, C:—cosh r.
27.
2

——0,

where

(146)

General spiraling g traj ectories

2 2
(1) = gpp 1 + 2cugo31 + ~ g33, 1 + 2vgo2, 1 + v g22, 17

(147)
Adapting the formulas of the previous section for ob-

servers moving along g we have
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2j

2~2 —~(1 —2S2)

4B2g~2

1
~, , (g' + '(g' + g,'g )),

1

(156)

(157)

Thus the Frenet-Serret frame of the stationary observers
precesses relative to the gyroscopes and reveals the rota-
tion intrinsic to the Godel universe. Following the pro-
cedure outlined in Sec. IV A 3 the precession due to
dragging is

2
72 =0,

where

(158) AQ(drag)
——~(1 —2 sinh r)

in agreement with [3].

(17o)

gg = 1 + 2V2(uS —(u S (1 —S ) —v,
g2 = (u(1 —2S ) —~2(1+ (u S )

+-v (v 2 —(u(1 —2S )),

gs = cuS/1 —S2(2~2 —w(1 —2S )),
g4 =—~2 —(u(1 —2S ).

(159)

(16o)

(161)

(162)

GHOST

gps V2

g33 1 —S2 (171)

We conclude by a consideration of precession along
GHOST's. The angular velocity of these observers cor-
respond to

leading to
2. Geodesi cs

Along a geodesic ~ = 0 yielding for the "Keplerian"
&equency and

2 = S2

B2C2 (1 —S2)2 (172)

2~2
1 —2S2

' (163) 2 =
2B'(1 —S')' ' (173)

the same as for the g orbits [3]. However, the gyroscopic
precession &equency contains the signature of the z mo-
tion and is given by B. Stationary cylindrically symmetric

vacuum spacetimes
2

Tg
1 —4S'C'

2R2[1 —4S C —v (1 —2S ) ]
(164) The stationary cylindrically symmetric vacuum space-

times have been given in an elegant compact form by
Vishveshwara and Winicour [16] as

8. The y motion

The v = 0 limit of the Eqs. (156)—(162) leads us to the
motion along y lines and we obtain

ds = e ~ (dr + do ) + Appdt + 2Apsdtdg+ Assd(b,

(174)

where

~2S2C2
4R2

2~2 —~(1 —2S2)
(165)

1 + 2~2~S2 —~2S2(1 —S2)

=A v+ +B 7. o. =00 03 33,
b —1e'& = cr' —', r = v2p, ~ = ~2z.

(175)

(176)

(~2 —(u(1 —2S ) + ~2~ S )
4/2[1 + 2~2~S2 —~2S2(1 —S2)]2

(166)
App A33 Ap3: Bpp B33 Bp3

2 2 (177)

The coefficients A and P satisfy the algebraic relations

The precession &equency for motion along circular
geodesics takes the simple form

App B33 + A33 Bpp —2Ap3 Bp3 (178)

2= 1
2R2 (167)

The mass per unit length m and angular momentum per
unit length j are given by

yielding for the precession

EP = —vr [(1 —sinh 2r )
'~ —2] (168)

m = — + 2 b(AssBpp —AppBss),

j = —b(ApsB33 Ass Bps).

(179)

(18o)
in agreement with earlier results [3].

Finally in the case of stationary observers (g lines)
+=0, i.e. , the t lines are geodesics. In this case we obtain

1 The g traje.ctor'ies

1
2R2 (169)

For completeness we write down the Frenet-Serret in-
variants for the line element listed above. They turn out
to be
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.2=-
4m-b'+'

—2W ' + v (WWs —W2)3W2 CTb —2

2
(1 + 6)7' Apipi + (1 —6)7 Bpipi + (6 —1)v C7

b2 —2Ap&p~7 + Bplp17 + v c7
(181)

(182)

where

App

Bol ol

Ap3

Wg

W3

App + 2MAp3 + u A33&

Bpp + 24&)Bo3 + u B33)
Ap3 + wAo3 ' Bo'3':—Bo3 + ~Bo3&

Aolp&7 + Bo&p&7 + 2v c7b b2 —2

b —26(ApipiBpisi —ApisiBpipi) —v cT ((1 + 6)(2 —6)Ap s i7i+ (1 —b)(2 + 6)Bpisi1 ),
/Assr + Bss~ b[(l + b)(2 —6)Apipir + (1 —b)(2+ b)Bpipi~ ],
(1 + 6) (2 —6)Ap i'i+ (1 —6) (2 + 6)Bpisi T

(183)
(184)
(185)

(186)

(187)

(188)
(189)

2. Observera with arbitrary con8tant angular velocity along ~

In this case we obtain

1 (1+b)Apipir + (1 —b)Bpipi7.
K )4C7-b +' Ao~olv. + Bpl pI~—

2 - 226 (Api pi Bpi si —Api si Bpi pi )
j

crab + App7b + Bpp T

(190)

(191)

Note

b(Ap p Bipisii —Apisi Bpi pi ) = 6[(AppBps —ApsBpp + cu(AppBss —AssBpp) + (u (ApsBss —AssBps)]

2 [26(AppBps —ApsBpp) —(d(4m —1) + 4ju ]. (192)

3. Xeylerian geodeaics

These are determined by r = 0 yielding

[
—(1 + 6)Apso + (1 —6)Bpsr ] + ( 2 ) 2

(1+6)As3T + (1 6)B3 s7

(193)

1 (1 —b)A3sr + (1+6)B33'7
4c~b'+' A33~ + B337.

The precession takes the form

Sj'
c'rb +1 (A&srb + Bss'r b) 2 '—

(196)

(197)

(194)

GHOST

Finally we look at these special trajectories for the
cylindrically symmetric vacuum metrics. In this instance

gO3

g33

Ap3 w + Bp3 w

A337 + B337
(195)

and the acceleration becomes

Note that real roots are possible only for b ( 1 which
is consistent with the fact that the potential gpp is a func-
tion of negative powers of w only for these values. The
precession is obtained to be

The gyroscopic precession given by rj is proportional in
this case to the specific angular momentum j. From our
previous discussion we know that the connecting vector
between two adjacent trajectories of the "irrotational"
congruence does not precess with respect to the Fermi-
Walker transported gyroscope. In general, the Frenet-
Serret triad does precess with respect to the gyroscope
or equivalently in this case with respect to the connecting
vector. However, if rq ——0 (v.2 is identically zero) then
the Frenet-Serret triad is also nonprecessing with respect
to the gyroscope or the connecting vector. This happens
when the angular momentum of the source j = 0. Thus,
the observer can decide if the source is rotating or not by
checking whether or not his Frenet-Serret triad, which is
Lie transported, precesses with respect to the gyroscope
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or the connecting vector. Gyroscopic precession along
trajectories of the irrotational congruence reveal directly
the rotation of the central source.

S. 1'he 8tationary observes 8

(1+ b)Appr + (1 —b)Bop'
AQP& + BPQ&

26 AQQBP3 AP3BPQ
|"7 + Appw + Bppz

1
4CW~'+1 , (198)

(199)

Equation (199) describes the rotation of the stationary
gyroscope due to dragging. Once again this illustrates
the very general eKect of spacetime rotation on local ex-
periments.

VI. CONCLUSION

As has been mentioned earlier, gyroscopic precession
is a phenomenon that has been extensively studied both
in flat and curved spacetimes by diferent methods. The
orbits of the gyroscopes in these instances are given by
combinations of Killing directions admitted by the space-
times under consideration. It is found that in these cir-
cumstances, the invariant geometrical description of the

For completeness we write down the parameters when
~ = 0, i.e. , the g lines. We have

Frenet-Serret formalism provides a covariant and elegant
framework for the study of precession. By extending the
formalism applied to Killing trajectories to quasi-Killing
trajectories, a large number of cases can be studied in
a unified manner. Furthermore, this treatment makes it
possible to relate the precession of a gyroscope to the vor-
ticity of a congruence when the gyroscope is transported
along a given member of that congruence. An impor-
tant example is the irrotational congruence admitted by
stationary, axisymmetric spacetimes like the Kerr. It is
worth pointing out, however, that gyroscopic precession
is directly determined by the Frenet-Serret rotation in
general. Another aspect of our treatment is the unified
description of precession applicable to a whole family of
spacetimes. Specifically, precession for orbits with arbi-
trary constant angular speed has been worked out for
the Kerr metric. Starting from this, particular examples
have been worked out for the entire Kerr-Schwarzschild-
Minkowski spacetimes. Expressions presented are gen-
eral, exact, and not con6ned to the equatorial plane. In
deriving these results rotating coordinate systems have
been used to generate circular orbits from static trajec-
tories. Also, additional interesting cases such as Godel,
de Sitter universe, and general vacuum cylindrical space-
times have been investigated. It would be interesting to
explore in detail the implications of the general results
obtained here and their possible astrophysical applica-
tions.
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