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It is by now clear that the naive rule for the entropy of a black hole, (entropy) =- — (area of event
horizon), is violated in many interesting cases. Indeed, several authors have recently conjectured
that in general the entropy of a dirty black hole might be given purely in terms of some surface
integral over the event horizon of that black hole. A formal proof of this conjecture, using Lorentzian
signature techniques, has recently been provided by Wald. This paper performs two functions. First,
by extending a previous analysis due to the present author [Phys. Rev. D 48, 583 (1993)] it is
possible to provide a rather diQ'erent proof of this result —a proof based on Euclidean signature
techniques. The proof applies both to arbitrary static (aspheric) black holes, and also to arbitrary
stationary axisymmetric black holes. The total entropy is

kA~
4/2

S V29d x.

The integration runs over a spacelike cross section of the event horizon H. The surface entropy
density 8 is related to the behavior of the matter Lagrangian under time dilations. Second, I shall
consider the specific case of Einstein-Hilbert gravity coupled to an effective Lagrangian that is an
arbitrary function of the Riemann tensor (though not of its derivatives). In this case a more explicit
result is obtained:
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The symbol g„denotes the projection onto the two-dimensional subspace orthogonal to the event
horizon. Although the derivation exhibited in this paper proceeds via Euclidean signature techniques
the result can be checked against certain special cases previously obtained by other techniques, e.g. ,
(Ricci) gravity, B gravity, and Lovelock gravity.

PACS number(s): 04.20.Cv, 04.60.+n, 97.60.Lf

I. INTR.ODU CTION

The entropy versus area relationship for generic "dirty"
black holes has recently engendered considerable inter-
est [1—7]. Generically a dirty black hole [8] is a black
hole distorted by either (1) various classical matter fields,
(2) higher curvature terms in the gravity Lagrangian
[e.g. , (Riemann) ], or (3) infestation with some version
of quantum hair.

The present paper addresses two main points.
First, it has recently been conjectured that the en-

tropy of a dirty black hole can ahoays be cast into the
form of an integral of some quantity over the event hori-
zon [3,9,10]. A formal proof of this result, based on
Lorentzian signature I agrangian techniques, has recently
been announced [5]. Details and applications may be
found in [6,7]. In this paper I present an alternative
proof of this result. The present proof is obtained by uti-
lizing Euclidean space techniques in the manner of [1],
and is ultimately an extension of the original Gibbons-
Hawking Euclidean signature technology [ll]. The proof

'Electronic address: visserkiwi. wustl. edu

applies both to arbitrary static (aspheric) black holes,
and also (with additional technical complications) to ar-
bitrary stationary axisymmetric black holes. The total
entropy is

8~2gd x.

The integration runs over a spacelike cross section of the
event horizon H. The surface entropy density 8 is re-
lated (in a particular manner involving time dilations)
to the surface term arising in the integration by parts
that connects the stress-energy tensor with the variation
of the action under a variation of the spacetime met-
ric. For definiteness, the calculations are carried out in
four-dimensional spacetime, but the generalization to ar-
bitrary dimensionality is immediate.

Second, as a specific example, this paper will focus on
the case of black holes in Einstein-Hilbert gravity coupled
to an efFective Lagrangian that is any arbitrary function
of the Riemann tensor (though not of its derivatives).
Interest in such a toy model is justified by noting that
whatever the underlying quantum theory of gravity is,
one would expect on general grounds that the low-energy
theory should be describable by an effective Lagrangian
that contains at least the class of terms indicated above.
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Applying the general formalism developed in this paper
to this particular case yields

JPvAP J J ~d2 (2)

II. GENERAL THEOREM

A. Reprise

In a previous paper [1], I have derived a general for-
mula for the entropy of a dirty black hole in terms of (1)
the area of the event horizon AH, (2) the energy density
in the classical fields surrounding the black hole g, (3)
the Euclideanized Lagrangian describing those fields 8,
(4) the Hawking temperature TH, (5) the entropy density
s associated with the fluctuations (quantum hair, statis-
tical hair), and finally (6) the metric. The total entropy
1s

kAH 1+4/2 (g —l:)K"dZ„+ sV"dK„. (3)

This formula applies to all static black holes (not neces-
sarily spherically symmetric), and to stationary nonstatic
(axisymmetric) black holes. K" is the timelike Killing
vector. V" is the four-velocity of a comoving observer.
For a static black hole, this is just the four-velocity of a
FIDO (fiducial observer). For a rotating black hole this

The tensor 1" "P = 02/BR„ i p has the same symmetries
at the Riemann tensor. The symbol g denotes the pro-
jection onto the two-dimensional subspace orthogonal to
the event horizon.

It is instructive to check this formula against several
special cases that have been derived by rather diferent
methods. For instance, Jacobson and Myers [2] have re-
cently evaluated the entropy for black holes in Lovelock
gravity using Hamiltonian methods. The present anal-
ysis reproduces their result with no difhculty. More re-
cently, Jacobson, Kang, and Myers [3,4] have extended
their analysis to the case where the Lagrangian is an arbi-
trary function of the Ricci scalar. The entropy for black
holes of this type was extracted by using a combination of
field redefinition and Hamiltonian techniques. (Consider
the behavior of the black hole under conformal deforma-
tions. ) Again, this result can be shown to be a special
case of the general formula given above. Furthermore,
Jacobson, Kang, and Myers [3,4] have also considered
the case where the Lagrangian is the Einstein-Hilbert
Lagrangian augmented by the square of the Ricci tensor.
The present techniques allow a simple extension of that
result to the case of an arbitrary function of the Ricci
tensor. The fact that difFerent techniques give the same
answer where they overlap is encouraging.

Notation. Adopt units where c = 1, but all other quan-
tities retain their usual dimensionalities, so that in par-
ticular 0—:II /m~ = h/mp~ = 8&/h. The metric sig-
nature is (+, +, +, +). The symbol T will always denote
a temperature. The stress-energy tensor will be denoted
by t", and its trace by t.

is the four-velocity of a corotating observer. Z denotes
a constant time hypersurface. The first term in this for-
mula agrees with Bekenstein's original suggestion [13],
with the normalization constant fixed by Hawking's cal-
culation [14]. For the time being fiuctuations are ignored
(s = 0, no quantum hair, no statistical mechanics efFects).

The issue of interest is the evaluation of the term

1

TH

k
(g —C)K"dZ„=— (g —Z)~gd x. (4)

Here 0 denotes the entire Euclidean four-manifold. As
is usual in the Euclidean formulation the time direction
is compact with period hP = h/(kT~) The . Hawking
temperature TH is related to the surface gravity K by
kTH = hr/2vr. By their very construction, Euclidean
signature techniques are capable of addressing only the
equilibrium thermodynamics of that class of black holes
whose surface gravity is constant over the event horizon.
Consequently, the "zeroth law" of black hole thermody-
namics will be adopted by Pat.

By judicious use of several integrations by parts this
integral will be transformed into a surface integral over
the two-dimensional event horizon. To show this one
must first introduce some extra technical machinery.

B. Metric

Static geomett y

In the case of a static, possibly aspheric, black hole the
Euclidean signature metric can be cast into the form

g = +% dt (3 dt+ g;~ dx' (3 dx~.

V'„K = ——(K„V' N —K V'„N)
1

= (K„a„—a„K )
= (llallN) (npV- —n-&p) . (6)

Furthermore, V&V = V&a = —
l l

a
l l

Vpn The.
surface gravity is defined by K = lim~(Nllall)
limH(llew'Nll) = limH(ON/Oil)

The quantity N is known as the lapse function. The event
horizon occurs at N = 0. The timelike Killing vector is
given by K—:0/Ot. In coordinates K" = (1,0, 0, 0),
K„= (N, 0, 0, 0). FIDO's (fiducial observers) follow
integral curves of the Killing vector; thus, the four-
velocity of a FIDO is V = K/llKll. In coordinates
V" = (1/N, 0, 0, 0), V„= (N, 0, 0, 0) .

Consider the one-form dt. Note that lldtll = 1/N. In
coordinates (dt)„= (1,0, 0, 0); (dt)" = (1/N, 0, 0, 0).
Consequently the one-form dt and Killing vector K are
parallel, indeed dt = K/N

The four-acceleration of a FIDO is given by a—:(V .
V') V. In coordinates a" = V I7 V" = (1/N)g""V' N. —
Define the unit normal to the constant lapse hypersurface
by n"; then by construction a~ = —llalln". Using the
fact that the Killing vector is hypersurface orthogonal, a
brief computation shows
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2. Stationary geometry

In the case of a stationary nonstatic black hole the
Euclidean signature metric can be put into the form (see,
e.g. , [12])

g = +N' dt C3 dt + g,, (dx* —P'dt) (dx' —/3'dt). (7)

of angular momentum. The notion of the "minimally
dragged" ZEVO system discussed above now particular-
izes to the notion of the ZAMO (zero angular momentum
observer). For a ZAMO, [V ]i' = (1, 0, 0, w)/N. This im-
plies V oc (K + ~K). Note that

~
~K + ~K~

~

= N. Thus
V—:dt/])dt]) = (K + cuK)/))K + uK)). Rearranging
yields the useful result

In this more complicated situation it is possible to distin-
guish at least four interesting classes of fiducial observers—STATOR's, ZEVO's, ZAMO's, and ROTOR's.

As previously, N is known as the lapse function. The
timelike Killing vector is still K = 0/gt. In coordinates
K~ = (1,0, 0, 0). A STATOR (stationary observer at
rest) is one who follows the integral curves of the Killing
vector. Uz ——K"/(JK[(. Note that JJK[( = N +g;~ j3*P~.
In Lorentzian signature the vanishing of

J
JKJ f

defines the
ergosphere, a concept that has no analogue in Euclidean
signature. The notion of a STATOR will not prove par-
ticularly useful in what follows.

Consider the one-form dt Even i.n a stationary (as op-
posed to static) geometry it is still true that

~
~dt~

~

= 1/N.
In either Lorentzian or Euclidean signature the vanishing
of N = 1/~~dt~~ defines the event horizon. This one-form
may be used to introduce the notion of a "minimally
dragged " observer a ZEVO (zero vorticity observer).
A ZEVO is an observer whose (covariant) four-velocity
is defined to be Vz ——dt/~~dt~~ = Ndt. The appellation is
justified by calculating the vorticity of such a system of
observers: m = w(V h dV) = 0.

In coordinates V&
——(1;P')/N. Define the relevant

four-acceleration to be az = (V V')V. A brief computa-
tion shows that the ZEVO's inherit much but not all of
the structure of the FIDO's of a static geometry. For in-
stance, a& ———(1/N) (g~ —V~V")7' N The proje. ction
operator is needed because (V . V'N) = (P'B,N)/N g 0,
unless further assumptions are made. The surface grav-
ity is d~fi~~d by Ic = hm~(
Note that if the stationary geometry is in fact static
that the system of ZEVO's coincides with the system of
STATOR's and one recovers the system of FIDO's.

It is believed that every black hole that is stationary
but not static must be axially symmetric. Physically,
the reason for this is that a rotating (i.e. , nonstatic)
black hole induces tidal dissipation in any system that
is not axially symmetric. The final equilibrium state
should thus be either static or axially symmetric. While
some rigorous theorems along these lines can be proved
for Einstein-Hilbert gravity the situation regarding more
general theories is far &om clear.

Nevertheless, if one adopts these physical arguments
above to justify specializing to axial symmetry the metric
may be further reduced to the form (see, e.g. , [12])

g = + N dt cg dt + gyp (dP —(ddt) (dQ —(ddt)

+ g~gy dx (3 dx (8)

There are now two Killing vectors, the timelike Killing
vector K = 8/Bt, and the axial Killing vector K—:0/0$.
[K~ = (1,0, 0, 0); K~ = (0, 0, 0, 1).] Because of the
axial symmetry it is now possible to define the notion

dt = (K+(uK)/N .

Because V 7'N oc (K + wK) V'N = 0, the formu-
las for locally measured acceleration and surface grav-
ity simplify from those appropriate to the "minimally
dragged" ZEVO's, and one has results more closely re-
lated to those of the static FIDO's. For instance, one
recovers a" = V V' V" = (1/N)—g""V' N, while for
the surface g»»ty K = hm~(

Next, define the angular velocity of the event horizon
by OH = lim~ w. For Kerr and Kerr-Newman black
holes it is possible to show, as a mathematical theorem,
that O~ is a constant everywhere on the event horizon.
Indeed, for Kerr and Kerr-Newman black holes, as one
approaches the horizon w = OH + O(N ). For arbitrary
theories with arbitrary stress-energy tensors the truth or
falsity of such results is far from clear. To obtain such
results would require, at a minimum, the use of the field
equations together with some form of the energy condi-
tions. (This parallels the question of the constancy of
the surface gravity over the event horizon. ) As with the
question of the surface gravity, Euclidean signature tech-
niques cannot even be set up unless O~ is a constant.
Physically, this is due to the fact that Euclidean signa-
ture techniques are intrinsically limited to the analysis
of equilibrium thermodynamics. If O~ is not a constant
then the implied difFerential rotation leads to shearing
and dissipation so that the situation is decidedly not in
equilibrium. Consequently the constancy of 00 will be
adopted by fiat. (The assumed constancy of OH is equiv-
alent to assuming that the horizon of a stationary ax-
isymmetric black hole is a Killing horizon, cf. [6].)

Having done this, it is new possible to introduce a
fourth class of fiducial observers the ROTOR's (co-
rotating observers). Consider the Killing vector Kii =
K + A~K. In coordinates K& ——(1,0, 0, O~). Conse-
quently //Kii//2 = N2 + gyp(O~ —cu) . Thus Kii is that
unique Killing vector that is null on the event horizon.
The corotating observers are defined by Vii = Kii/~ ~Kii

~
~.

Note that the ROTOR system of corotating observers
and the ZAMO system have the same limit as one ap-
proaches the horizon. For convenience I shall sometimes
write N~ for ~~Kii[~. Note that both N and Nii vanish
on the event horizon.

In Lorentzian signature the system of corotating fidu-
cial observers breaks down at suKciently large distances.
(Kii becomes spacelike for O~r & c.) There is no ana-
logue of this behavior in Euclidean signature, and it can
be safely ignored.

One has aci = (Vii V')Vii = (Kii V')Kii/~~Kii~~
V'N~ /Nii. The —surface gravity is given by K

lim~(Nci()aii(() = lim~(()V'(Nii)((). That this defini-
tion in terms of ROTOR's coincides with the definition
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in terms of ZAMO's is yet another manifestation of the
fact that these two systems tend to the same limit at the
event horizon.

The necessity for this extended discussion of fiducial
observers arises from the fact that these distinctions are
both useful and necessary for the following discussion.
For static black holes it sufFices to use the simple system
of FIDO's. For rotating black holes it is the ROTOR
system of corotating observers that plays a primary role,
first in defining the entropy, and second in performing the
manipulations to be discussed below. The ZAMO system
is also used, but is of secondary importance. It is to be
emphasised that whatever stress-energy is surrounding
the black hole it must, by the assumed internal equilib-
rium, be corotating with the hole. That is, the four-
velocity of the ROTOR system of corotating observers
must be an eigenvector of the stress-energy tensor.

bI (g) =—1 t" b(g„)~g d x

O(Sg)~sg d x.1 3

80
(14)

D. Lemma: Volume term versus surface term

Static geometriea

The surface term 8 depends in a linear fashion on bg
and its first n —1 derivatives, where n denotes the highest
order of the metric derivatives appearing in Z. In general,
there is no particular reason to expect 0 to vanish unless
bg and its first n —1 normal derivatives vanish on the
boundary. The Einstein-Hilbert Lagrangian is special in
this regard, as is the Lovelock Lagrangian [16].

C. Action

Take the Euclidean action to be

Ito~(g) = IEH(g) +I (g). (io)

The Einstein-Hilbert action is

1
i6.G B~g d x — K~gg d x,

8mG
g~gd'x = t"" V„V ~gd x

For clarity, I shall first discuss the case of a static, pos-
sibly aspheric, geometry. Consider the object j& g~gd x.
For the time being, let 0 denote a four-volume that is
bounded by hypersurfaces of constant lapse ¹ Let 00
denote its three-boundary, whose normal is by construc-
tion orthogonal to the Killing fIow. Note that by defini-
tion g = tI' V„V = tI" V'~t K„. Thus by considering
b(g„) = eV„V, one has

1
bIEH(g) = ( ""8(g„)~gd x

8EH(bg)~sg d x.

and consists of (1) the original Einstein-Hilbert La-
grangian, to be integrated over the entire Euclidean man-
ifold, and (2) the Gibbons-Hawking surface term [11].
Here 3g denotes the induced three-metric on the three-
dimensional hypersurface 00, while K denotes the trace
of the second fundamental form. By the assumed asymp-
totic flatness of the black hole spacetime this term is to
be integrated only over the three-surface at spatial infin-
ity [ii,i5].

For an arbitrary variation of the metric

d 2I (g+ eVV)
d,E'

8(bg = eV C3 V)~g d x . (16)

—[I (g+ eVV)] =—
dE

1

2

C(g, )~g, d x

dC
~g d x. (17)

The derivative in the above equation is to be evaluated
at e = 0. Introduce the notation g, = g+ eVV. DifI'er-
entiation yields

The surface term OFH depends in a linear fashion on
bg and its first derivative. For the augmented Einstein-
Hilbert action, it is a special case result that these surface
terms OFH vanish provided that bg, though not necessar-
ily its normal derivative, vanishes on the boundary.

The "matter" action is of the form

Again, everything in the above equation is evaluated at
e = 0. Now note that the substitution g ~ g, = g+ eV
V merely corresponds to a coordinate change, a rescaling
of the time direction by an amount gl + e. (One might
also profitably think of this as a time dilation. ) To be
more explicit

I (g)= C~g d x. bg„„=eV„V„=eV'(„t K )
= V'(„[et K] ).

Here 8 denotes the Euclideanized "matter" Lagrangian.
(All higher order geometrical terms [e.g. , (Riemann) ]
are lumped into this "matter" Lagrangian. )

For an arbitrary variation of the metric,

Under a coordinate change x" m xi' + ("(x), any arbi-
trary scalar transforms as 6Z = ("(x)B~Z Because the.
particular coordinate change under consideration is par-
allel to the Killing vector, the value of the Lagrangian is
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(g —l:) ~gd x= 8(8g = f)Jpg d x.

2. Stationary geometries

unaltered. That is, dZjde = 0. Introduce the notationf„=V„V = Vl„t K l. Consequently, for any four-
volume 0, bounded by constant lapse hypersurfaces, one
has

formula. As one pushes 0 outward to cover the whole
Euclidean four-manifold two potential sources of surface
terms should be considered: surface terms arising at spa-
tial infinity, and surface terms arising at the horizon. The
surface terms arising at spatial infinity should be quietly
discarded by the assumed asymptotic Hatness of space-
time. The only remaining piece is the boundary term at
the horizon (cf. [17]). A suitably careful definition of the
entropy is in terms of the limit

Now it is certainly true, but not useful, to observe that
in the stationary case g = t""( V~)„( V~) . The reason
that it is not useful is that explicit computation shows
that it is not possible to interpret hg = (Vo) (V~) in
terms of the eKects of a coordinate transformation.

This is, fortunately, only a technical difhculty and not a
fundamental problem. Introduce the notation V to de-
note some arbitrary four-vector that is constrained only
by the fact that it is assumed to be perpendicular to V~.
That is V - V~ = 0. Then, because V~ is an eigenvec-
tor of the stress-energy tensor, for any such V one has
g = t" (V~)~[(V~) + (V ) ]. The trick is to pick V in
some appropriate manner. Without further ado, consider

v = IIK lldt —v. (21)

N««h «atv~ = «. K~IIIK~II = 1/I]K~II so t»t
the perpendicularity requirement is indeed satisfied. Fur-
thermore, by explicit construction, V~ [Vn + V ]
K~ dt. Consequently

g = t" (K~)~(«)-. (22)

One must now repeat a minor variant of the above
analysis, with additional technical complications to take
care of the black hole's rotation. Recall that by the as-
sumed internal equilibrium of the distribution one can
show [1] that the stress-energy tensor has as one of its
eigenvectors the four-velocity of the ROTOR system of
corotating observers, V~, with the associated eigenvalue
being the energy density g. Indeed

(V~) = g(vn)".

kA~ A:S =
2 + —lim

4Z~ n a O(f)~ggd x

The limiting procedure BO —+ II x [0, hP] may be han-
dled in terms of surfaces of constant lapse function ¹

(One could just as easily work with hypersurfaces of con-
stant N~ = [lK~l[. Nothing is gained or lost by such a
choice. ) Then ~sg d x ~ %~2g d x dt. The t integra-
tion runs over the range [0, AP]. Thus, as one approaches
the event horizon,

kAII
4/2

Plim [NO(f)] ~2g d x. (26)

This can be interpreted in terms of a surface entropy
density defined on the event horizon:

8 = kPlim [%8(f)] (27)

whence

kA~
4/2 8~2gd x.

An interesting nonzero result is obtained only if 8(f)
blows up as N —+ 0. To see why and when this occurs
requires a deeper understanding of the surface term. This
is as far as I have currently been able to push the program
in the general case. Further advances seem to require the
choice of some specific class of Lagrangian as template.

Finally, let us reinstate the (volume) entropy density
term associated with the statistical and quantum Quc-
tuations occurring outside the black hole event horizon.
Then

Now repeat the analysis used for the static case, this time
considering

bg„= eV'(„t [K~] )
= V'(„(et [K~]f„).

8~2gd x+ 8~sgd X. (29)

This is nothing more than the efFect of the coordinate
change x" ~ x" + et[K~]~. Consequently the logic of
the preceding case continues to hold, and the lemma is
not disturbed by the black hole's rotation. For this sta-
tionary case introduce the notation f~ = V'~~t [K~]
Again, for any four-volume 0, bounded by constant lapse
hypersurfaces, one has

Insofar as the quantum fI.uctuations can be described by
some efFective Lagrangian l.,~, they may be extracted
from the volume density 8, and pushed into the sur-
face density term 8. This trade-o8' between volume and
surface eKects parallels the trade-oK between integrat-
ing out fast modes (and describing them by an effective
Lagrangian), and keeping the slow modes available for
explicit computation.

8(hg = f)~gg d x. (24) III. SPECIFIC EXAMP I ES

E. Entrapy A. Z = 8 (Riemann)

The preceding lemma essentially solves the problem.
Apply the lemma to the volume term in the entropy

Consider now the case where one takes 8 to be some
arbitrary function of the Riemann tensor (though not
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of its derivatives). Interest in this class of Lagrangians
is justified on the grounds that a~y quantum theory of
gravity will induce terms of this type in the low-energy
efFective theory. Many of the examples considered in the
literature are special cases of this reasonably large class.
By the preceding general analysis, evaluation of the en-
tropy is equivalent to the determination of the value of
the surface term 8 at the horizon. This surface term is
best evaluated by indirection. Define the object

b(Z) = J" gp b(R„"~) .

Without loss of generality one may take J~ p& to in-
herit the symmetry structure of the Riemann tensor it-
self. Specifically J+ pp —J pp] Jpp . Consider a
general variation of the metric. Define bg" = g" bg
One has

)p&
P, M

(30)
h(R„„"&)= —2V'~„V'~" (8g) „~'~ + R„. ~'&g. 'j.

so that, in particular, This allows us to write

8(Z)~g d x = J" pp ( 2V'„7'—(8g) ~ + R„„"(bg) ~) ~g d x. (33)

Here one has been able to drop the explicit antisymmetrization in view of the symmetry properties of J g~ itself.
From the above, one reads oB'

t," = —2V'~V'p J " —2V'~V' J "—J "B —J R "+ Zg" (34)

Recall the notation

f„=[Kg](„V' )t.

For the static case interpret O~ ——0, and discard the axial symmetry. Thus this definition is seen to make sense
for both the static (aspheric) and stationary axisymmetric cases. In either case we have by construction g = t f„„.
Construct the integral

(g —C)~gd x = ft" f~- —&) vg d'x.

Then

(—4V' V' J &P —2J»&R )f ~d4

Integrate by parts once:

(+47'p J "P V' (f„))+ ( 2J P~"R p~"f—„)~g d x —4

Integrate by parts a second time:

4J ~P VpV ~(fr~)) + ( 2J P~"R p~"f„„—) ~g d x

jn (9'pJ "P")f„—npJ "P (9' f„))~sg d x.

Rearrange

J"""~(2V'„V'p(f„p) + R„), fp j ~g d x

(n (9'p J "P )(f„)—J "P"(9' f„)np) ~sg d x. (4O)
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J"""~b(R„„),p) ~g d4x, (4l)

The volume integral above vanishes identically. To see
this, note that after appropriate explicit antisymmetriza-
tion the volume term is just

V„[Kri] = 2(ari)(„(Kri) j
+ ir„. (47)

Here a& is an antisymmetric tensor orthogonal to K~.
On the other hand, it is known that K~ is hypersurface
orthogonal on the event horizon, so that vr„„vanishes in
that limit. Consequently

where b(R& p~) is just that due to taking h(g~ ) = f~„.
But, as we have already seen f„„=V'(„[tKii]„), which
corresponds to just the effect of a coordinate transforma-
tion.

The evaluation of the surface terms proceeds as fol-
lows. First note that the surface term at spatial inanity
is automatically suppressed by the assumption of asymp-
totic flatness. Second, near the horizon ~sg d x
N~qg d xdt Sinc.e the Riemann tensor and its deriva-
tives are well behaved at the horizon, as are the limits of
n and f„, it is easy to see that the first surface term
vanishes, being suppressed by the factor of N in the met-
ric determinant.

The only remaining term is

&~[K~]- = —2N~II«lln(~(V~)-j + O(N~). (48)

Now consider

(V'„V'„t) = V'„[(K„+cuK„)/N ]

2N V—'(„N [K+ urK] ) + N V'(„at K )

= —2N [a ](„[V])+N V'(„(uK )

=+2 [n ](„[V] ) +N V'(„cu K ). (49)
N

Now because u = QH + O(N ) one has V'u
O(N'(7N) = O(N a). So finally

(V'„V' t) = +2 ([n ](„[V] ) + O(N)) . (5P)

2' = 41im
H

(J- ~ V.(f„.')n~) ~g d'x.

This formula is, of course, nothing more nor less than the
special case explicit evaluation of the surface term O(f)
previously encountered in the general argument.

At this stage it proves useful to treat the stationary
and static cases separately.

Statzc geometry For a sta.tic geometry fz„——V„V .
The gradient term includes pieces such as (g —Z)~g d x = 8~ (J "~ V Vpn„n„) ~2g d x.

Now, take the limit as one approaches the horizon. The
ZAMO's V and the ROTOR's V~ approach the same
limit. The same occurs for the relevant normals. Again,
the only surviving term in the surface integral comes from
the cancellation between the N arising from the met-
ric determinant, ~~a ~~

and ~~ari~]. Various subdominant
pieces vanish in the limit. As before, this yields

(V„V„)= (V' V„)V + V„(V' Vv)

= —fia]i (V n„V + V„V n ) .

lim0
AP

dtNJ/a// = limhPN]/a/J = 2vr.

Now, take the limit as one approaches the horizon. The
only surviving term in the surface integral comes from
the cancellation between the N arising from the metric
determinant and ~~a~~. Note that

Returning to the general case (static or stationary),
and backtracking to the general entropy formula, one now
obtains

kAH kS = +Svr— J"" ~ V„n Vpnp ~2g d x. (52)

A further refinement is to define g = V~V + n~n .
This is essentially the metric in the two directions per-
pendicular to the event horizon, in terms of which the
symmetries of J~ ~ imply

This yields

(g —l:)~g d4x = 8' (J "~ V Vpn„n ) ~gg d x.

(45)

kA~ kS=
4S'

This is our final form for the entropy. Note that it ex-
hibits all of the properties expected from the general
analysis.

Stationary geometry. The limiting procedure is now a
little more delicate, and requires some tedious technical
steps. Recall that f&„——[Kii](&[dt) ). The gradient term
includes pieces such as

&-(IK ] [«]-) = (&-[K ] )I«]- + [K ] ((7-(7-t).

(46)

H. E = Z (R,icci)

A further specialization of the above is to consider the
case where the Lagrangian is an arbitrary function of the
Ricci tensor, rather than the full Riemann tensor. The
analysis is straightforward.
Define

Because the Killing vector K~ is not hypersurface orthog-
onal, in general, the best we can say is that the covariant
derivative of the Killing vector satisfies Then
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J" Ap —— ———J "IAg p]
= — J"Ag p

—J"pg A+ J pg"A —J Ag"p

Inserting into the previous formula, one extracts

kA~ kS=, +2~-
48'

— g„„~2gd x.

B" g„~2gd x.

This formula is instructively similar to that obtained by
Jacobson, Kang, and Myers [3,4]. Using field redefinition
techniques under conforrnal rescalings they were limited
to the case 2 = B„R""+ 8 iq„. (The extra matter
was required to enforce a nontrivial solution to the field
equations; it was assumed that the extra matter was suf-
ficiently well behaved not to contribute to the entropy
in its oivn right. ) Under these assumptions, Jacobson,
Kang, and Myers showed that

I

This is exactly the result enunciated by Jacobson, Kang,
and Myers [3,4].

A simple consistency check is to lump the Einstein-
Hilbert action in with Z. Taking 2 = 16 &
reproduces the ordinary area term.

D. Lovelock gravity

As a final example, I shall discuss Lovelock gravity.
While the analysis presented so far has, for definiteness,
been presented in four dimensions there is nothing es-
sentially four-dimensional about these techniques. In
D dimensions the Lovelock Lagrangian is given by (see,

[2])

C. C = Z (Tr[Bicci])

I~/2]
l: = ) c l: (60)

A completely analogous analysis can be applied in the
case that the Lagrangian is an arbitrary function of the
scalar Ricci curvature.
Consider

In this sum, [D/2] indicates the integer part of D/2. The
individual terms are given by

( ) /Pl &1'''Pen&rn ~ Az py ~ A~ p~1
2 A p "A Pm Vm

Ap:—~~
—

A
=

~~ g IAg p].
p v'

kA~ k--+4m-
4g~@

BC—~zgd'x.
BB

Inserting into the general result one obtains

The b symbol is a totally antisymmetric product of 2m
Kronecker deltas, suitably normalized to take values 0
and +1. It is convenient to de6ne Co ——1,. this term
corresponding to a cosmological constant. Furthermore
21 ——R is the Einstein-Hilbert Lagrangian. In general,

is the Euler density for a 2m-dimensional manifold.
Because of the antisymmetrization, no derivative appears
at higher than second order in the equations of motion.

For the purposes currently at hand, consider the object

m PP1V1'"Pm —1Vm —1@V ~ A1P1 ~ Am 1Pm
2m Alpl" Am lpm 1Ap Pm —1Vm —1 (62)

Applying the general formula, the contractions with g
together with the total antisymmetrization of the indices,
imply that the only components of Riemann tensor that
contribute to the entropy density are those that are tan-
gential to the (D —2)-dimensional event horizon. Specif-
ically, we note that

( -L) IA ( &)p] gP1V1 "Pm —1Vm —1
AlPl ' Am —1Pm —1AP L+ J AlP1 Am 1 Pm

Here 6 is the totally antisymmetric product of 2(m —1)

fD/2]

) mc 2 i(h) ~hd x.
m=1

(64)

In this particular case the entropy is given solely in terms
of the intrinsic geometry (h) of the event horizon this
result is special to this particular type of Lagrangian and
does not generalize.

Kronecker deltas, restricted to the subspace orthogonal
to g~.

The rest of the derivation now parallels that due to
Jacobson and Myers [2]. The entropy is
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IV. DISCUSSION

The computation of black hole entropies in various
model theories is an issue of great current interest. Based
on the work of several authors the situation has by now
become significantly clarified. Several points are worth
making.

First, the naive area law for black hole entropies is in
general false:

kAH
4/2

8~2gd x.

The entropy surface density is a simple function of the
surface term that connects the stress-energy tensor with

The naive law certainly holds for Einstein-Hilbert

gravity coupled to matter whose kinetic energy is

quadratic [1,18]. Once one moves beyond quadratic ki-

netic energies the naive law fails in general.
Second, for a general higher derivative Lagrangian the

entropy of a black hule is given by an integral of some

suitable density over (a fixed time spacelike cross section

of) the event, horizon

the variation of the action under a variation of the space-
time metric.

Third, in the specific case of a Lagrangian that is solely
a function of the Riemann tensor

This relatively general formula can be checked against a
number of more specific examples where the entropy is
known by other means. The fact that different types of
calculation give the same answer where they overlap is
certainly encouraging.

Fourth, the present paper has obtained its results via
extensive use of Euclidean signature techniques. The un-

derlying physics is perhaps somewhat obscured by this
formalism. It is encouraging to note that similar results
have by now been presented using a number of di8'erent
techniques [3—6]. The overall agreement between these
various diferent techniques is a further useful consistency
check.
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