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For spatial infinity we introduce the topology of a projective Lorentz sphere. This topology is indicat-
ed by the reduced variety of physically admissible solutions of both the electromagnetic and the gravita-
tional field equations. In this topology past and future are fused, so that the notions of cause and effect

lose their intuitive meanings.

PACS number(s): 04.20.Cv, 04.60.+n

I. INTRODUCTION

In an asymptotically flat space-time both gravitational
and electromagnetic fields at spatial infinity (SI) can be
obtained as scalar solutions of linear wave equations on
three-dimensional Lorentz spheres, with one timelike and
two spacelike dimensions [1,2]. The appropriate wave
equation for electromagnetic fields is

Viu=0. (1.1)
For gravitational fields it is
V3u —3u=0. (1.2)

Both equations are manifestly invariant with respect to
the six-parametric group of rotations and boosts, O(3,1).
However, further examination reveals that in both cases
one-half of the solutions do not lend themselves to a con-
tinuation from spatial infinity to finite regions of space-
time, or to lightlike infinity.

When the wave equations (1.1) and (1.2) are solved by
expansions into spherical harmonics with time-dependent
coefficients, these coefficients satisfy ordinary second-
order differential equations. Each of these equations ad-
mits a pair of solutions: one even in the time coordinate,
the other odd. In the electromagnetic case the physically
admissible solutions are even for odd values of [/, the or-
der of the spherical harmonic, and odd for even values of
I. The reverse holds for the solutions of the gravitational
wave equation (1.2).

The Lorentz-invariant character of these conditions is
made evident if they are formulated in terms of antipodal
points. Pairs of points are called antipodal to each other
if, in the embedding pseudo-Euclidean space-time, they
lie on a straight line passing through the center of sym-
metry of the Lorentz sphere. In terms of pseudo-
Cartesian coordinates of the embedding Minkowski man-
ifold antipodal points have coordinates that pairwise add
up to zero. Compare Fig. 1.

Admissible solutions of the respective equations (1.1)
and (1.2) can be characterized in terms of their properties
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at pairs of antipodal points: In electrodynamics the
values at antipodal points must differ in sign only
(u'= —u); such solutions will be called odd. Gravitation-
al solutions must have the same values at antipodal pairs
of points (u'=uwu); they will be called even. The pairing of
antipodal points is invariant with respect to rotations and
boosts. Hence the evenness or oddness of a scalar field is
an invariant property.

II. ATTEMPT AT QUANTIZATION

In terms of Cauchy data on a spacelike hyperplane
through the center of symmetry of a Lorentz sphere the
restriction to even or to odd fields is equivalent to the im-
position of constraints on the canonical (i.e., Hamiltoni-
an) variables. In odd fields the configuration variables
vanish on the chosen hyperplane, whereas in even fields
the canonical momentum variables are zero.

If one proceeds strictly in formal analogy between
Poisson brackets and quantum commutators, the surviv-
ing dynamical variables all commute with each other;
hence, there are no Heisenberg uncertainty requirements.
If instead one uses time-dependent annihilation and
creation operators to construct Heisenberg analogues of

FIG. 1. Antipodal points on a (1,1) Lorentz sphere.
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the physically acceptable solutions, one finds that the
products of the minimal uncertainties of E and B of the
Maxwell-Lorentz theory, and of the corresponding vari-
ables in Einstein gravitational theory, differ from the
values at lightlike infinity (“scri”’). In particular, as one
approaches the light-cone boundary of SI, the uncertain-
ties of the electromagnetic tend to zero, whereas on scri
they are constant, and nonzero.

These negative outcomes have convinced us that before
attempting to quantize fields at spatial infinity one should
understand the nonquantum theory. In the sections that
follow we shall confine ourselves to this less ambitious
task.

III. HARMONIC FUNCTIONS
ON THE TWO-DIMENSIONAL LORENTZ SPHERE

Functions on Lorentz spheres which assume either
identical or opposite values on pairs of antipodal points
can be defined, without loss of information, as single-
valued or as double-valued functions on projective Lorentz
spheres. A projective Lorentz sphere is defined as a mani-
fold whose points represent pairs of antipodal points of
(ordinary) Lorentz spheres. As they are multiply con-
nected, functions can have more than a single value at the
same point without necessitating discontinuities. Projec-
tive Lorentz spheres cannot be oriented; in some respects
they resemble M6bius bands. Compare Fig. 2.

Though primary physical interest rests with three-
dimensional projective Lorentz spheres, we shall deal
with the two-dimensional projective Lorentz sphere in
some detail, as it lends itself readily to a complete treat-
ment. A spacelike Lorentz sphere embedded in a three-
dimensional Minkowski manifold can be identified by its
equation in standard Lorentz coordinates as

x2+y?—¢i=1. (3.1)
It is a single hyperboloid of rotation, ruled by two sets of
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FIG. 2. Projective (1,1) Lorentz sphere, flattened out. The
arcs I and I’ are identical with each other, and so are II and II'.
The curve ( A4, A’) is closed. It intersects the “equator” (y=0)
but once, demonstrating that the sphere cannot be time orient-
ed.
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straight null lines, each of which covers the whole
Lorentz sphere once. That is to say, through each point
of the Lorentz sphere pass exactly two of these null lines.
If we identify a particular null line by its intersection
with the circle t =0, x2>+y2=1, denoting the point of in-
tersection by a for one set and 8 for the other, then their
equations, in terms of the pseudo-Cartesian coordinates
of the embedding (2,1) Minkowski manifold, are, respec-
tively,

x =cosa—t sina, y =sina-+t?cosa , (3.2)

and

x =cosf3+tsinB, y =sinB—1t cosf . (3.3)

Each point on the Lorentz sphere is identified unambigu-
ously by the two null lines passing through it. Hence a
and 3, each ranging from O to 2, will serve as a coordi-
nate system on the (1,1) sphere. The line element is

do*=cos !y dadB,
(3.4)
y=Ha—pB).

An alternative coordinate system, useful for some cal-
culations, is

y=Ha—B), 0=La+p). (3.5)
Expressed in these coordinates, the line element is
do?=cos *y(d0*—dy?) . (3.6)

The angle 0, which is the spacelike coordinate, represents
the geographical longitude, whereas v, the timelike coor-
dinate, is related to the pseudo-Cartesian coordinate ¢ by

t=tany . (3.7)
Next we shall examine d’Alembert’s equation
Viu =0 (3.8)

on the (1,1) sphere. In terms of a and S, that equation
has the form

u
Y o, (3.9)

with the general solution
ula,B)=f(a)+g(B).

f and g are arbitrary (continuous, differentiable) func-
tions of their respective arguments, periodic with the
period 27 if their arguments are to be extended beyond
their original range.

Next we shall restrict ourselves to even and to odd
solutions. These are

ula,B)=f(a)+f(B+m)
and
u(a,B)=f(a)—f(B+m),

respectively. Thus, by requiring either evenness or odd-
ness we have reduced the two arbitrary functions to one.
Moreover, though f is a function of but one argument, it

(3.10)

(3.11)

(3.12)
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determines the solutions in a two-dimensional domain.

Can these relationships be converted into the depen-
dence of u(a,B) on Cauchy data on a spacelike one-
dimensional domain, such as half the circle t =0, corre-
sponding in our coordinate system to a=p? (Obviously,
only the data on half the circle will do, as the other half
of the circle is antipodal to the first.) This is indeed the
case.

Denote the value of u (6,0) on that half-circle by v (6),
and its normal derivative by v(6):

Ou

5(9)= 0% _
50)=3, " g

(3.13)
0=a=p.

As antipodal points are related to each other by the
equalities

a'=p+w, B'=a+t+mw, (3.14)

the values of the Cauchy data on the entire circle must
satisfy the conditions

v(@+m)=v(6), v(0+m)=—0(0) (3.15)
for even fields, and
v(0+7)=—v(0), V(O0+m)=0v(0) (3.16)

for odd fields.

The derivative of the function v(6) along the circle,
v'=dv /d 0, is related to those of u (a,B) at the same loca-
tions by the formula

Qu
B
Combining this expression with Eq. (3.13), as well as with

(3.11) or with (3.12), we obtain for df /d 6 an expression
that depends only on Cauchy data:

v(0)=2% 4 (3.17)
da

af ‘f’(9)=%(i)+v’) . (3.18)

de
f itself is thereby determined up to a constant of integra-
tion.
For odd fields that constant of integration is irrelevant.
Substituting into Eq. (3.12) one obtains immediately:

u(@B)=7 [ —vp+m+ [ sae]

-1 oo+ f;ﬁﬂﬁ(e)de] . 319

For even fields we can make use of Egs. (3.15) in conjunc-
tion with (3.18). The result is

=1 e sa0—L1T1" 540
f(0)="v(0)+7 fgzo" d6'—- fgzode (3.20)
and

=1 a
u@B=7 vl +v@+ [ s@de).  62n

A few examples will illustrate the role of the Cauchy
data.
(i) Even field—v (8)=cos2n6, v(0)=0:
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u(a,B)=cos2ny cos2nb, y=2La—pB), 6=1a+p).

(i1) Even field-v (0)=0, v(8)=cos(2n +1)6:
u(a,B)=(2n +1) sin(2n + 1)y cos(2n +1)6 .

(iii) Odd field—v (8)=cos(2n +1)6, v(6)=0:
u(a,B)=cos(2n +1)y cos(2n +1)6 .

(iv) Odd field—v (8)=0, v(0)=cos2n 6:
u(a,B)=(2n)" 'sin2ny cos2n6 .

In all these examples 7 is to be a nonzero integer. As the
field u (a,B) depends on the Cauchy data linearly, these
examples also serve as guides to the Fourier decomposi-
tion of the data and of the resulting field.

IV. THE PROJECTIVE LORENTZ SPHERE

When pairs of antipodal points are mapped into a sin-
gle point of a target manifold, the result is a projective
Lorentz sphere. Conversely, the (ordinary) Lorentz
sphere is a covering (though not the universal covering)
manifold of the projective Lorentz sphere. The contrac-
tion preserves the two sets of ruling null lines as separate
sets, but it cuts each set in half. Projective Lorentz
spheres are not orientable, nor are they time orientable
[3]: One cannot tell the future and past apart. Though
the Cauchy data on the half-circle determine the field
u (a,B) everywhere, that half-circle does not cut the pro-
jective Lorentz sphere in two. Thus the intuitive distinc-
tion between cause and effect loses all meaning.

On the projective Lorentz sphere even fields are simply
those fields which at each point of the manifold have but
a single value. Odd fields have two values at every point,
which differ only by their signs. This change of sign
occurs if the point in question is connected with itself by
a closed curve that passes an odd number of times
through the Cauchy surface. The Cauchy surface itself in
the case of the (1,1) projective Lorentz sphere is a closed
curve; it has no end points.

V. THE THREE-DIMENSIONAL PROJECTIVE
LORENTZ SPHERE

The notion of antipodal points permit the construction
of (2,1) projective Lorentz spheres, in perfect analogy to
the (1,1) construction. Three-dimensional projective
Lorentz spheres are also not orientable, nor are they time
orientable. Their Cauchy surfaces are projective spheres.
Even and odd fields are defined the same as in the two-
dimensional case, and the Cauchy data are again the
values of the fields, and of their normal derivatives, on
the Cauchy surface.

In this paper we have primarily dealt with the two-
dimensional structure because of its relative ease of treat-
ment in terms of the arbitrary functions f(6). We have
been able to study the properties of solutions in three di-
mensions only by expanding them with respect to spheri-
cal harmonics on the Cauchy surface. The expansion
coefficients, which are functions of the third dimension
and which obey ordinary differential equations, with ini-
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tial values on the Cauchy surface itself, play the same
role in three dimensions as the functions of ¥ do in the
Fourier expansions of two-dimensional fields, indicated at
the end of Sec. III.

The proposed topology of SI differs significantly from
the topology of scri, and that difference is related
somehow to the prima facie conflict between the irreduc-
ible quantum uncertainties on SI and on scri. Conceiv-
ably, this conflict may be mitigated by an appropriate
quantum theory addressing itself to the altered causality

on an unoriented manifold. It remains to be seen wheth-
er this hope can be satisfied.
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