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Teleparallel theory of (2+ 1)-dimensional gravity
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A theory of (2+1)-dimensional gravity is developed on the basis of the Weitzenbock space-time
characterized by the metricity condition and by the vanishing curvature tensor. The fundamental gravi-

tational field variables are dreibein fields and the gravity is attributed to the torsion. The most general

gravitational Lagrangian density quadratic in the torsion tensor is given by LG =o.t k™t«+
PU "uk+yak™akl . Here, tk&~, Uk, and al, t are irreducible components of the torsion tensor, and a, f3,

and y are real parameters. A condition is imposed on a and i3 by the requirement that the theory has a

correct Newtonian limit. A static circularly symmetric exact solution of the gravitational field equation
in the vacuum is given. It gives space-times quite different from each other, according to the signature of
af3. These space-times have event horizons, if and only if a(3a+4P) (0. Singularity structures of these
space-times are also examined.

PACS number(s): 04.50.+h

I. INTRODUCTION given by

Recently, the Einstein theory of (2+1)-dimensional
gravity has attracted considerable attention [1—6]. This
theory is strange in various respects, among which are
the absence of a Newtonian limit [1,2] and of a black-hole
solution [1]. For the (1+1)-dimensional case, there is a
theory [7] having a correct Newtonian limit and black-
hole solution. Thus, it is natural to raise the question: Is
there not a relativistic theory of (2+ 1)-dimensional gravi-
ty having a Newtonian limit and admitting black holes?
For the (3+1)-dimensional case, a teleparallel theory of
gravity, which can be alternative to the Einstein theory,
has been proposed [8].

In view of the above, we give a teleparallel theory of
(2+1)-dimensional gravity in the present paper, which
has a Newtonian limit and black-hole solutions.

II. DREIBEINS, COVARIANT DERIVATIVE,
AND TELEPARALLELISM

7 V"=8 V"+I ~g V

The requirement

V'I V"=e &e 7 V"

def
for V"=e"k V leads to

IX =~ k~1 X
k

and hence we have the relations

k —kT pv A,
T pv &

def

def
~~a„.=~~g„.—~'„~up. —~'~a„p —=o

where T „ is defined by

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

The three-dimensional space-time M is assumed to be a
differentiable manifold endowed with the Lorentzian
metric g„dx "I3dx ' (p, v=0, 1,2) related to the fields
e"=e" dx" (k =0, 1,2) through the relation g„

def
=e "„nkie, with (nkt ) =diag( —1, 1, 1). Here, {x";@=0,
1,2] is a local coordinate of the space-time. The fields
ek =e"k0/Bx", which are dual to e", are the dreibein
fields. The field strength of e „is given by

(2.9)

The components T „and R"
& are those of the torsion

tensor and of the curvature tensor, respectively. Equa-
tion (2.7) implies the teleparallelism and it, together with
(2.8), means that M is the Weitzenbock space-time. Also,
from (2.8) we get

(2.10)

where the first term denotes the Christoffel symbol,

We define the covariant derivative of the Lorentzian
vector field V by {„'.] '='

,'g ' (a„gq. +a~—r„aug„.), — (2. 11)

=e"&a V (2.2) and the second stands for the contorsion tensor,

For the world vector fields V= V"0/Bx", the covariant
derivative with respect to the aftine connection I ~& is (2.12)
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In what follows, the field components e „and e "k are
used to convert Latin and Greek indices, similarly to the
case of V" and V . Also, raising and lowering the indices
k, I, m, . . . are accomplished with the aid of

(il ) = (rlkt ) and (rlkt ), respectively.

III. LAGRANGIAN DENSITIES
AND GRAVITATIONAL FIELD EQUATION

For the matter field y belonging to a representation of
the three-dimensional Lorentz group, Liit(y, Vkqr) with

def
Vky=e "kB„y is a Lagrangian [9] invariant under global
Lorentz transformation and under general coordinate
transformation, if LM(@,Bki/i) is an invariant Lagrangian
on the three-dimensional Minkowski space-time.

For the dreibein fields ek, the most general Lagrangian,
which is invariant under the transformations stated above
and is quadratic in the torsion tensor, is given by

Also, T; - is the energy-momentum density defined by

5( g—L~ )
gT; =e.

6e '„

def=e
JP

d(& gL— ) 8(& gL— )Be'„B(Be'„)
(3.1 1)

Equation (3.7) can be rewritten as

—G; (I j) 2V"F—;k+2v"F; k+2H. ;J. rj; L—G=Ti,
K

where

(3.7')

1+2 P O'J'k FI J8v
(3.12)

def 1 1
Fijk a+ (tjk t kj )+ '/ ( l jvk 1 'kvj )'

3~ " ' ' 4~

LG =at '
tkim +/3v"vk+ya" akim (3.1) Hij = TmniF "j

2 TjmnPi Bji (3.13)

Here, tk, , Uk, and a«are the irreducible components
of Tk&m, which are defined by

def 1 kIm 1LG= a+ t tki + /3 v vk
3K 4v

def ) 1 1

klm p( klm ikm )+ 4( lmk i lml k) 2 lkl m

(3.2)

klm+ y a akim (3.14)

and

def
k jk (3.3)

and G;j( I j ) is the three-dimensional Einstein tensor
defined by

G j(I j )=e",e,G„([ j)
def )

Qkl —(Tki +T ki+Ti k ) (3.4) =e";e [R„,( I j ) ——,'g„R ( t j )] (3.15)

respectively, and a, P, and y are real constant parame-
ters. Then,

with

Ld x
. def 1 3

C
(3.5)

(3.16)
is the total action of the system, where c is the light ve-
locity in the vacuum and L is defined by R([ j)=g" Ri.([ j) . (3.17)

L=&—g [LG+LM(i/', VkiP)] (3.6)

(3.7)

with

def
with g=det(g ).

The gravitational field equation following from the ac-
tion E is

and

1 1 1
7 P 4 0 Y

8
(3.18)

Here, ~ denotes the "Einstein gravitational constant"
i~= 8~G/c with G being the "Newton gravitational con-
stant. "

For the case such that the conditions

defFjk =a(t jk
—t kj )+/3( il jvk —'9;kvj )+2l ajk = Fkj, —

def 1
(3.19)

k def pkVF;k=e" B„F k .

(3.8)

(3.9)

(3.10)

are both satisfied, (3.7') reduces to the three-dimensional
Einstein equation. Even for this case, however, our
theory does not reduce to the three-dimensional Einstein
theory as a whole, because our connection and hence the
covariant derivative are di6'erent from those of the Ein-
stein theory.
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The Lagrangian LD(Q, Q, Vkp, Vkp) of the three-
dimensional two-component Dirac field P, which is an ex-
ample of the matter field Lagrangian LM(y, Vky), is
given by [10]

L ( g, g, V k g, V k it') =
2

( gy "V
k P Vk—gy it')™Pg .

TPV +Vk)M T —0V vk (4.5)

from (4.1).
From the Lorentz invariance of the action integral of

the matter field y which belongs to a representation o of
the three-dimensional Lorentz group, we can show

(3.20)
i 5E.v' —gT —a (&—gs ")+— M q =—0

I kl] p kl 2 g kl (4.6)

This can be rewritten as

I-D(4 0 V kW V kN) &D(—4 0 V k 4 V

kit�)

(3.20')

def
where Mk&= io—„(M. kI). Here, IMk&, k, l =0, 1,2I is a
basis of the Lie algebra of the three-dimensional Lorentz
group satisfying the relation

where ok& stands for the totally antisymmetric Lorentzi-
an tensor with co&2= —1 and

IMkltM. mn ] QkmMln /1nMkm + 1knMlm + IlmMkn

(4.7)

I-D(P 0 Vk& Vkl)= (A V—kl VkA —4) mA— ~kl ~1k (4.8)

(3.21)
o „ is the differential of cr, and SkI" is the "spin" Il 1] den-
sity of the field y defined by

with

Vkq'='ePk apq+ '~™ps,q2

Vkg=e"k a„g—
2

A™„/St
(3.22)

a(& gLM )——g Ski"——
2 a(a„&)

Thus, we have

g &(kt) =ap(+

(4.9)

(4.10)

elm ] n (Tlm Tml T Im)
p 2 p n n n

def l
Slm 4 jl I&Ym]

(3.23)

(3.24)

The Lagrangian LD(Q, Q, %kg, Vkp) is the Dirac La-
grangian in the three-dimensional Einstein theory. Equa-
tion (3.20') gives the relation between the Dirac Lagrang-
ians in the two theories. V' T" =0. (4.11)

when the field equation of the field cp is satisfied. The an-
tisymmetric part T~kt~ is due to the contribution of the in-
trinsic "spin" of y. For macroscopic bodies such that the
eA'ects due to the intrinsic "spin" of the fundamental con-
stituent particles can be ignored, the energy-momentum
tensor can be regarded as symmetric and (4.5) reduces to

IV. WORLD LINE OF CLASSICAL PARTICLE,
PATH OF LIGHT RAY,

AND MACROSCOPIC EQUIVALENCE PRINCIPLE

This is known by noting that K "=—K '".From (4.11),
we can derive the equation of motion of a classical parti-
cle,

From the fact that the gravitational action integral is
invariant under general coordinate transformations, it
follows that

df X + I
p

I
dX dX 0
dr dr

(4.12)

VQP KPB k
=—0, —

where we have defined

(4.1)

def def &( g ~G )
g~pv e V' pkg v e pk

k
(4.2)

and V stands for the covariant derivative with respect to
the Levi-Civita connection:

in a way quite similar to the case in the four-dimensional
Einstein theory. Here, ~ is the proper time of the particle,
and (4.12) is the equation of the geodesic line of the
metric g„dx "@dx '.

We require, as in four-dimensional new general rela-
tivity, the U(1) gauge invariance of the electromagnetic
interaction. Then, the electromagnetic Lagrangian L,
is given by

V~Pv —a~PV+ I
P. Igilv+

I
v )gPA,

The gravitational field equation takes the form

g PV —TPV

and hence we get

(4.3)

(4.4)

def 1
&p voL. = ——g g F„.+p4

with

—(3 3„,

(4.13)

(4. 14)
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and we can show that light rays propagate along the null
geodesic line:

V. STATIC CIRCULARLY SYMMETRIC
GRAVITATIONAL FIELD

x + I
p ]

dx dx
dk

(4.15)

We consider a static, circularly symmetric gravitation-
al field produced by a static circularly symmetric body.
As in the case of four-dimensional theory [8], we can as-
sume without loss of generality that (e" ) has a diagonal
form:

dx" dx
P

A(r) 0 0
0 B(F) 0
0 0 B(r)

(5.1)

where A, is a real parameter.
From (4.12) and (4.15) we see that equivalence princi-

ple holds for macroscopic body and light ray.

def
with r=+(x ') + (x ), which leads to ak&

——0.
In terms of A (r) and B (r), (3.7) can be expressed as

—1
1 d A d B ' d

dr r dr B rdr B dr r dr r dr
2

+ aB— ln ( ln AB )+2PB ( ln AB) = —2T(o)(o),2 dr B dr dr
(5.2)

x'x
1 d B ' d A

3(x ln
r dr r dr B

4pd B ' d
1 AB +6aB ' d

1 A
d

I
dr r dr r dr dr B

——5'. 3mB 2 d
1

2 dr B
d A +4PB ln AB

2
r dr

2
lnAB +-

dr r

2T(1)(2) =2T(2)(, ), a =1,b =2,
—2T(2)(2), a =1=b,
—2T(1)(1)to, a =2=by

or a =2, b =1,
(5.3)

T(, )(0)
=0= T(O)(1), T(2)(Q) (Q)(2) (5.4)

where, to avoid confusion, Latin indices in T;. are en-
closed in parentheses. g = —A = —1—2U

C
(5.9)

A. Newtonian limit

First, we consider the case for which the conditions

satisfies the equation

AU=4+Gp, (5.10)

T(o)(o) =pc»
l T(.)(b) l

=o2

(1)(0)
—0—T(0)(1)~ T(2)(0) (0)(2)

A =1=B, A'=O=B',

(5.5)

(5.6)

(5.7)

if and only if

(5.11)

are satisfied, where p is mass density of the gravitating
body and a prime means di6'erentiation with respect to r.
For this case, (5.2) and (5.3) take the form

(3a+4P)b, A (3a 4P)K—B= —2pc-
(3a —4P) A ' —(3a+4P)B' =0,

(5.8a)

(5.8b)

where terms quadratic in small quantities have been
neglected. Here, 6 stands for the Laplacian of the two-
dimensional Euclidean space. From (5.8a) and (5.8b), we
can show that the potential U defined by

Also, for the particle moving slowly, l
dx idtl ((c

(a = 1,2), (4.12) reduces to

(5.12)

Thus, our theory has a Newtonian limit, if (5.11), which
we shall assume in the text from now on, is satisfied.

B. Exact vacuum solution

The exact solution of (5.2)—(5.4) with T; =0 is given by.
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A —1
A (r)= (K, lnr +K3)(K~ lnr +K4),

16A
(5.13a)

B(r)= A —1

4A

(1+x)//(1 —W) (1 —A)/(1+ A)

)( ) + A)/() —A)

X(K, lnr+K, )"-'"('+", (5.13b)

A —1
K,K2= (K~K3 K)K4) . (5.14)

def
where A=M' —4p/3m&i, and K, (i =1,2, 3,4) are com-
plex constants satisfying

2. The case with ap) 0

For this case, A is pure imaginary, and the above re-
quirements imposes the condition K, =K2*, where the
asterisk on the shoulder stands for the complex conjuga-
tion. Then, X(r)= [Y(r)]* and the solution (5.15) takes
the form

~ (r)= IX(r)I',
(5.19)

8 (r) —[X(r)]((+A)/() —A)
I [X( )]s ]

() —A)/()+A)

These 3 and B are both real valued for any positive value
of r, although we have not required it. The conditions
(5.17) and (5.18) take the form

IK I' —(1 —A)K, —(1+A)K, *=0, (5.20)
The derivation of this solution is given in Appendix 8 1.
[In Appendix B, solutions are also given for a and P
violating (5.11).]

We require here that A (r) and 8 (r) are normalized as
2 (ro) =1=8(ro) for some radius r =ra', then K3 and K4
are expressed in terms of K) and K2, and A (r) and 8 (r)
take the form

c 2

[(A —1)K, + (A+ 1)K,* ] =2GM . (5.21)

1 —A') 14AGMI /c', (5.22)

These two equations can be satisfied simultaneously, only
if

A (r) =X(r) Y(r),
8 ( ) [X( )

](1+4)/() —A)[ Y (r) ]()—A)/()+A)
(5.15)

which can be expressed, by the use of (5.11), as

48vr ctP) c M (5.22')

X(r)= 1+ -K ln
4A 1

Y(r) = 1+ K2 ln2

(S.16)

Thus, we see the following: For a given positive value of
ap, the gravitational geld produced by a body having
(heavy) mass M violating (S.22') does not have a naive
correspondence to the Newton theory.

K, K~ —(1—A)K, —(I+A)K~=0 . (5.17)

The equation of motion of a classical test particle moving
slowly in the neighborhood of r = ro [12] agrees with that
in the Newton theory, if and only if

C
[(A —1)K, + (A+ 1)K2 ]=2GM, (5.18)

which we shall assume from now on. Here, M is the mass
of the central gravitating body.

It is quite natural to make the requirement that the
functions 3 and B are real values at least in a neighbor-
hood of r = ro. Then, certain restrictions are imposed on
the parameters K, and K2, which are classified into two
cases by the signature of ap.

1. The case with aP(0
For this case, A is real and positive, and 2 and B are

both real valued around r =ro, if and only if K1 and K2
are both real. Then, the function 2 is real valued for an
arbitrary positive r, but B can be complex valued in gen-
eral for r which is far from the neighborhood of r =ro

The parameters K, and K2 are now required to satisfy
the relation

VI. EVENT HARIZQNS AND SINGULARITIES QF THE
SPACE-TIMES GIVEN BY THE SOLUTION (5.1S)

We shall examine the structures of the space-times
given by the solution discussed in Sec. V.

In the present paper, the point at which t k™tki
and/or v Uk do not have derivatives is called a singulari-
ty. Also, by an effective singularity, we mean the point at
which the Riemann-Christoffel scalar curvature R ( I I ) is
not differentiable, in view of the following fact: The
Riemann-Christoffel curvature tensor is not the curvature
tensor of the Weitzenbock space-time, but in our theory,
classical test particles and light rays "feel" this curvature
effectively, as is known from (4.12) and (4.15).

Let x 0=et, x" (a = 1,2) be the coordinate of a classical
part][cle, and express x as

x '=r cosO, x =r sinO . (6.1)

Ip — g ~XX X d7

= I [ A (x ) Br' Br 8 ]dr, — —(6.2)

. Odef 0 .def
where ~ is the proper time and x =dx /d~, r=dr/d~,

~ def
and O=dO/d~. From the variations of I with respect to
x and O, we get

The equation of motion of the particle is derived from
the action
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(A x )=0,
d7

(B r 8)=0 .
d'T

We also have [14]

(6.3)

(6.4)

when it is measured by the coordinate time.
The scalars tk™tk(,v"vk, and 8( [ I ) have the expres-

sions for the space-time given by (5.15):

klm 3 1 2 ~2(&+1)/'(& —1)
K K

k'm 16 ~ Y
dx" dx 2 . p2c = —g „(x) =A (x ) B—r B' —r 8 . (6.5)
d~ d~

From (6.3) and (6.4), it follows that

)( Y2(A —1)/(A+1) g( )
1

r 2 (6.17)

3 t'=k =const,

B r 0=h =const .

(6.6)

(6.7)

K1
V Vk=

4W'

K ~2(A+ 1)/(A —1)

Y

2
dr

For the orbit with 0=00=const, we have
2

(k —3 ), (6.8)

X Y2(A —1)/(A+1) g( )
1

r2
(6.18)

~ ( [ ] )
—2~ (~ Y ~ X)X(A+3)/(A —1) Y(A —3)/(A+1)g(

1 2

2
dr

(k —A )
kB

(6.9) 1 —A+ (K Y+E X) X" ''Y
8A

which follow from (6.5) and (6.6). Thus, the motion of
the particle is restricted in the region k ) A [15]. We
consider the time which the particle needs to go from the
point (r), 8o) to the point (r2, 8o) on this orbit [16]. It is
given by

X vr5(r )—1

r2
(6.19)

def
where r = (x ', x ). These are obtainable by using (2.1),
(2.11), (3.2), (3.3), (3.16), (3.17), (S.l), (S.15), and (5.16).

IB ldr

Al+k2 —A' (6.10)

def 0when it is measured by the coordinate time t=x /c.
When it is measured by its own proper time, the particle
needs the time

+k /I
(6.1 1)

d
(A x )=0, (6.12)

dX
(B r 8)=0,

0 g 2(x0)2 B2r2 B2r282

(6.13)

(6.14)

where x =dx /d k, 0=d 0/d k, and r'= dr /d k. This is
shown in a way similar to the case of (6.3)—(6.5).

For the light ray with 0=00=const, we have

2

dt
2=C

B

2

(6.15)

which follows from (6.14). To go from the point (r(, 8o)
to the point (r2, 8o) on the path with 8=8o, a light ray
needs the time t& given by

1 '2 B
t&

=— dr,
c

(6.16)

Let us describe the path of light ray with x "(A, ) and use
polar coordinate (r, 8) for x (X) (a=1,2); we then have
the equations

A. The space-time given by the solution (5.15)
with negative aP

Since K1E2 is not vanishing, each of the functions
X(r) and Y(r) has a zero for positive r; we denote them
by a 1 and a2, X(a 1 ) =0, and Y(a2) =0. We have a 1 &a2,
as is easily known.

By substituting the expression (5.15) into (6.10), (6.11),
and (6.16), we know that (1) r is infinite, if A) 1 and at
least one of a 1 and a2 is in the interval [r, , r2 ], but other-
wise it is finite, (2) r is infinite, if 3 A ) 1 and
a)E [r(, r2], but otherwise it is finite, and (3) r( is infinite,
if (a) r2 = ~ or (b) A ) 1 and at least one of a) and a2 is in
the interval [r1, r2 ], but otherwise it is finite.

The following is seen from (1), (2), and (3).
(a) For the case with A) 3, the circles r =a

1 and r =a2
are both event horizons.

(b) For the case with 3 )A) 1, the circle r =a2 is an
event horizon, and to reach (or to come from) the circle
r =a(, classical particle needs infinitely long time, even
when it is measured by its own proper time. Thus, if
3 )A ) 1, r =a, is an "ultra" event horizon in this sense.

(c) When A & 1, there is no event horizon at all. Also,
we know the following from (6.17), (6.18), and (6.19).

(d) There are singularities and also effective singulari-
ties both at the origin r =0 and at r =a2.

(e) For the case with A) 5, the circle r =a, is a singu-
larity.

(fl For the case with A & 1, the circle r =a, is a singu-
larity as well as an effective singularity.
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B. The space-time given by the solution (5.15)
with positive aP

For this case, the function X(r)=[Y(r)]" does not
have a zero point for real r, and t and w are both finite
for any points (r„0o) and (rz, Oo) on the orbit 0=Ho in
the region k ~ A . The time tI is infinite, if r2= ~, but
otherwise it is finite. These can be known by substituting
(5.19) into (6.10), (6.11), and (6.16).

The scalars t "' tkI, v"vk, and R ( I I ) for this case are
singular only at r =0, as is seen from (6.17), (6.18), and
(6.19) by noting that X(r) does not have a zero point.
There is no event horizon in this space-time, but it has a
singularity and an effective singularity at r =0.

APPENDIX A: THE DIRAC FIELD
ON THE THREE-DIMENSIONAL

MINKOWSKI SPACE- TIME

(A 1)

0 1

1 0
0 1

—1 0
2def lr'=

0

(A2)

We consider the two-component Dirac field i/ on the
(2+1)-dimensional space-time. The adjoint i/j of i/t and
the y matrices y" (k =0, 1,2) are defined by

VII. SUMMARY AND COMMENTS

respectively. Here, it stands for the Hermitian conjugate
of i/t. We have the relation y "y'+ y'y" = —2v) '.

The free Lagrangian of the field i/ on the three-
dimensional Minkowski space-time is given by

We have formulated a teleparallel theory of (2+1)-
dimensional gravity and the results can be summarized as
follows.

(1) The theory is underlain with the Weitzenbock
space-time, and the gravity is attributed to the torsion.
The most general gravitational Lagrangian quadratic in
the torsion tensor is given by (3.1), and it has real param-
eters a, P, and y.

(2) The gravitational field equation (3.7') [or equivalent-
ly (3.7)] agrees with the Einstein equation, if and only if
the conditions (3.18) and (3.19) are satisfied. Even in that
case, our theory does not reduce to the Einstein theory as
a whole.

(3) The requirement that a circularly symmetric gravi-
tational field should have a Newtonian limit imposes the
condition (5.11) on the parameters a and P. Equation
(3.18) violates this condition, which is expected from the
fact that the three-dimensional Einstein theory does not
have a Newtonian limit.

(4) The static circularly symmetric exact solutions of
the gravitational field equation in vacuum have been ob-
tained.

(5) (a) For the case with negative aP satisfying (5.11),
the space-time given by the solution (5.15) has various
different structures classified by the value of
A=& —4P/3a, as is summarized in (a) —(f) of Sec. VI. (b)
For a positive aP satisfying (5.11), however, the solution
(5.15) gives a space-time having a rather simple structure;
i.e., there is no event horizon and it has a singularity and
an effective singularity at r =0. Remarkable in this case
is the fact that a body having a mass M violating (5.22')
produces gravitational field which does not have a naive
correspondence to the Newton gravity. The solution
(5.15) gives black-hole space-times, if and only if
a(3a+4p) (0. The circularly symmetric space-times
given by (5.15) are markedly different from the
Schwarzschild space-time in the Einstein theory of
(3+ 1)-dimensional gravity.

The theory developed above seems to present us with a
toy model useful to examine basic concepts in theories of
gravity.

LD =
2

(4y

"akim

a&ay "q—) m—
where m is the mass of i/.

(A3)

APPENDIX B: EXACT SOLUTIONS
OF (5.2)—(5.4) WITH T; =0.

(3a+4P) P'+ P+ P ——(3a ——4P) Q'+ —Q
1 1 1

r 2 r

(3a+4/3)Q —=0, (Bl)1

2

(3a —4P) P' — P —(3a+4P) Q—' ——Q
—

Q
1 1 2

r r

+6aP —(9a —4P)PQ =0,
'P

(3a+4P)(P + Q ) —2(3a —4P)PQ ——(3a —4P)P

+—(3a+4P)Q =02
(B3)

with

def A def B
B (B4)

1. The case with 3aA —4P and aPAO [17]

By considering Eq. (Bl)+L X Eq. (B2)—L X Eq. (B3)
for L =L+ and for L =L with

def A 1 def ++1
4+1' A —1

def
where A=V' —4P/3a%1, we get

(B5)

We now derive exact solutions of (5.2) —(5.4) with
T, =0. In thi"s Appendix, the parameters a and p are not
necessarily required to satisfy (5.11).

Equations (5.2)—(5.4) with T; =0 are equivalent to
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d
I [r (1 A—)P —(1+ A)Q ] Idr

4A
[(1 A—)P —(1+A)Q]

Xr[(1 A)—P —(1+A)Q]=0 for L =L+, (86a)

2. The case with 3a = —4PAO

A (r) =1+a 1n(r/ro), B (r) =re/r, (88)

For this case, there are two solutions, which are easily
obtained and are given by

d
I [r(1+A)P —(1—A)Q ]]dr

Equations (86a) and (86b) are integrated to give

B'
r (1—A) —(1+A) B

g (j. A) /4AB (1 A )/4A
1

(87a)

B'
r (1+A) —(1—A) B

g —(1+4) /4AB(1 —A )/4A (87b)

+ [(1+A)P —(1—A)Q]
4A

X r [(1+A)P —(1—A)Q] =0 for L =L . (86b)

3 (r)=1, B(r)=(r/ro) (89)

3. The cases with aP=O

where a and b are constants and we have normalized as
A (r o)=1=B(ro).

Event horizons and singularity structures of the space-
times given by these solutions can be discussed as in Sec.
VI and we know the following.

(1) The space-time given by the solution (88) has an
event horizon at r =l, where l is the zero point of A (r);
A (l)=0. It has a singularity at r =0, but there is no
e6'ective singularity at all.

(2) The space-time given by the solution (89) has a
singularity at r =0, if and only if b ) —3/2. The point
r =0 is an effective singularity also, if b &0. Light ray
can reach the point r =0, but it needs infinitely long time,
if b ~ —1. A classical particle also can reach the point
r =0, if it has a sufTiciently high energy. Even in that
case, it needs infinitely long time to reach there, if
b ~ —1. This is so, even if the time is measured by its
own proper time.

respectively, where K; (i = 1,2) are complex constants.
Integrating these equations further, we get the expres-
sions (5.13a) and (5.13b). Substituting these into (83), the
restriction (5.14) is obtained. Thus, the solution of (81),
(82), and (83) as given by (5.13a) and (5.13b) with (5.14)
has been derived.

When a/3=0, solutions are obtained quite easily, but
they are trivial: (a) For the case with a=O=P, A (r) and
B(r) are both arbitrary; (b) for the case with a=O&P
(aAO=P), the product 3 (r)B (r) [ratio 3 (r)/B(r)] is
required to be constant. Otherwise, /I (r) and B (r) are ar-
bitrary.
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