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Plasma electrodynamics in the expanding Universe
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The 3+1 formalism of Thorne and Macdonald is used to formulate the electrodynamic equations
for a plasma in a spatially Bat Robertson-Walker metric. The conformal Qatness of this space-
time ensures that these equations closely mirror those of Hat space-time. The linearized Vlasov-
Maxwell equations are solved for the case of an unmagnetized plasma of ultrarelativistic particles
and antiparticles, and the results are compared with those of classical kinetic theory and quantum
6eld theory in special relativity. The Vlasov-Maxwell equations for a plasma of nonrelativistic
particles are not conformally invariant, so a Quid approximation is used to obtain the linear modes
of oscillation, again for an unmagnetized plasma. The plasma modes redshift at rates which depend
on the rate of expansion of the Universe, and whether the electromagnetic fields or the particles
dominate the dynamics.

PACS number(s): 04.40.+c, 98.62.En

I. INTRODUCTION

Hubble's law has been observed for some time now, in-
dicating that the Universe is expanding. I emaitre, Fried-
mann, Robertson, and Walker have provided the simplest
relativistic &amework in which to model this expansion,
allowing the efFects of this expansion on a large array of
physical processes to be studied &om a theoretical view-
point. One area that has attracted a large amount of
interest over the last 50 years is the efFect of density or
metric perturbations on the matter distribution (for a
recent example, see [1]).

Another outstanding problem, albeit one which has re-
ceived much less attention, is the efFect of the expansion
on the electromagnetic interactions of the matter, includ-
ing the longitudinal and transverse plasma modes. The
first to tackle this problem appears to have been Holcomb
and Tajima [2—4].

The first paper [2] treats plasmas at ultrarelativistic
temperatures in a radiation-dominated Friedmann uni-
verse. The equations of motion are found for free pho-
tons, longitudinal and transverse oscillations, and Alfven
waves using the bulk properties of the plasma. It is found
that all of the above modes of oscillation have the same
form of equation and hence redshift at the same rate.
Here we show how this arises Rom the conformal flat-
ness of the metric and invariance of the equations, and
extend the unmagnetized treatment to a kinetic theory
approach, which exhibits the same form of solution as
the flat space-time case.

The second paper [3] treats plasmas at nonrelativistic
temperatures in a matter-dominated universe. The un-
magnetized plasma is covered briefly, but the emphasis
is on the modes in an external magnetic field. Here also
it is claimed that the oscillations of the unmagnetized
plasma redshift in the same manner as a photon, but
that the shear Alfven waves have a remarkably difFerent
d.ependence on time, namely, t", where r may take real

or imaginary values, depending on the magnetic field and
density of the plasma. We show that, for the unmagne-
tized plasma modes, the time dependences of the plasma
oscillations and photon compete, as evidenced by the dif-
ferent rates at which the &equencies of each redshift, if
not coupled to the other.

Reference [4] treats nonlinear aspects of primordial
plasmas, which are of importance in the generation of
large scale magnetic fields, but are beyond the scope of
this paper.

Section II briefly reviews the 3+1 formalism of Thorne
and Macdonald, which is used to put the general relativis-
tic equations in a form similar to their special relativistic
counterparts. The metric is introduced and the confor-
mal flatness is utilized in choosing the most appropriate
coordinates. Finally the kinetic theory is set forth.

Section III justifies the use of classical theory in the
ultrarelativistic regime, and proceeds to solve for the lon-
gitudinal and transverse modes using a kinetic approach
as well as a fluid approach.

Section IV finds solutions for the plasma modes in
the nonrelativistic limit, for both radiation- and matter-
dominated space-times. The asymptotic properties of
these solutions demonstrate the balance that exists be-
tween the dynamics of the particles and the dynamics of
the electromagnetic field.

II. FOR.MALISM

A. 3+1 split

This paper is concerned with plasma physics in curved
space-time. In order to make use of the intuition ob-
tained &om nonrelativistic plasma physics it is preferable
to split the electromagnetic field tensor E~ into electric
and magnetic fields E and B in terms of which the equa-
tions are more familiar. This requires choosing a par-
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ticular set of Mucial observers (FIDO's) at each point
in space-time with respect to which E, B, and other
physical quantities are measured. The familiar three-
vectors and scalars are then given by the appropriate
four-tensor projected perpendicular and parallel to the
FIDO 4-velocity u~ as given in Eqs. (2.4) to (2.10). If
the motion of the FIDO's is simple with respect to an
appropriate coordinate system the equations are simpli-
fied; it is generally possible (with the exception of struc-
tures of nontrivial topology such as wormholes) to choose
FIDO's with world lines perpendicular to the hypersur-
faces corresponding to a given universal time parameter

the "hypersurface" approach. This means that the
directions the FIDO's associate with space mesh to form
an absolute space given by one of these hypersurfaces.
Often it is useful to require that the FIDO's remain at
fixed coordinate positions (zero shift vector P). This is
not always convenient, for example, in the Kerr metric
(rotating black hole), the dragging of inertial frames en-
sures that observers with world lines perpendicular to
the hypersurfaces of Boyer-I indquist time t move with
respect to the fixed stars at a rate which is a function of
the distance to the hole. In this case, if the spatial coor-
dinates were to follow the observers, they would become
increasingly twisted over time, and obscure any physical
results obtained.

The 3+1 approach has been used by a large number
of authors, with the main applications being to formu-
late a canonical theory of gravity with a view to quan-
tization, numerical solution of various problems in gen-
eral relativity, and astrophysical problems where com-
parisons with nonrelativistic work are helpful, particu-
larly black-hole accretion disks and cosmology. A 3+1
formulation of general relativistic magnetohydrodynam-
ics is found in [5], and related numerical questions are
addressed in [6]. These techniques are applied to black
holes and their accretion disks in [7—9].

Our formalism is due to Thorne and Macdonald [10]
and is general, only requiring that FIDO world lines be
orthogonal to hypersurfaces of constant time (see above).
This generality is what makes the numerical applications
possible, however the real utility of the 3+1 approach is
manifest in those systems with sufFicient symmetry that
a natural choice of FIDO presents itself. For the black-
hole problem the "natural" FIDO's are the zero angular
momentum observers (ZAMO's) which remain at a fixed
distance from the hole. In our case the FIDO's are co-
moving observers, Axed to the expanding motion of the
galaxies. The equations in this section are quite general,
specializing to our particular problem when the metric is
introduced at the beginning of Sec. IIB.

We use unrationalized units with A, = c = kg ——1. The
relativistic sign conventions are as in [ll]. Space-time
is split into an arbitrary (but carefully chosen) universal
time q (t in [10])and a three-space, the geometry of which
is, in general, a function of g. World lines perpendicular
to the hypersurfaces of constant g correspond to a family
of observers (FIDO's) with respect to which all quantities
are measured. FIDO proper time t (7 in [10]) is in
general diferent from q as expressed by the lapse function
o, , with the relations being

d't

dg Q—rl'&rl, ~

~P& gP& + uPu~

(2.1)

(2.2)
(2.3)

where u" is the FIDO four-velocity and p" is the ten-
sor which projects four-vectors onto the hypersurfaces
of constant g, and plays the role of the metric in these
spaces. The FIDO observed scalars and three-vectors
are obtained by contracting the appropriate four-tensor
with uI' and p~, respectively. A spatial vector is one
which is orthogonal to u"; these are often written with
latin indices, indicating only three components. Note
however that if the FIDO's are moving with respect to
the spatial coordinates (nonzero shift vector P) then the
lowered components with respect to the three- and four-
dimensional bases may not coincide. We will always have

P = 0. The FIDO measured quantities we will use are

—J u p )

JV

E" u
1 p, acr p

v cTp )

T" u„u„
—p" T u

7"-T"7 ~

(2.4)
(2.5)
(2.6)

(2 7)
(2.8)
(2.9)

(2.io)

where the electromagnetic symbols take their usual
meanings, ~, S", and R'" are, respectively, en-
ergy density, momentum density and the pressure ten-
sor, and r~ p is the I evi-Civita tensor equal to
(—g) ~ (antisyrnmetric symbol defined so that sor2s = 1
in a right-handed future-directed orthonormal coordinate
system).

The 3+1 equations also contain the kinetic properties
of the FIDO world lines:

0 = u".„
a" = u". u" = (lnn)'"

t

1 cT p 1
p& 2+@, +v ( &;p + pi&) 30+8&

(2.11)
(2.12)

(2.13)

(V'M)"„= p~ p„~M

or as a covariant derivative in these hypersurfaces,

(2.14)

(V'M)', —= M' = M* + I '„M" (2.i5)

where M is a spatial vector and I' '& is computed in the
usual way from the spatial metric p;~. These derivatives
do not commute if the spatial geometry is curved.

Here, 0 is the expansion and is equal to three times the
Hubble constant averaged over all directions, a" is the
acceleration as measured by a FIBO accelerometer, and
0„ is the rate of shear of FIDO world lines. If the world
lines were not perpendicular to the surfaces of constant
g, another quantity would be necessary, the rotation u„.

Covariant spatial derivatives are defined equivalently
as the four-dimensional covariant derivative projected
onto the hypersurfaces of constant g,
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Now we are in a position to define the usual vector
operations and time derivatives of vectors:

M. N
V'-M

(M x N)'
(V' x M)'

(D,M)"

M I'

e'~ M.Nj k )

c'~ MA)j )

p" M . u = M".„u" —u"a„M

(2.16)

(2.17)

(2.18)

(2.19)
(2.2o)

B. The metric

We will be solving the Vlasov equation coupled to the
Maxwell equations, ignoring the effects of the Huctua-
tion in particles and fields on the metric, in the spatially
Bat Robertson-Walker metric. The line element is often
written as

ds = dt + R —(t)(dx + dy + dz ) (2.21)

where e'~" = p ~ (antisymmetric symbol). Di is the
derivative with respect to proper time which preserves
scalar products; there are other time derivatives useful
in the 3+1 formalism, but we will not need them here.
Dq does not commute with spatial derivatives in general.

1
(D,M)' = — M'—:—(M )'

BOg

V-M = ———.M' = —B.M1 0 - 1

B t9x' B
(V' x M)* = —e'~ . M-—:—(8 x M)*

B Bx& @ B

(2.27)

(2.28)

(2.29)

where M is a spatial vector and 8 is vector notation for
8/8x. Note that R 8/8g is a derivative with respect to
proper time and R 8/8 xis a derivative with respect to
proper distance.

Maxwell's equations, the charge conservation and
Lorentz force equations and energy and momentum con-
servation for continuous media have been written down
in 3+1 form, in Sec. III of [10] and Sec. II of [2]. Sub-
stituting the FIDO related quantities and derivatives for
our particular case we obtain

the equations we need to specify such a basis. We choose
the orthonormal basis, so that the components take on
the numerical values as measured by a FIDO, and the
components of p are zero and one. Vectors and tensors
measured with respect to an orthonormal basis will be
denoted by carets; however all derivatives will be explicit
with respect to the coordinates (i), w). Using the above
metric we obtain

where x, y, and z are comoving coordinates and t is
proper time as seen by observers at fixed x, y, and z,
which we will use as our FIDO's. As Holcomb and Tajima
[2] have noticed, a number of plasma equations in this
metric have the same form as in Hat space-time, with the
usual e ' replaced by spherical Bessel functions multi-
plied by various powers of t,. The reason for this becomes
evident after making the coordinate transformation:

I

R

RB
I

RP

RB K = 47CP

—'8-B =0,
I

R, E= RBxB —4vr2 )

3R 1+» p, +R8 j=0
(

I th

a' + ~v. 8+ ~, p =.(E+ v x a),

(2.3o)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

ds = R (g)(—de) + dx + dy + dz )

(2.22)

(2.23)

I

+ ~, e+ ~8.S+ ~, Tr(W') =g. E

—„'S + '", S+ —'8- W = p.E+~ x B .

(2.36)

(2.37)

3B
B2

o. =B
o,z ——0

(2.24)

(2.25)

(2.26)

where a prime indicates partial differentiation with re-
spect to q.

Up to this point all of the equations have been inde-
pendent of a choice of basis for spatial vectors. To solve

which differs Rom the Minkowski metric by a conformal
transformation. A number of the equations of physics
(more specifically, most equations describing only mass-
less particles) are invariant under these transformations.
For these systems the solution of the equations follow in
the same manner as Bat space-time. We will demonstrate
this for the case of the &ee Maxwell equations, as well
as the coupled Maxwell-Vlasov equations in the case of
ultrarelativistic charged particles (Sec. III A).

The FIDO-related quantities for the metric above are
found to be

In the limit R =const (static universe) these equations
reduce to their usual Bat space-time counterparts. The
electrodynamic equations (2.30)—(2.35) are simplified by
the variable transformations

E=B E
B=BB

3

y= B'j
P=BP )

(2.38)

(2.39)
(2.4o)

(2.41)
(2.42)

&8 + v . 8
) p = e(E + v x 8)

g8g j (2.43)

leading to equations with the same form as the Bat space-
time equations in the barred quantities, with time re-
placed by q. Note that this simplification of the equa-
tions takes place independent of the functional form of
B, and is a direct result of the conformal Qatness of the
space-time. The exception is the Lorentz force, which
becomes
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p is the conserved momentum if the Gelds are zero. The
difference between this equation and that of flat space-
time is that p and v are related differently. v can be
obtained &om

V = p
gp' + m' R' (2.44)

C. Kinetic theory

In the Vlasov-I andau approximation, the charged
particles are represented by a distribution function f
over phase space and time (Ir, p, I7). Interactions are
treated by including an electromagnetic field which is
self-consistently generated by the particles. Macroscopic
quantities are obtained as integrals over the particle mo-
mentum. No detailed derivation will be given here; the
reader is referred to [12] for how to do this. The kinetic
equation derived from the above particle equation of mo-
tion is

0 + v. 8+ e, (E+ v x B) . 8~
~
f, (x, p, I1) = 0,

(OI7

(2.45)

where 8& is @ and f, is normalized so that it reducesBp
to the usual special relativistic normalization in a lo-
cal I.orentz kame. The subscript 8 allows for different
species of particles. Thus the charge and current densi-
ties are given by

OI pe—

) .j i.~'i ,
8

) e.Jf vdp.
8

) . ji.d p, .
) ..fi,;a;,

8

(2.46)

(2.47)

(2.48)

(2.49)

and similarly

~ = ) / i die + ~e&'i,
8

s =).f f i& i,
8

W=). f. ' ' d'p .'gp'ym, '

(2.5O)

(2.51)

(2.52)

f, = arbitrary function of p (2.53)

Applying f dsp to the kinetic equation (2.45), we ob-
tain the equation of charge conservation. Similarly the
equations of energy and momentum conservation (2.36)
and (2.37) can be obtained. The condition for equilib-
rium distributions is found by setting the fields and spa-
tial derivatives to zero in the kinetic equation. The solu-
tion is

Comparing this with a Boltzmann distribution at rest
with respect to a FIDO,

fit = COnst X e

1P=T,
(2.54)

(2.55)

where T is the temperature, it is seen that f& is only a
solution of (2.45) if either

p )) m and T B (2.56)

or

p((mandT~B (2.57)

The first possibility corresponds to the ultrarelativistic
limit, and the second to the nonrelativistic limit. In the
intermediate region the distributions are nonequilibrium
and collisions cannot be ignored, as has been well doc-
umented [13]. Of course, for ultrarelativistic particles,
antiparticles should be included, and. the correct quan-
tum distribution used. This limit is the subject of the
next section.

III. ULTRARELATIVISTIC LIMIT

A. Kinetic treatment

2S+1f 0(p)
(2 )s p(—

P=R P
Ps = +Ps

(3.1)

(3.2)
(3.3)

A natural question that arises in connection with plas-
mas at ultrarelativistic temperatures is whether classical
kinetic theory gives a sufIiciently accurate description or
whether the more involved subject of quantum field the-
ory in curved space-time is necessary to treat particle cre-
ation and/or annihilation and other quantum processes.
We assume that the curvature of the space-time has a
much greater length scale than the Compton wavelength
of the particles, so that no particles are created out of
the curvature itself. In flat space-time it is found that,
to terms of first order in the fine structure constant, the
classical and quantum formulations of the plasma give
the same plasma &equency, provided that the correct
distributions are used, for both spin-0 and spin-& par-
ticles. This result will be discussed further later in this
section. In addition, the factors of B that appear in
expanding universe calculations conspire to ensure that
no overall creation or annihilation takes place, whether
or not there is an imbalance between particles and an-
tiparticles. These considerations indicate that, under the
approximations mentioned above, a classical treatment
should be satisfactory, although a quantum treatment
would be preferred, and as such would be a natural gen-
eralization of this work.

We consider only linear oscillations, that is, first order
perturbations about an equilibrium solution f, (pI)Igiven
by the Fermi-Dirac or Bose-Einstein distribution in the
ultrarelativistic limit
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p++p —=0 . (3.4)

Henceforth, p,~ will be simply written as p, .
The other condition placed on the chemical potentials

arises &om the FIDO observed difference in number den-
sity between particles and antiparticles. When multiplied
by B this quantity is independent of time, that is,

where 2S + 1 is the spin degeneracy factor, p, is the
chemical potential of species s, and the + (—) sign applies
to fermions (bosons). P and p, must be independent of
time for f,p to be a solution of (2.45). Using a subscript
+ (—) to apply to particles (antiparticles), the constraint
that they are produced in pairs is

gular &equency and wave number are

co =R (d

k=R k.
(3.i3)
(3.14)

e, (K~v x B) 8pf, p
sl

(u —v. k
(3.15)

Using (2.49) and (3.10) we obtain

These are obtained by applying the proper derivatives
B 8/8q and R 8 on the logarithm of this space-time
dependence.

The kinetic equation (3.11) can then be written

An = R En = R (n~ —n ) = f (f~o —f o)d~gj

(3.5)
with

++g= cr-E (3.16)

The fact that both sides of the above equation are inde-
pendent of time indicates that the assumption that there
is no overall creation or annihilation of particles in the
ultrarelativistic regime is correct.

The full distribution function will be written as

f.(~ p n) = f.p(p) + f.i(~, p n) ,

dsp . f v k(
cr = i) e—, „v(38~f,p 1—

2 —v k ( 2 j
pJ80k- 8-~~+vv

(3.i7)

where f, q and also E and B are assumed to be small,
so that second order terms are negligible. A possible
extension of this work would be to include an external
magnetic field which is not assumed to be small.

The coupled Maxwell-Vlasov equations become

kxkxE
e . E+ =0 (3.18)

where

where cr is the FIDO measured conductivity tensor of
the plasma. Maxwell's equations (3.9) and (3.10) give

8 E=4vrg, e, Jf gd p,
O. B =0,

E' = 8 x B —4x g, e, I f„vd'p
B = —BxE,

~ ~gv B,gee, E~vxB . Bp,o
——0

(3.7)

(3.8)

(3.9)

(3.iO)

(3.1i)

++ ~ 4+i ~
e =1+ cr (3.19)

Since the equilibrium distribution f,p is isotropic, the

dielectric tensor e separates into longitudinal and trans-
verse components,

where it has been assumed that charge neutrality holds
for the unperturbed system. For an electron-positron
plasma with an excess of electrons, this could be achieved
by treating nonrelativistic protons as a uniform positive
background, as is often done in plasma theory. This pre-
scription relies on the fact that protons are not affected
much at the higher &equencies at which the electrons
oscillate, due to the large mass ratio.

From this point the analysis follows exactly as for Hat

space-time, since v is a unit vector, equal to the speed
of light in both cases, and all the barred quantities obey
the same equations as in Hat space-time. The linearized
quantities are assumed to have harmonic space and time
dependence:

++ k (3 k (++
+eT~ 1k'

4vre,.—,= iy)
u) A:2

B

kg kl
k2

d3
(v k)(8~f,p k)

(3.20)

(3.21)
271 e 3—

~T = 1 y) 2' „[(v 8r-f p)k
e

—(v . k) (8p f,p . k)] (3.22)

~1, ——0, (3.23)

which yield the dispersion relations for longitudinal and
transverse modes of oscillation:

f, , E dB (3.i2)
k2

T ~2 (3.24)

Note that e ' " is equivalent to the Hqy2(2ur;t ( ) of [2]
for the case B = (t/t;) ~, subject to some multiplicative
powers of t which arise &om defining the electromagnetic
quantities differently. The FIDO observed values of an-

The above integrals are evaluated using the Landau
prescription of adding a small positive imaginary part to
u to make the boundary conditions causal [14,15], and
then using the Plemelj formula to obtain the real and
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imaginary parts:

~8' e Cd k+Cd
1

An = [fs(z) —fs(z ')j

Cd—iver =0(k —u) I, (3.25)

For the most likely situation where the excess of particles
over antiparticles is small compared to the total density,
z = 1. An expansion of these functions about z = 1 has
been done by Hore and Frankel [17]. The result is

4K 8 k
1 — ' ln

k2 kcds

t'k' —-' )+2 —i~
~ ~

8(k —u) I„

klan)

) (3.26)

I Pp I«, (3.37)

(3.38)
OO ggJso0-P P

p
(3.27)

Note that the form of the dielectric tensor to this ap-
proximation is totally fixed by P, e,I, This. is due to
the fact that all particles are traveling at the same speed
(c). The 0 function indicates that no Landau damping
occurs when the phase velocity of the wave is greater than
light, which is because there are no particles with such
velocities. Thus the long wavelength limit is completely
&ee of this source of damping, although a correct quan-
tum treatment [16] indicates damping above the pair-

production threshold (tu ) /4m + k ). As seen from
(3.40) this only occurs at temperatures above 10 MeV.
The mode equations (3.23) and (3.24) give, in the limit
of small k,

longitudinal cd = cd + —k +.. .

transverse cd = cd + —k

(3.28)

(3.29)

where

Cd
—2

p
16m ). s (3.3o)

Now it remains to evaluate P e,I, . Integrating by
parts and substituting the fermion distribution (3.1)
gives

where ((z) is the Riemann zeta function. Using the above
expansion, z can be eliminated from (3.32) and (3.36)
to obtain

) e.'I. =, , ~

1+ —,(P'an)'+" ~, (3.39)
2~'e' f 27

3P' 2~ '
q

~' j
and hence

4vre2 r' 27
/
1+ —(P An)'+P gp2 q

~2 (3.4o)

For a hypothetical plasma of spin-0 bosons which has
an imbalance of particles and antiparticles the statisti-
cal mechanics is complicated by the presence of a Bose
condensate, which is particularly important in the ultra-
relativistic limit [18—20]. We leave the treatment of this
plasma to a future paper, noting that an analysis simi-
lar to the above yields the same plasma &equency as for
fermions in the balanced (z = 1) case.

Now we are in a position to make a comparison be-
tween the classical and quantum descriptions of the
plasma. The relevant Hat space-time work can be found
in Tsytovich [16] for spin-2 fermions and Kowalenko,
Frankel and Hines [21] for spin-0 bosons. For both
fermions and bosons, the longitudinal and transverse re-
sponse functions are equal in the k —+ 0 limit. For
fermions,

2(2~ + 1)
(2vr) s

+ — pdp,P(p+r)+ y
"

,e(p-~) + y

(3.31)

el, (0, (d) = ET(0, ld)

4 2 4E„(1—,~~, )

(3.41)
4e

, [f2( ) + f2(z )j (3.32) and, for bosons,

where

(3.33)

(3.35)

el. (0)ur) = eT (0, ~)
4me

(f+o + f o)-
(u' —4E„'(1 —s~, )

Ep ((u 2 —4E2)

where

(3.42)

and the electron spin S = 1/2 has been substituted.
The number equation (3.5) gives

E, = gp'+~2 . (3.43)

If it is assumed that cd « 4E„, which is justified, to first
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order in the fine structure constant, by the result (3.40),
both of the above expressions simplify to

J'
4vre2 3R

(J'+o+ f 0)-' d'p .
Cd E„ (3.44)

Finally we take the ultrarelativistic limit p )) m and
obtain (3.30).

T —Tp + T1

n = np+n1
ivy ((1

The equation of particle conservation is

n1+np8 v = 0

(3.53)
(3.54)
(3.55)

(3.56)

The energy equation (2.36) together with this gives

B. Hydrodynamic treatment
—I I

T1 1

Tp 3 np
(3.57)

e = I'(p+ pv')

S = I' (p+ p)v

(3.45)

(3.46)

++ ++
W = I (p+ p)v I3 v+ p 1 (3.47)

and now v and the boost factor I" correspond to the bulk
motion of the plasma, p is the total (rest plus internal)
energy density in the rest &arne and p is the pressure in
the rest &arne. These are given in terms of the temper-
ature T by

2S+ 1~( )
~(4) 4

C(4)
1

P=3P )

(3.48)

(3.49)

where particles and antiparticles are treated separately,
and the 7 (() applies to fermions (bosons). We have
assumed equal numbers of particles and antiparticles for
simplicity. ~(z) is defined by (3.38). In contrast with
the nonrelativistic case, these are not proportional to the
particle number density, which is given by

2S + 1 T(3)
2vr' C(3)

(3.50)

It is convenient to define

T=BT,
n=B n

(3.51)
(3.52)

T, n, and v are linearized for each species; thus,

Vie conclude this section by giving the corresponding
hydrodynamic treatment of the ultrarelativistic plasma.
This has a twofold purpose, reproducing the results of
Holcomb and Tajirna [2] using our slightly diferent for-
malism, and providing a point of comparison with the
next section which uses the hydrodynamic equations ex-
clusively. As suggested by Ref. [2] and the foregoing cal-
culations, the form of the equations follows that of flat
space-time when the conformaiized variables (E, B, and
so on) are used. However as in flat space-time, the dis-
persion relations are incorrect.

In the hydrodynamic treatment the plasma is repre-
sented as a perfect fluid —no viscosity or heat conduc-
tion —governed by Eqs. (2.36) and (2.37), where e, S,

and ~ are given by

which is just the adiabatic equation. The momentum
equation (2.37) gives

~(3) BT,
4~(4)To T,

(3.5s)

for fermions.
These equations are written down for each species, and

are connected by the Maxwell equations with

P~ = ean81 ) (3.59)

e,n, pv (3.60)

As before we assume harmonic space and time depen-
dence e'~ ' "~ for the linearized quantities, including E
and B. For longitudinal oscillations (v, k, and E all par-
allel), only Poisson's equation is needed from the Maxwell
set, and we obtain, for fermions,

—2 —2+ 1k2
p 3 ')

4~e' 2S+ 1 ~(3)'
P2 2~2 ~(4)

(3.61)

(3.62)

Ca) = (d + kp (3.63)

with u„as above. These results are of the same form
as the flat space-time ones, as observed in [2], with t
replaced by g and the variables replaced by their "con-
formalized" forms.

To summarize the results of this section, in the ul-
trarelativistic limit, the equations scale so that the solu-
tions are obtainable in the same way as in flat space-time,
and the plasma modes redshift in the same way as a &ee
photon. The quantum and classical treatments yield the
same plasma &equency to first order in the fine structure
constant, but the classical treatment does not allow for
pair production damping which occurs at high tempera-
tures. The fluid treatment gives incorrect dispersion rela-
tions for ultrarelativistic plasmas even in flat space-time,
however the general features (time dependence, structure
of the dispersion relations) are the same as for the kinetic
theory treatment.

which is clearly not the same as the leading term of
(3.40). The boson result is the same as the above with w

replaced by (. For transverse modes (k perpendicular to
v and E, which are parallel), we obtain
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IV. NONRELATIVISTIC LIMIT

A. Formulation

Now we turn to the limit of nonrelativistic particles.
There are two scenarios we consider here, "prerecombi-
nation, " where the temperature and the expansion are
both dominated by the photons,

where T is the temperature and n is the FIDO ob-
served number density, and obeys the continuity equa-
tion (3.56). A couple of important points should be made
regarding the hydrodynamic approximation in the non-
relativistic limit, which follow on &om the flat space-time
treatment.

Firstly, although the Quid approach in Bat space-time
yields the correct functional form of the longitudinal
modes of oscillation (Chap. 4 of [22])

(4.1) (4.9)

(4.2)

In the above equations t; is an arbitrary fixed time. We
will assume for simplicity that it is of the same order
as t, so that B is of order unity, the comoving coordi-
nates x, y, and z correspond to approximately physical
(proper) distances, and w and k are of the same order as
the physically measured u and k. This makes the sim-
plifying assumptions we will make, for example (4.23),
more intuitively transparent.

There are a number of interesting effects in the non-
relativistic limit, related to the different rates of cooling
of decoupled photons and matter (above). Contrary to
Holcomb [3] the modes of an unmagnetized plasma do
not simply redshift as &ee photons. This is evident from
the different time dependences of the plasma &equency
and &ee photon:

plasma u„= 4vrne2 3
(4.3)

photon ~ B (4.4)

In the nonrelativistic limit the expression for v (2.44)
becomes

v = P
mB (4.5)

and "postrecombination, " where both are dominated by
the plasma, which has now mostly decoupled &om ther-
mal photons,

R T=K(R n)s (4.10)

which is easier to use. Note that if the photons are in
thermal equilibrium with the plasma and have a greater
heat capacity (as expected for the prerecombination era),
then the temperature is determined by the photons (4.1)
and the plasma is not strictly adiabatic, being continually
heated by the thermal photons. For small oscillations at
time scales much shorter than these processes, however,
adiabaticity is a good approximation.

Equations (3.45)—(3.47) are linearized with respect to
v and substituted into (2.37), noting that E and B are
also considered to be small quantities. As mentioned
previously for the relativistic case, one possible extension
of this work is to include an external magnetic field which
is not assumed to be small. n and T are also linearized:

Bn —n —np+ni3 (4.11)

the coefficient of k T/m term is found to be incorrect
(5/3 instead of 3). This is due to the fiuid approximation,
and will follow on to our curved space-time calculation. A
kinetic treatment would yield the correct coefficient, but
as we have stated above, this does not appear feasible in
curved space-time. Our results (below) indicate that the
expansion of the Universe has no effect on this coefficient
in the fluid approximation, so it appears likely that a
kinetic treatment would give a coefficient of 3, unaffected
by the expansion of the Universe.

The second point is that, as in the previous section,
the perfect fiuid (3.45)—(3.47), continuity (3.56), and the
energy equation (2.36) imply the adiabatic equation

This leads to factors of R in the kinetic equation (2.45)
which are clearly not present in the flat space-time case,
and are not removable by any coordinate or variable
transformation known to the authors. Rather than at-
tempting to solve the coupled Maxwell-Vlasov set of
integro-differential equations numerically, we use a sim-
pler, fiuid approach as did Holcomb [3], which leads to
coupled linear ordinary difFerential equations (ODE's)
that are solvable analytically.

As in the last part of the previous section, the plasma
is represented as a perfect fiuid, governed by Eqs. (2.36),
(2.37), (3.45)—(3.47). The expressions for p and p in an
ideal nonrelativistic gas are

T =Tp+Ti )

so that

ni 3 T$

np 2 Tp

The force and continuity equations become

ng 5Tp e
v +zkB———= —E,

np 3 m m

~ i nj
zk VB

np
with v = Bv

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

p = n(m+ s2T)

p=nT
m))T

(4.6)
(4.7)
(4.8)

after eliminating Tq using the adiabatic equation (4.10)
and assuming an e' dependence in the linearized vari-
ables. These equations must then be solved in conjunc-
tion with the Maxwell equations. If more than one com-
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ponent of the plasma is being considered, then the above
equations are written for each species. We consider only
electrons; the generalization is quite straightforward.

B. Longitudinal oscillations

postrecombination

V 4 p
135 'k2~4 -'T,

m
(4.21)

It is convenient to treat the longitudinal and transverse
oscillations separately. For longitudinal oscillations (v, k,
and E all parallel), only Poisson's equation is needed from
the Maxwell set:

where Z is any Bessel function and To is the time-
independent value of To, that is,

ik . E = 4meAi (4.17)
(4.22)

This is substituted into (4.15), and the resulting expres-
sion for v substituted in (4.14) to obtain

E" + —"E'+ -' —'k'+ —" E=o,
R 3m B)

4mne2

(4.18)

(4.19)

The above equation may be solved in terms of Bessel
functions for either of the cases (4.1) and (4.2), but the
form of the solution is quite difFerent:

c3zg )) 1,

c3„t; » 1,

(4.23)

(4.24)

Any two linearly independent Bessel functions of the
appropriate order may be used to solve (4.18). We choose
Hankel functions H~ ~ and H& ~, which most resemble
positive and negative &equency exponentials. Noting
that the plasma &equency is much higher than the re-
ciprocal of the age of the Universe, that is,

prerecombination E = Zo 8t,
~

——k2 + (D2 ~g5
(5 Tp

(3m

(4.2o)
I

the above solutions may be replaced by their asymptotic
forms. The required expansions of Bessel functions for
large argument and/or order are found by Watson [23],
pp. 198 and 262—268, respectively.

For all v, and z &) 1 we have

2;(, /z /4) ) I'(v+ m+ 1/2)
~z (—2iz) m!F(v —m + 1/2)

(4.25)

2;( „ /3 /4) ) I'(v+ m+ 1/2)
vrz - (2iz) m!F(v —m+ 1/2)

(4.26)

where the " " denotes that the series is asymptotic, and so must be truncated, with an error of the same order as
the erst omitted term.

If v/i is real and much greater than 1, a careful reading of [23] gives

a!'l( - h~)- 2i „!t„h l, /4 A I'(m+ 1/2)
xv tanh p (v tanh p/2) I'(1/2)

(4.27)

H„( evcsh p)
2i „!t„h !+; /4 ~

A F(m+ 1/2)
V

mv tanh p (—v tanh p/2) I'(1/2)
(4.28)

Here, A is an even polynomial in cothp. The first few are

Ao ——1

Aq ——
8

——coth p
1 5

24
3 77 2 385 4

2 =
x28 576 coth p + 3456 oth p

Note that since sech' is pure imaginary, tanhp is real and greater than 1.
Omitting the irrelevant constant factors we And that the electric field is given by

—1/4 +i+Sti;q!w +(5To Io ) / (3~)]
7

(4.29)
(4.3o)

(4.31)

(4.32)

postrecombination E rj /
~

9' t; + 135—k t;g
m

x exp+i &

To —
49u t,- + 135—k t,. g 2 —3u„t,arcsinh

3Cuzt; g

135Tpk3t4/m,
(4.33)
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These expressions may be related back to the physically
measured electric field E and time t by (2.38), (4.1), and
(4.2). Because we are using a fiuid treatment, the above
equations for the longitudinal modes are only valid for ikm

V
e

(4.43)

noting the relative orientation of E and B. Equations
(4.40) and (4.42) show that

c3 )) —k
—2 To 2

p m
TP -2 t,.2)) —k
m

(4.34)

(4.35)

and hence

'km
V (4.44)

prerecombination u = 5To-, t't)u2+ ——k2
/

—
/3m qt;)

5Tp-2+ ——k',p 3m (4.36)

5T,k2 Pti-" r ti-'
postrecombination u = w2 +

3m, qt y qt )

Prom the above equations we can see that the ampli-
tude of longitudinal oscillations in both radiation- and
matter-dominated universes decays slightly faster than a
free photon, for which E is constant.

The locally measured frequency w is obtained by dif-
ferentiating the argument of the exponential with respect
to t. The result is ig ( 2 ld

8 + k + " 8=0 (4.45)

with g~ defined as in (4.19). The expressions for the
electric and magnetic fields can be obtained kom the
solutions in terms of 8 by differentiation, using the above
equations. Note that if the expansion of the Universe is
ignored (R = 1), the equation for 6 reduces to the cold
plasma result,

where the constant of integration has been dropped for
a similar reason to the nq case above we are not con-
sidering a plasma with an overall magnetic 6eld Bo or a
drift velocity vo. E is eliminated using (4.40) to obtain

5TO-2+ ——k' .p 3m (4.37) (d =(d +kp (4.46)

In both cases the result is simply the flat space-time ex-
pression, which varies with time as the plasma becomes
less dense. Note that although it is possible to guess this
expression Rom the outset, based on arguments from gen-
eral relativity, it is not possible to determine the decay
of the amplitude, Eqs. (4.32) and (4.33) without going
through the full calculation involving the asymptotics of
the Bessel functions.

C. Transverse oscillations

prerecombination 8

—2

= (—2ikg)e'""M 1 —i ",2, —2ikg
k

, (4.47)

or

which is accurate up to temperature corrections.
The solutions to the above for the (4.1) and (4.2) cases

may be found to be

Now we turn to the transverse oscillations (k perpen-
dicular to v and E, which are parallel). The equation of
continuity (4.15) immediately implies that (—2ikq)e' "U 1 —i ",2, —2ikg (4.48)

and hence

n~ ——0 (4.38)
postrecombination 6 = ~gZ z, s, ,-(kg) (4.49)

(4.39)

e
8 = —E

m
VE = —ikB —4vrnoe-
R

B = —ikE

(4.40)

(4.41)

(4.42)
I

since any constant in nq would appear in no by definition.
Equation (4.14), and two Maxwell equations become

where Z is any Bessel function, M is a confluent hyperge-
ometric function, and U is a logarithmic solution to the
confluent hypergeometric differential equation. M and U
are linearly independent solutions. For more information
about these functions, the reader is referred to [24] and
pp. 504—535 of [25].

In the long wavelength limit we require expansions of
M(a, b, z) and U(a, b, z) for large (complex) a. The ap-
propriate analysis of these functions and their differential
equations is contained in pp. 76—81 of [24]. The result is

(4.50)
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1—b 2—b 2

(4.51)

where I and K are modified Bessel functions, and the
coeKcients A, and B, are obtained using recursion rela-
tions; the 6.rst few are

Ao(z) = 1 (4.52)

(4.53)

z' z'
Ag (z) = (b —2) —+—

6 72
(4.54)

z z' z'
Bi(z) = —b(b —2)

3 15 1296
(4.55)

(4.56)

The U solution is of the same form with I replaced by
K. These expressions are written in terms of H~ ~ and
H~ ~, linear combinations are taken so that one solution
is purely H~ ~, and the other purely H~ ~, and the large
argument expansions of these functions (4.25) and (4.26)
are used to hand the decay of the amplitude and &equency,
as before. Care must be taken to include the second
term in the Hankel function expansions, even though only
terms of leading order in (ur„vt'gt, )

~ are retained in the
anal expression. The result is

Substituting the variables pertaining to our problem,
we find that the M solution is written in terms of

1/4 1/4
Iq i4wzt; — and I2 i4w„t; — multiplied by

an expansion which is useful (judging by its most diver-
gent terms) when

( k'
6, , -~'~' 1+O~ (k~)' ''

~

1+ —I:"«') . 2 E.)
1 (kl «)

I

—I+«~~) «*)
k' k'= cuz 1+ — +

2(d 8(d

(4.57)

(4.58)

This result requires some explanation. There are two
dimensionless parameters in this problem, for example,
kg and ~„ggt;. The value of t/t, is irrelevant, since t;
is arbitrary, as discussed previously. The original series
in [24] contains terms of differing order in these parame-
ters at every order in the expansion. All these terms are
small if the condition (4.56) is met. However, when the
logarithm is taken to separate out the value of ~, can-
cellations occur, leading to the expansion given above,
in the single parameter (k /w„)(t/t, )~~2, together with

very small corrections of order (wzgrlt;) ~, which are
not shown above. The expression (k /ur„)(t/t;) ~ is a
physically reasonable parameter, with a well-understood
nonrelativistic limit, unlike the parameter appearing
in (4.56). Similarly, the expansion for the magnitude of 8
appears to cancel completely, leaving only the first term.
The order of the next possible term is given, depending
on the value of kg, which gives, up to a constant factor,
the number of wavelengths in the visible Universe. Thus
the 0 is applicable if kg (( 1, and the 2 is applicable if
kg )) 1. The expression for u above reduces to the small
k expansion of the flat space-time result (4.46).

The following expansions of M and U, required for the
short wavelength (photonlike) limit, are found on p. 508
of [25].

I'(b) ~, ). 1 (a+ n)I'(1+. a —b+ n)
I (b —a) I'(a)I'(1+ a —b)I'(n+ 1)

r(b), . , r(b —a+ n)r(1 —a+ n)+ e z z
I (a) I'(b —a)I'(1 —a)1 (n + 1)

(4.59)

I'(a. + n)1 (1+ a, —b + n)
- r(a)r(1+ a —b)r(n+ 1)

(4.60)

Here, the plus sign applies to —7r/2 & argz & 3vr/2 and the minus sign applies to —3a/2 & argz & —a/2. These
asymptotic series are useful (judging by the most divergent terms) under the condition

(4.61)

Taking the above expansions to the n = 1 term, and using an analysis similar to that used in the long wavelength
case, we obtain, for the amplitude and frequency,
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'Urms (4.62)

(t)
I+2k, [ t)l

~2 ~4
=k

2k 2 sk4

(tl
8k4 iht )

(4.63)

Again there is a single expansion parameter, and the result reduces to the Hat space-time result (4.46), at least, to
this order in the expansion. In this case there are also small corrections to the amplitude, showing that the photon s
amplitude does not decay quite as rapidly as a free photon, but that higher energy photons behave more like free
photons, as physically one would expect.

For the postrecombination case the expansions (4.27)—(4.31) may be used, resulting in

Postrecornhination e rt
t (por~t, y h rt ) exP+i Qorst, + hsrts —horst;arcsinh )

—&/4 2 2
— 3~p 2

I
(4.64)

This is fairly similar to the longitudinal result (4.33). The
FIDO observed angular &equency ~, is found to be

u„+ k2
~

—
[ ~

—
[

= io2+ k . (4.65)
—,(t )'/' (t l

E") E")

Again we see that the locally measured &equency is given
by the flat space-time result, which varies with time as
the Universe expands.

V. CONCLUSION

We have reformulated the general relativistic Vlasov-
Maxwell kinetic equations and also the equations for a
perfect fluid with electromagnetic interactions in the spa-
tially flat Robertson-Walker metric, in a form suitable for
analytic solution.

At ultrarelativistic temperatures (T )) m) the main
result of [2] is recovered, that is, that the plasma modes
redshift in exactly the same manner as a &ee photon. We
have shown that the same result holds when a more de-
tailed kinetic treatment is used, and made comparisons
between the use of kinetic and fluid equations, and be-
tween classical and quantum descriptions of the plasma.

At nonrelativistic temperatures (T « m) we do not
recover the zero magnetic field results of [3], in which

it is claimed that the plasma modes redshift like a free
photon in this regime, also. Rather, the rates of redshift-
ing of the plasma frequency (4.3) and free photon (4.4)
compete, leading to complicated solutions (4.20), (4.21),
(4.47)—(4.49), which we have derived for both radiation-
and matter-dominated. expansion rates. In each of these
cases we have shown that the locally measured frequency
reduces to the flat space-time result. This follows from
general physical arguments, however, in contrast to the
results of [2] and [3], a full analysis of the plasma modes,
including the efFect of the expansion on the amplitude of
oscillation, requires the complete solutions, which involve
Bessel functions and confluent hypergeom, etric functions
not expressible in terms of elementary functions.

The most straightforward extension of this work is to
include an external magnetic field, thus generalizing the
five modes of oscillation found in nonrelativistic magne-
tized plasmas [22] to the general relativistic arena, and
providing insight into the dynamics of cosmological mag-
netic fields.
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