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One-loop corrections to the bubble nucleation rate at Bnite temperature
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We present an evaluation of the one-loop prefactor in the lifetime of a metastable state which de-
cays at finite temperature by bubble nucleation. Such a state is considered in the one-component y
madel in three space dimensions. The calculation serves as a prototype application of a fast numerical
method for evaluating the functional determinants that appear in semiclassical approximations.

PACS number(s): 98.80.Hw, 03.70.+k, 06.30.—d, 64.60.Qb

I. INTRODUCTION

The decay of metastable states by bubble nucleation
appears in a large variety of physical contexts. It has
received the attention of particle physicists and cosmol-
ogists due to its possible role in the evolution of the Uni-
verse. Since bubble formation is a basic mechanism in
the kinetics of a erst-order phase transition a precise
determination of its rate is of prime importance. The
semiclassical approach to bubble formation has been de-
veloped by I anger [1, 2] and Coleman and Callan [3, 4].
The leading factor in the transition rate is determined by
the classical Euclidean trajectory. Quantum corrections
may however modify the rate in a significant way. Their
evaluation for a realistic model in three space dimensions
is an enterprise that can easily reach the limits of prac-
tical computability. It is therefore very useful to have a
method that leads to a fast numerical algorithm.

We will develop here such a method using as a simple
model the four-dimensional p theory at Rnite tempera-
ture T given by the Euclidean action

z/r
dr d'x —,

' (B„p)'+U(p)

The field potential U(p) is assumed to have two nonde-
generate minima p = 0 and &p+ ) 0 (Fig. 1).

Any state built on the local minimum p is metastable.
Its decay rate per unit volume p = I'/V at sufficiently
high temperature is dominated by the energy E = ST
of a fiuctuation which looks like a bubble P(x) of the P+
phase. This bubble is in unstable equilibrium between
collapse and unbounded expansion. The tree-level ap-
proximation determines the order of magnitude of the
decay rate as p exp( —E(g(x))/T).

Fluctuations around the critical bubble contribute a
preexponential factor to the decay rate which is known
to take the form [1, 2]

det'[ —(cl/clv. )
2 —A + U" (P)]

det[ (0/Or—)2 —A + U" (0)]
(1 3)

The prime in the determinant implies omitting of three
zero modes in it. The temperature dependence of V
arises from imposing periodic boundary conditions in the
time direction with a period 1/T. 17(T) as introduced in
Eq. (1.3) is ill defined because of ultraviolet divergences.
As discussed in [4] they are absorbed by the counterterm
action S,t which has been introduced in the exponent. It
will be specified below.

As we have mentioned above we will present here a fast
method for evaluating the fluctuation determinant (1.3).
The method which we are going to use is based on a well-
known theorem [5] that is formulated and proven in an
elegant way in Appendix A of Coleman's 1977 Erice Lec-
tures [6]. It was also used some time ago in analytical cal-
culations of the determinant (1.3) in (1+1)-dimensional
space in the thin-wall approximation [7, 8] and in Ref.
[9]. What is new here is application of that idea to a sys-
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to one-loop accuracy. The coeKcient 0 here reads

—0.8
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FIG. 1. Potential U(p) in (2.1). It is plotted in dimen-
sionless form which enters the integral (2.2). The curves are
labeled with the value of n.
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II. THE THEE-LEVEL ENERCY

In this section we discuss classical properties of the
critical bubble. The generic one-component P potential
reads

U(V) = m'V' - n-~'+ -&~'.
8

(2.1)

We choose the same dimensionless variables as in Ref.
[10]: namely, x = X/m, r = u/m, p =

2 4. The
energy of a time-independent fluctuation then takes the
form

tern in three dimensions, the elaboration of a numerical
method, and the discussion of regularization and renor-
malization.

We decompose Huctuations around P(x) into partial
waves, calculate the ratio of determinants J~ of radial
operators, using the theorem mentioned above, and, B-
nally, obtain ln 17 as g&(2l + 1) ln J&.

In calculating in& we exclude the divergent pertur-
bative contributions of first and second order in the ex-
ternal field created by the critical bubble. The regular-
ized values of these contributions are then added ana-
lytically. All divergences of in& appear in the standard
zero-temperature tadpole and fish diagrams.

This paper is organized as follows. In the next sec-
tion we specify the form of the potential, write the equa-
tion for the critical bubble, and present our numerical
results for E(P). In Sec. III we describe the calculation
of the regularized fluctuation determinant (1.3). A pos-
sible renormalization scheme is applied to the result in
Sec. IV.
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FIG. 3. The values of f(n) in (2.5) (solid line) and
—10cu /m (dotted line) vs n.

The limit o. ~ 1 corresponds to the thin-wall approxi-
mation.

The critical bubble is n spherically symmetrical sta-
tionary point of E (2.2) obeying a dimensionless Euler-
I agrange equation

d24 2 d4 3 2
dB2 BdB 2 2

+ — —C+ —4 ——4 =0 (2.4)

We have solved this equation using the shooting method.
The profiles 4'(R) are shown in Fig. 2 for some values of
the parameter o. .

We parametrize the value of E in the same way as in
Ref. [10]:

E(rp) = d A
~

—(7'4) + —4 ——4(1 2 1 2 1 s ~ 4l
4@2 g2 2 2 8

(2.2)

4.851 ms

The function f (n) is plotted in Fig. 3.

(2 5)

where

Am2

202
(2 3)

III. CALCULATION OF THE
FLUCTUATION DETERMINANT

In this section we discuss a method of computing the
ratio of functional determinants (1.3), which is based on
earlier papers [7—9]. The explicit form of the operator in
the nominator (1.3) is

8 —A+m + V(r)
67

(3 1)

2.0 with the periodical boundary conditions for the eigen-
functions 4(r, x) = 4'(r + 1/T, x). The space-dependent
part V (3.1) of U" (P) (1.3) reads

1.0

0.5
V(r) = U" (C) —m' = 6~y(r) + —Ay'(r—)2

(3.2)

0.0
0 10

FIG. 2. The bubble-profile functions 4'(R) in units defined
after Eq. (2.1) at n = 0.1, 0.5, 0.8, 0.9. The radius of the
thin-walled bubble rnr~w 3/[4(1 —o.)] is marked with a
dashed Iine for o. = 0.9.

The free operator in the denominator (1.3) takes the same
form as (3.1), but with V(r) = 0.

The time independence and spherical symmetry of the
background bubble Beld yield a classification of w

the eigenvalues of (3.1), with respect to the number n of
their Matsubara frequencies v = 2mnT, radial quantum
number n„, and angular momentum l. One can formally
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write the ratio of determinants (1.3) as Therefore, by theorem (3.8), the ratio of determinants
(3.4) can be expressed as

17(T) = (3.3) Ji(v) = [1+hi(oo)] (3.i2)
n= —oo l=o n„=0

det H„ t

det H.",' (3.4)

here

with ~ l standing for the &ee eigenvalues.
The outline of our calculation is as follows. We com-

pute jrst (Sec. IIIA) for each partial wave the product
over n„, i.e., the ratio of the determinants of the radial
operators

In terms of the h function the first equation (3.9) reads

l'L( Kr 1 l+ 2
i .' m+ —

i
h((r) = V(r)[1+hi(r)]drz (i((rr) r) dr

(3.13)

It is worth considering the structure of a perturbation
expansion

(3.14)

2 d 2 2H i= — ———+v +m +V(r)dr2 r dr

and H„& has the same form, but without V(r).
As the next step we calculate the product over l:

P(v) = ) (2t+ 1) ln Ji(v)
l=o

(3.s)

(3 6)

in powers of the potential V(r). This entails an anal-
ogous expansion for the ratios Ji(v) in the sense that
J& ——

h& (oo). The k-order contribution h& obeys an(k) (k) ~ (k)

equation

+2i, ' +-
i

—„h' '() =V()h' '()
(3.is)

ln 17(T) = ) E(2vrnT) (3.7)

(Sec. III B). The function I" (v) is the sum of all three-
dimensional one-loop one-particle-irreducible diagrams.

In terms of this function the final result reads
hl ——1. The same equation is valid when hl are re-

placed by h& ——P & h& . In this notation hi = hI
A Green's function that gives the solution to Eq. (3.15)
in the form

This expression is formal because of the ultraviolet diver-
gences in it. We erst evaluate ln'V without the divergent
part which is then accounted. for in Sec. III C.

hI"1(r) = — dr'r"Gi(r, r')V(r')h~i" '1(r')
0

with the right boundary condition at r = 0 reads

(3.i6)

A. Determinants of the radial operators

(3.8)

Here g„ i and g„& are solutions to equations(o)

H„iv))„(=0, H i@, =0(o) (o) (3.9)

and have the same regular behavior at r = 0. More
exactly, the boundary conditions at r = 0 must be chosen
in such a way that the right-hand side of Eq. (3.8) tends
to1at v~oo.

It is convenient [11] to introduce a function h(r) such
as

In order to find Jt(v) (3.4) we make use of a known
theorem [S, 6] whose statement is

l 2 ) 1/2

ki(z) =
I

I
Iii(z)

q~z)
(3.18)

The first terin on the right-hand side of Eq. (3.17) does
not contribute to h& (oo). The Green's function (3.17)
gives rise to connected graphs as well as disconnected
ones (Fig. 4). The latter are canceled in in[1 + h~(oo)]
whose expansion in k-order connected graphs J&~, „(K)
reads

( 1)&+1
ln Ji(v) = in[1+ hi(oo)] = ) J,~,1 „(v)

Xl Kr'
Gi(r, r') = r

i ii(Kr()ki(Kr)) —it(Kr')ki(rr')
i

.
l ii(rr) )

'

(3.17)

Here r& ——min(r, r'), r& ——max(r, r')l, and

q„, = [1+h, (r)]i, (~r), h(0) = 0 (3.10) (3»)
when g~ &1 is chosen here to be a spherical Bessel function

(2vri 'l'
ii(rr) =

i i I&+ (Kr), r, (v) = v(rr j
(3.ii)

1 k+z
1 V(T) = ) A~"i(T) (3.20)

This formula is analogous to the expansion of the full
functional d.eterminant in terms of Feynman diagrams
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FIG. 4. The structure of the first h, (oo). The solid line
represents the last term in the Green's function (3.17). Dots
stand for V(r).

The terms in square brackets here correspond to the fish

diagram Ji, „(Fig. 4). Since all contributions to ln17( )

are ultraviolet finite, we need no regularization in com-
puting them. The divergent contributions of the first and
second order in V will be considered in Sec. III C.

We have determined hi(r) as solutions of Eq. (3.13),
and hi (r) as that of Eq. (3.15) by Nystrom's method.

The values of h& (oo), hi (oo), hi )(oo) have been eval-
uated by performing integration (3.16). Only the last
term in the Green's function (3.17) contributes here since

r -+ oo. The ratio of hI (oo) found via differential equa-
tion (3.15) to that calculated as the integral (3.16) has
been used to control the accuracy. In order to avoid
numerical subtraction that might be delicate we rewrite
the term (3.24) to be summed up on the right-hand side
(3.23) in the form

Here Ai") (T) is the one-loop Feyninan graph of order k
in the external potential V(~x~).

Indeed, it is obvious &om Eq. (3.16) that hI and,

therefore, J&, „are of the order V . Since the expansion(k) A:

of ln V in powers of V is unique, we conclude that

Ai" (T) = ) ) (2l + 1)Ji, „(2vrnT) . (3.21)
n= —oo $=p

One can verify this relation explicitly by expanding the
propagator in A( ) as

d3p e~P(x —y)

(2vr)s p'+ m'+ v'

= r ) (2l + 1)ii(rix~)k((r~y~)P( i ~

(3.22)

and performing the integration over all angular variables
in the x representation.

It is not difBcult to check, making use of a uniform
asymptotic expansion of the modified Bessel functions in

(3.17), that J, „1/l" as l ~ oo. That results in the ex-
pected quadratic and logarithmic ultraviolet divergences
in ln V due to the contribution of h(ii(oo) and h(2i(oo).
We have computed numerically ln B( ) which is the sum
(3.20) without first- and second-order diagrams Alii and
A( ~. It reads explicitly

D (T) = ) I' ) (2mnT)

Each of the three terms on the right-hand side (RHS) is
now manifestly of order V . The subtraction done in the
large square brackets is exact enough when the logarithm
is calculated with double precision.

In the numerical computation hi(oo) is to be replaced,
of course, by hi(r „).We have found that hi(r) becomes
constant within relative deviation of 10 for r (12—
18)/m and we have chosen r „ in this range of values.

We have neglected until now the existence of the neg-
ative mode up p p & 0 and three zero modes up & p

——0.
The former results in a negative value of Jp(v) = 1 +
hp(oo) at v = 0. According to Eq. (1.2) one has to re-
place [dp p p by ~up p p~. That implies taking the absolute
value of Jp(0) in Eq. (3.23).

The zero modes manifest themselves by the vanishing
of Ji(v) at v = 0. In the numerical calculation this zero
was found at QJp y p

~ ]0 fQ

It can be easily seen [7—9] that exclusion of the zero
modes implies replacing Ji(0) by its derivative

d
Ji (0) = hi (oo) (3.26)

In Fig. 5 we present some results for the functions

hi. The values of the first ht (oo) are plotted vs 2l + 1.(I)

For the terms summed in Eq. (3.23) we have found good
agreement with the expected behavior 1/(2l + 1)

[ln J~(t )] = in[1+ hi(oo)] —h~(oo) + —hi(oo)
2

+h] (oo) h] (oo) (hl(oo) + h] [oo))

(3.25)

where

) ) (2l+ 1) [ln Ji(v)]
n= —oo $=p

[In J, [v)]
' =

(
ln [1+h, [oo)] —h,

'
(oo)

(3.23) B. Calculation of P( )

Our next step is performing summation over l in
Eq. (3.23). It has been done by cutting the sum at some
value I and adding the remaining sum from / + 1
to oo of terms fitted with

— h1'1 [~)-'
(h,
"[~)) (3.24) (3) const const'

(2l + l)4 (2l + 1)s
(3.27)
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FIG. 5. The values of J&, „at k = 1 (curve 1), A:

2 (curve 2), and 1, , „(curve 3) against 2l + 1 in double
logarithmic scale at n = 0 and v = 0. The straight-line
behavior at large l corresponds to the expected power law

(2I + 1)
—»+r

The summation was stopped when increasing of l by
unity did not change the result within some given ac-
curacy b. This happened, for example, at l = 12
at v = 0, o. = 0.5. The value of b was automatically
increased during the calculation if the corresponding ac-
curacy had not been reached.

The convergence becomes worse at higher v or o.. The
reason is that the asymptotic behavior (3.27) sets in at
I &) (v + m ) ~ r,~, where r,a is the characteristic size
of the bubble. It is of order 1/m at small values of n
and can be estimated as (4/[3(1 —cr)m] + const)m
near the thin-wall limit o, ~ 1. As the maximal value of
the angular momentum that we have used is l = 30, the
computations have been stopped somewhere at v 10m.

The resulting I' ( ) (v) is shown in Figs. 6—S. Its magni-
tude at v = 0 gives the value of the infinite-temperature
determinant ratio in 17( ) (oo). To illustrate the eKciency
of the method we note that the evaluation of F(s) (v) for

FIG. 7. The same as in Fig. 6 at n = 0.5.

C. Inclusion of 'V~~& and 'V&~~

We have found the value ln P~ ~ which is the sum of all
one-loop diagrams of third order and higher. Now we add
to the result erst- and second-order finite-temperature
Feynman graphs A( )(T) and A(2)(T) (3.20) calculated
in the standard technique. It is convenient to represent
both of them if the form

(3.2S)

For k = 1 the term in square brackets is given by

der'vjrjo ( ) (3.29)

with

Z
Q(z) = dy (I+ y ) [coth(zy) —1]. (3.30)

one value of v takes typically 10—30 sec CPU time on a
standard PC with a 486 processor.

The finite temperature is accounted for in ln 'V~ ~ which
is computed according to Eq. (3.7). As E(s)(v) I/vs
at high v, the summation over Matsubara frequencies is
elementary.

10

2

10'—

The second order gives an UV-finite contribution to
E(v):

2
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10 2 3 4 5 6 ]Q
+

2 3 4 5 6 1Q

10'

10

10

FIG. 6. Absolute value of E (v) at n = 0.1 vs 2l + 1 in
double logarithmic scale. A logarithmic singularity is seen at
v = ~ . The actual value of I" (v) is negative above this
point. In the region v ( ~ it is complex and has no physical
meaning. The dotted line represents expected relative error
in E~ l(v) which is estimated as 5b (see Sec. III B).
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FIG. 8. The same as in Fig. 6 at o. = 0.8.
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dq . ~ (2~) 'l
S'&')(i) = —4 —arcsin 1+

~

—
~(v) )

OO 2

x
~

drrV(r) sinqr
~

. (3.31)
)& o

We have taken A( )(T) —A(2)(0) (3.28) into account
by calculating numerically the difference

10

—10

—20

4

r

~s

A(')(T) —A(')(0) = ) S'('&(2 T)
—30

5

—E(') (v). (3.32)T — 2K

—40
$0 2 s 4 10 2 s 4 5 ]0 2 s 4 5 10

It is sufhcient to make an intermediate cutoff regular-
ization in order to determine uniquely the difference be-
tween these two logarithmically divergent quantities.

All UV divergences have been moved now to the last
terms in (3.28) which are the standard tadpole and fish
diagrams at zero temperature.

To sum up, we have calculated the functional deter-
minant (1.3) as a sum of different contributions in the
following form

FIG. 9. The value of S „, ~ ~ (3.34) at n = 0.1 vs T/m:
Curves 1—3 correspond to the first, second, and third terms
on the RHS of (3.33). The fourth one represents the sum of
the last two terms in (3.33) and S,q, (3.35) and (4.1). This
contribution depends on temperature via the factor 1/T only.
Curve 5 displays the full result S „~ p. The temperature
range is bounded from the left by T;„=0.2301m, where the
result has a logarithmic singularity.

ln (ms+(T)) = A(')(T) —A('&(0)

+ A(2)(T)

+ ) S(')(2

+A(')(0) + A(') (0) (3.33)

Here the first term is given by Eq. (3.29), the second one

is defined in (3.32) and (3.31), the sum of E(s) has been
calculated numerically, and two last terms are usual zero-
temperature Feynman diagrams (3.20) in the external
potential V.

A(i)(0) and A(2) (0) contain now all the ultraviolet di-
vergences and have to be regularized. The cutoff depen-
dence introduced thereby disappears, however, in the full
one-loop contribution to the effective action

D+( m+) =0, —

U,
' (P+., 0) = 0,

U.'„(o;o) = o,

U.tr(4+' o) = U(&+) (4 1)

(3.33) in its general form as our main result, we would
like to discuss now a possible scheme of fixing the coun-
terterms.

The scheme is chosen in the spirit of renormalization
suitable in consideration of the electroweak cosmological
phase transition. As the latter is tightly connected with
particle physics, it is appropriate to fix the mass and the
vacuum expectation value of the scalar field. This implies
the following conditions on the temperature-dependent
effective potential U,~(y; T) and the one-loop Euclidean
propagator in the true vacuum D+(p ):

S „, ] = —ln[m 17(T)] + S,gooP (3.34)
where m+ stands for the particle mass in the true vac-
uum. The last two conditions set the false vacuum to be

that enters the formula for the transition rate (1.2). In
the model considered here S,t has the form 40

d ~
~
ep+ —pm p —grip + —

SATE
4l

2 8

(3.35)

Sp —~,
20

L ~~10

A possible scheme for G.xing the counterterms is deferred
to the next section.

IV. A POSSIBLE RENORMALIZATION

While renormalization requires just standard tech-
niques it is not straightforward here to select a specific
renormalization prescription because the scheme depends
strongly on the physical context in which the first-order
phase transition is considered. Though we consider Eq.

—10

—20,
—30
—40
—50

1P-' 2 s 4 10' 2 s 4 5 10' 2 s 4 5 10'

FIG. 10. The same as in Fig. 9 at u = 0.5; here T;
0.148m.
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FIG. 11. The same as in Fig. 9 at o. = 0.8; here T;„=
0.0598m.

at p = 0 and fix the density of energy stored in it. They
are more specific for our toy model.

In addition to Eqs. (4.1) one has to solve one more
system of equations

—m P —
rl&j&

1 2 2 3
+ +

m —3rlg+

m —6rig

+ -A/4+ —U(P+),

+ -AP+ ——0,
2

+ -Afz+ —0,
2

(4.2)

in order to express m, g, and A in the classical bubble
energy (2.2) and (2.3) in terms of m+, P+, and U(P+).

The results of the application of this renormalization
scheme are plotted in Figs. 9—ll. We note that the
temperature appears neither in the field potential (2.1)
nor in the renormalization conditions (4.1). All finite-
temperature corrections are therefore contained in the
fluctuation determinant. This results in a linear temper-
ature dependence due to the first term in (3.33). Thus,
our simple one-loop approximation fails at very high tem-
perature. It is not valid also at o; —+ 0 due to the high
difference of the mass scales of states built on the false
and true vacua. This manifests itself by a logarithmically
large contribution appearing in S,t (3.35).

V. DISCUSSION AND CONCLUSION

The model considered here is only semirealistic. Never-
theless we would like to add some remarks on our results.
We 6n.d that the correction to the bubble nucleation rate
(1.2) coming Rom diagrams of the third order and higher

favors the transition (i.e. , 1n17( ) ( 0). The sign of the
full one-loop contribution to the efFective action S $ p
depends on the renormalization scheme. With our choice
(4.1) it enhances p(T) at high temperature due to the
tadpole diagram (3.29). This contribution becomes too
big at T )& m and then the naive application of the one-
loop approximation becomes inconsistent. This is a man-
ifestation of the known problem of relating the parame-
ters of the theory at zero and very high temperatures.
Another feature of our results (Figs. 9—11) is a weak
logarithmic singularity at T = T;„,the temperature at
which one more fluctuation mode of the critical bubble
becomes unstable. Numerically it is unimportant. More-
over, in a finite region of temperature T;„&T ( Tt„„„
quantum tunneling has to be taken into consideration.

We have developed here a method for calculating func-
tional determinants and have tested it under realistic
conditions. In particular we have shown that within this
formalism the problems connected with ultraviolet diver-
gences, zero and unstable modes can be handled easily
and without loss of numerical accuracy. Moreover the
algorithm is so fast that the whole calculation presented
here can be performed on a standard PC with a 486 pro-
cessor within 1 h for one value of o.. The extension of the
method to more complex gauge and fermionic systems is
straightforward once the fluctuation equations are known
[i2, iS].
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