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We extend and develop our previous work on the evolution of a network of cosmic strings. The
new treatment is based on an analysis of the probability distribution of the end-to-end distance,
or extension, of a randomly chosen segment of left-moving string of given length. The description
involves three distinct length scales: (, related to the overall string density, (, the persistence length
along the string, and (, describing the small-scale structure, which is an important feature of the
numerical simulations that have been done of this problem. An evolution equation is derived de-
scribing how the distribution develops in time due to the combined. efFects of the universal expansion,
of intercommuting and loop formation, and of gravitational radiation. With plausible assumptions
about the unknown parameters in the model, we con6rm the conclusions of our previous study that
if gravitational radiation and small-scale structure erat'ects are neglected the two dominant length
scales both scale in proportion to the horizon size. When the extra eIIFects are included, we find that
while ( and ( grow, ( initially does not. Eventually, however, it does appear to scale, at a much
lower level, due to the efFects of gravitational back reaction.

PACS number(s): 98.80.Cq

I. INTR.ODUCTION

Cosmic strings are topological defects that may be
formed at a phase transition very early in the history
of the Universe [1,2]. Because they are stable, they may
survive to a much later epoch and thus provide one of
the few direct links between the physics of the very early
Universe and recent cosmology. In particular, they may
play an important role in generating large-scale struc-
ture in the Universe [3—6]. Observational tests of the
idea include limits on the gravitational radiation emitted
by collapsing loops and oscillating strings [7—9], gravi-
tational lensing of characteristic form [10—12], and pre-
dicted anisotropy in the cosmic microwave background
[13].

All of these limits depend on our understanding of the
process of evolution of a network of cosmic strings. One
very important question is whether this evolutionary pro-
cess leads to a "scaling" regime, in which the characteris-
tic length scales describing the string network increase in
proportion to the horizon distance [14—16]. There have
been numerical studies of this problem by at least three
different groups [17—19]. There is a wide measure of
agreement between these groups. All And evidence for
scaling of the large-scale structure. There is some dis-
agreement over the predictions concerning the small-scale
structure, but all groups agree that there is a substantial
amount of structure on scales much less than the scale of
the long-string network. It has certainly become appar-
ent that a simple description in terms of a single scale is
inadequate.

Fn earlier work [20,21] we sought to develop an analytic
approach to this problem, to complement the numerical

studies. In this work, we identified two distinct length
scales: (, related to the overall density of long strings,
and (, the distance over which the strings are correlated
in direction. It became apparent, however, that this for-
malism is inadequate to represent the small-scale struc-
ture observed in the simulations. Accordingly, we have
extended our treatment by incorporating a third length
scale (, which describes the structure on the smallest
scales.

This treatment, which we present here, is based on a
probability analysis of the string configuration, in par-
ticular the probability distribution of the end-to-end dis-
tance, or extension, r, of a randomly chosen segment of
string of length l, more precisely, of left moving string-.
As before, we use null (characteristic) coordinates on the
string world sheet. In Hat space, the left and right movers
are completely decoupled; the universal expansion intro-
duces a weak coupling between them.

We should mention that an alternative approach to
obtaining the evolution equations has been proposed by
Embacher, in which a path integral formalism is used
to obtain the probability distribution for the network of
strings in flat space [22]. This promising approach ap-
pears to produce similar results to our own in the cir-
cumstances where comparisons are possible.

In Sec. II, we review the evolution equations developed
earlier and introduce the fundamental probability distri-
bution p[r(l)] on which our treatment is based. We aim to
derive an evolution equation for this quantity, including
terms representing the effects of stretching, gravitational
radiation, intercommuting of long strings, and formation
of loops.

For all except the very smallest scales, it is reasonable
to assume that the probability distribution is Gaussian,
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characterized by the variance r2 = K(l), say. Our evolu-
tion equation for the probability p effectively reduces to
an equation for this function K. The scales associated
with the large- and small-scale structure on the strings,
( and g, are defined in terms of K, so their evolution
equations follow from that for K.

In Sec. III we analyze the Gaussian ansatz in more
detail and derive values of various expectation values that
will be required in the subsequent analysis. In particular,
we need a number of joint and conditional expectation
values.

The basic equations describing the effects of stretching,
intercommuting, and loop formation are reviewed in Sec.
IV. One of the very important things that emerges from
this discussion is that these effects cannot properly be
treated in isolation; they interact with each other in very
complex ways.

Another important lesson is the crucial significance
of the correlations that develop between left and right
movers. These are discussed in Sec. V. In our previous
work [20,21] we showed that the stretching process gen-
erates such a correlation, and derived a relation between
the mean value n = —p q (where p and q are unit vectors
along the left- and right-moving strings) and the length
scale (. More recently, however, we have realized that
this is not the only significant process involved. In par-
ticular, loop formation also introduces correlations be-
tween the p and q vectors, by preferentially eliminating
nearly matching pairs. The discussion of this process in
Sec. V is based on an analysis of the angular probability
distribution of these vectors.

A similar process also introduces angular correlations
on somewhat larger scales. This is important in deter-
mining the rate of loop formation. In Sec. VI, we begin
the construction of the various terms in our evolution
equation for the probability distribution p[r(l)] by treat-
ing this process.

Section VII is devoted to the estimation of the param-
eters appearing in the stretching term. Then in Sec. VIII
we deal with the effect of back reaction &om gravitational
radiation, which operates on a very different scale from
the other effects but is ultimately of great importance in
the long-term evolution of the system.

Finally, in Sec. IX all these terms are brought to-
gether to yield the overall evolution equations for the
three length scales. The equations involve four dimen-
sionless functions of the scale ratios as well as several
dimensionless constants. Before analyzing the solutions
of the evolution equations, we study the behavior of these
functions in various regions of parameter space and try
to estimate the constants.

We then show that so long as the effects of gravita-
tional radiation are negligible, the system behaves es-
sentially as predicted by our previous study [21]. If we
start with all three length scales approximately equal
(and somewhat smaller than the horizon), ( and later
( will start to grow and, under reasonable assumptions,
will evolve to a scaling regime in which they are approx-
imately equal and proportional to t. The role of the im-
portant parameter q in our previous study is here played
by a ratio between two of the dimensionless functions; it

II. EVOLUTION EQUATIONS
I

We shall consider only the case of a flat Robertson-
Walker universe, with metric

ds = dt2 —R (t) dx = B (~) [d~ —dx ], (2.1)

where B is the Robertson-Walker scale factor, 7 = K is
the "conformal" time, and x = (z") are comoving spatial
coordinates.

A. The null coordinates

For completeness, we recall here some of the basic for-
malism described by Kibble and Copeland (KC) [20]. It
is convenient to use null (characteristic) coordinates u, v

on the world sheet of the string. (In fiat space, these are
the coordinates u = t + o, v = t —o, where o is the
length along the string. ) We denote partial derivatives
with respect to these coordinates by subscripts:

ax
Bv

(2 2)

The null condition is

(2.3)

is, however, no longer a constant.
There is another important parameter k, also some-

what similar to q (or, more precisely, q —1), but defined
in terms of the small-scale structure. The value of A:

is crucial in determining the behavior of the third length
scale (. If k were large enough, a complete scaling regime
could be reached, with (, (, and g all of comparable mag-
nitude. This is not the type of behavior seen in the sim-
ulations. A far more likely scenario is that k is less than
the critical value. Then, while ( and ( oc t, the third
length scale g does not grow rapidly, and the ratio (/(
becomes very small. Eventually, when it is of order I'Gp,
the gravitational radiation effect becomes significant and
( starts to grow. Here I' is the numerical factor describ-
ing the eKciency of gravitational radiation, estimated to
be of order 10 [23—28].

Finally, we tackle the important question of whether
a new scaling regime is reached, as various authors have
already suggested [29—31], due to the effects of gravita-
tional radiation. It turns out that the answer to this
question depends crucially on the value of another of the
dimensionless constants we have introduced, C, which re-
lates to the effect of gravitational radiation on small-scale
structure. Gravitational back reaction tends to smooth
out the small-scale kinks and thus to make ( grow; C de-
fines the rate at which it does so. The essential condition
for complete scaling is that C exceeds a critical value.

We also consider the question of stability and show
that if scaling is achieved it should be stable.

The conclusions are summarized in Sec. X. We discuss
in particular a number of remaining open questions and
prospects for future study.
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In these coordinates the Nambu-Goto action is F2 V1

l = 2B dux„= 2R dvx„.
F1 V2

(2.13)

I = —p du dv R 'T x~'xv) (2.4)

x'„„=—hp(x'„x„' + x x„),

x „=-hp(xPx„+x„xP),
(2.5)

where w = xP(u, v), and where the dot implies a scalar
prod. uct in the Minkowski metric.

In terms of the space-time coordinates (w, x) the equa-
tions of motion of the string may be written as

E

dv p(u),
p

(2.14)

where y is a coordinate along the string defined by

In this sense, therefore, the lengths of left- and right-
moving string are exactly equal.

It is useful to note that that the extension r can also
be written in terms of the unit vector p, defined by (2.7),
in the form

where dy = 2RxP du. (2.15)

1 dB dB
h,„= " = b„p — ——b„p ——b„pHB,R "Bd~ "dt (2.6)

where H is the Hubble parameter.
It is convenient to define the unit vectors

xvq= —,
V

(2.7)

which satisfy the equations of motion

p- = —hp*.'(q —pp. q),

q„= —hp xP (p —qq. p) .
(2.8)

(Bx)
rg i =R du

Ou j
(Ov )= R du x„+x„~
~~ ). (2.9)

Let us now consider a left-moving segment of string,
i.e., a segment bounded by two values of the null coordi-
nate u, say uq and u2.

The total physical extension, or end-to-end distance,
of this segment at a given conformal time, 7p say, is

B. Probability distribution of extension

Consider a large comoving volume V, and let L be the
total length of (left-moving) string within V. It is conve-
nient to introduce the characteristic interstring distance
( defined by

V
L (2.16)

If we introduce a discretization scale b, then L must
be thought of as made up of N small segments, each of
length h, with % = I/O (There w. ill be an equal length
of right-moving string, but it is convenient to concentrate
on one or the other. )

Let us choose a particular length scale l and consider
the probability distribution for the end-to-end distance
(or extension) r: p[r(l)]d r is the probability that a ran-
domly chosen segment of length l will have extension r
within the small volume d r. Note that in contrast with
KC [20] and Copeland, Kibble, and Austin (CKA) [21]
we are here using real, rather than comoving, lengths,
i.e., in terms of our previous notation,

In the second term, we can change the variable to v and
obtain

r =Ra, l =R8. (2.17)

'tl2

r~o~ = B duwu —B
F1

dv x„= -'(ri —r, ), (2.10)
The number of possible starting points within V is N,

so the expected number of segments with length between
l and l + dl and extension r within d r is

say. (Recall that if ui ( u2 then vi ) v2. ) The two terms
in (2.10) are the left-moving and right-moving extensions,
respectively. From now on, we consider only the left-
moving term, and write

L dl——p[r(l)]d r.
b b

(2.18)

(2.11)

The total physical length of the left-moving segment
(measured along the string) may be defined to be

l = 2R dux„(u, v(u, rp)).
tt1

(2.12)

Note that because the time coordinates at the two ends
have been chosen equal, we necessarily have, by analogy
with (2.10),

Because the distribution is highly nonrandom, there will
be many segments with very similar values of r arising
&om overlapping selections, especially where at the end
points the orientations happen to be similar.

Strictly speaking, some choices of starting point will
not yield segments entirely within V; they will extend
beyond the boundary, but will be matched by a similar
number of segments entering V having originated outside
it.

Our object is, first, to derive an equation for the rate
of change of p[r(l)], of the form
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Bp (Op) (Bp) (Bp)
). ( )GR ( )LB?

((~s l(
) loops

(2.19)

C. The Gaussian ansatz

For all except the smallest values of /, it is reasonable
to assume that p is a Gaussian:

and then to determine the nature of its solution. The var-
ious terms on the right represent respectively the effects
of stretching (due to the universal expansion), of grav-
itational radiation (GR) (back reaction), of long-string
intercommuting (LSI), and of loop production.

The separation between the intercommuting and loop-
production terms is to some extent arbitrary: there is an
upper limit to the size of a "large loop. " However, rather
than imposing a sharp cutoff, we shall aim to count only
those loops that survive the reconnection process. The
reconnection probability provides a natural cutoff at a
scale determined by the string density. There is no need
to consider loops larger than this separately from the
long-string network; such loops do not "know" that they
are closed. They are rather likely to suffer reconnec-
tion. Their formation and reconnection may simply be
regarded as instances of long-string intercommuting.

In addition to the equation (2.19) for p, we shall also
need an equation for the rate of change of I:

BL (BL) ('OLi (BL)j
Ot j Ot), , l gt) GR l ojt)I+ + (2.20)

('BL )r s (B(Lp) )
loops loops

(2.21)

There is no term representing long-string intercommut-
ing, which has no efFect on L.

The last term in (2.20), and the last two in (2.19),
are each a combination of a negative term representing
the effect of removal or destruction of segments and a
positive term representing the corresponding creation of
new segments. It is sometimes easier to consider the
change in the expected number of segments, (2.18), due
to one of these processes. It must be remembered that
they affect I as well as p, but we note that from the
rate of change of Lp we can easily find those of I and
p separately, by using the normalization condition. For
example,

(3 "&
~ 2 K(())~ P ~ 2K(l) ~

' (2.24)

Here K(l) is the mean square extension:

IC(l j = r' = jd'rr' y[r(lj j. (2.25)

From Eq. (2.19) for Op/Ot we can derive a correspond-
ing equation for OK/Bt. We aim to show that its solution
approaches the scaling form

K(l, t) - t'K...I i

— i,
(&)

t
tM oo. (2.26)

For very large values of I, l && t, we expect the string to
behave like a Brownian random walk, so that K becomes
a linear function of I:

K(l, t) - 2((t) l, (2.27)

III. THE GAUSSIAN ANSATZ

We shall assume that except for very small values of
l the probability distribution of the extension is a Gaus-
sian, (2.24). An important function, introduced by KC
[20], js the correlation function

with persistence length ( oc t, but for smaller values of /,
the variation of K with / will be more rapid, approaching
K l as jj —+ 0. (Of course, for such very small values,
the Gaussian approximation breaks down. )

In the next section, we examine the Gaussian ansatz
in more detail and derive some of its consequences. In
particular, we evaluate various expectation values that
will be needed in the subsequent analysis. Then in the
following sections, we discuss each of the terms in (2.19)
and (2.20) in turn.

and of course f(y) = p(0).p(y) (3.1)

(Opj 1 (0(Lp) ) p (OL'j

) loops 0 ) loops ( ) loops

The equations we obtain, not surprisingly, turn out to
be very complicated. It is unlikely that an exact solution
can be found. Our aim, however, is to find approximate
solutions valid in special regions of interest, and in par-
ticular to establish whether a scaling solution exists. If
it does, p should tend asymptotically to a limiting form

l

S lIj = rr —2 f y(l dyj f(yj (3 2)

from which it also follows that

K'(l) = 2 dy f(y) (3.3)

and

where y is the path-length variable introduced in (2.15).
This function is clearly related to the variance of r. In
fact, we have

r (&'j
Plr(&) &] - —,,P--I —, (; I (2.23)

K"(l) = 2f(l), (3.4)

where the primes denote derivatives with respect to l.
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A. An illustrative model 1—= (1 —io)A+ ioB, (3.13)

f(l) = (3.s)

We shall not make any specific assumption about the
form of K as a function of /. However, it is useful to have
a specific model in mind, to indicate the kind of behavior
we might expect.

The simplest model, described by KC, is based on the
hypothesis that there is a single scale in the problem:

so

(1 —io)A
(3.i4)

For the two-scale model, we may distinguish three dis-
tinct regions, in which the approximate forms of K (in-
cluding first-order corrections) are

for some constant D. (Note, however, that because of the
change from comoving to real lengths [see Eq. (2.17)], D
divers IIrom the corresponding quantity in KC by a factor
B.) Then

(i) l « z'.

(ii) —« l « —:
K l2 (1—m)A

3 )

)2 ~B)3 2(1—to) l
3 A

K(l) =,(e-D' —i+Dl).2
(3.6)

(iii) l )) &
2m/ 2m, 2(1—m) l
B B2 ~ A

(3.is)
The correlation length ( is defined by

Af(u),

Leading terms for very small and very large / may also
be written in the form

so that for large l, K is given by (2.27). In the case of
the single-scale model,

(i) l « —„':

(iii) l )) &

K = I,
2 ——,'~.,

K=2(l—
(3.i6)

1
D (3.S)

f(l) = (1 —io)e + ioe

where m is a constant in the range 0 ( m ( 1 and we
assume A )) B. Here the small and large scales are 1/A
and 1/B, respectively. The expression for K is similar to
(3.6):

This model does not describe very well the structure
seen in the simulations. A better choice might be a model
described by two scales:

We emphasize again, however, that this model is in-
troduced for purely illustrative purposes; we make no
specific assumptions at this stage about the form of K.

B. Higher moments

The requirement that the probability distribution is
Gaussian means that all its moments are expressible in
terms of the single function K. In particular, the variance
of r, the function

K(l) = (e —1+ Al) + (e ' —1+Bl). is given by

K(,)(1) = (r ) —(r')', (3.17)

(3.iO) K(2) (l) = 2 K(l) . (3.18)

In this case, the correlation length, defined by (3.7), is The higher cumulants may be found from the cumulant
generating function

1 —tU VD tU

A B B (3.11) OC)

K(z)—:),K(„)(l) = ln(e" )

Note that ( is dominated by the large scale; the existence
of the small-scale structure does aftect it, via the constant
zo, but the size of the small scale 1/A is more or less
immaterial.

It is useful to define another characteristic length scale,
(, related to the small-scale structure, by

= —
2 ln [1 —szK(l) .

C. Joint probabilities

(3.ig)

Of (l)
Bl t=o

(3.12)

For the single-scale model, ( = (, but in the two-scale
case,

In evaluating the various terms in Op/Ot, we shall en-
counter not only the probability distribution p[r(l)] but
also various more complicated joint probabilities. We
need therefore to extend our assumptions to cover these.

Consider for example the configuration of two contigu-
ous segments of lengths l1 and l2 illustrated in Fig. 1.
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(3.27)

The determinant in (3.26) may be written, using (3.21),
as a symmetric function of the three variables

K = K(l), K1 ——K(l1), K2 ——K(l2), (3.28)

FIG. 1. Two contiguous segments.

We denote the joint probability of extensions r1 and
r2 within small volumes d r1 and d r2 by

p[r1(l1), r2(l2)] d r1d r2. (3.20)

K(l1, l2) = r1.r2 ——
2 [K(l) —K(l1) —K(l2)], (3.21)

where of course

For a Brownian process, this probability factorizes into
the product p[r1(11)] p[r2(l2)], but this is possible only
if K(l) is a linear function of l, since it implies that r2 =
r1+ r2. In the general case, where this is not true, r1.r2
is nonzero. In fact,

We note that the determinant is automatically positive
provided that K increases as a function of l faster than
linearly but less than quadraticaHy, so that

K1 + K2 ( K & (/K1 + QK2) . (3.30)

This is assured if f(l) is a positive, monotonically de-
creasing function.

It is useful to note that the joint probability (3.20)
could equally well be written in terms of the variables r1
and r, say, rather than r1 and r2, provided of course that
K were replaced by the appropriate covariance matrix:

namely

det K =
4 [2KK1 + 2KK2 + 2K1K2 —K —K1 —K2].

(3.29)

I = l1+ l2. (3.22)

It is interesting to examine the limiting forms of the
expression (3.21) in our two-scale model. The leading
terms in the three regions are

r1 r1-r2

r1'r r (3.31)

(i) l» l, « —„':
(ii) —„' « l„l, « ~:

(iii) l1, l2 )) &~

K(l1, l2) = l1l2I

K(l1, l2) = 1Ul, l2, (3.23)

K(l1, l2) = ~, .

The constant value as l1 and l2 approach infinity is note-
worthy.

It is useful to note that a similar formula to (3.21) holds
for the mean value of the scalar product of overlapping
segments; for example, in the configuration of Fig. 1,

D. Conditional expectation values

In later sections, we shall need various conditional ex-
pectation values, for example the expectation value of
the extension r1 of the l1 segment in Fig. 1 for a given
value of the overall extension r of the composite segment
of length l. Let us denote this conditional averaging, over
the ensemble of segments with given values of r and l, by
angle brackets.

From the joint probability (3.26), it is straightforward
to evaluate this conditional expectation value:

r1.r =
2 [K(l) + K(l1) —K(l2)]. (3.24) (rx) = f d r~ rrp(rr(r], p[r1~r) = ' . (3.32)p[r1, r]

&[r)

r1'r2 K(l1) K(l1, l2)
rl r2 r,' K(l 1 ~ l2) K(l2) (3.25)

The distribution may be written

(3&'
p[r1, r2] =

~ ( &2
exp[ —2R K 'R), (3.26)(2vr) det K 2~2

where

This expression of course is nonzero even for linear K.
In line with the Caussian ansatz for p[r(l)], we shall

assume that the joint probability (3.20) is also Gaussian,
except of course for very small values of l1 or l2. Its form
is then completely determined by the covariance matrix

We find

r1 r
(r, ) = r

r2

K(l) + K(l1) —K(l2)
2K(l)

(3.33)

(3.34)

~1
(r1) = —r

l
(large l1, l). (3.35)

This is not at all surprising: a selected portion of a seg-
ment of extension r is obviously more likely to have its
own extension r1 in the same direction as r.

For large values of l and l1, for which K is linear, this
yields, as one might expect
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From (3.33) it follows of course that

r-rlr.rl —— r .
r 2

(3.36)

Less obvious, but also useful, is the conditional expec-
tation value of rl. A straightforward calculation yields

2 r rl r rl r rl 2
r~ = + r.

r2 (r2) 2
(3.37)

From (3.34) and (3.37) we obtain the conditional variance
of rl.. FIG. 2. Three contiguous segments.

r2
(3.38)

It is remarkable that this conditional variance is in fact
independent of the actual value of r. Note however that
for any given value of r, it is less than the unconditional
variance

A useful corollary of (3.34) yields the conditional ex-
pectation value of the unit vector p. We can write

This may be written as

(3)"
&[ o» ] =

/

—
I ), , p[—-', RK 'R],

(2vr) det K 2~2

(3.43)

whence

p(lg) =
1

r.p(lj) = 2[K'(lg) + K'(l —l~)],

(3.39)

(3.4O)

where now

2ro ro.rl ro.r
ro rl rl rl r2

ro r rl r r
(3.44)

r p(ly) K'(lg) + K'(l —lg)

2K(l)

For large values of / and ll, this reduces to
r

(p(lz)) —— (large lq, l),

(3.4I)

(3.42)

Integrating over all values of ro yields a joint proba-
bility distribution for rl and r identical in form to the
previous one, save for the fact that the expression for rl.r
is difFerent: namely,

again as one might expect.
It is useful to note that these results, in particular

(3.41), continue to hold for negative values of lq, pro-
vided that for negative l, K(l) is interpreted as meaning
K(~l~). In other words, because the correlation of direc-
tion extends over a finite distance, a small segment close
to but outside our chosen segment will still be correlated
with it, though clearly less strongly than if it were in-
side. Of course, as lq -+ —oo, K'(lq) -+ —2(, while
K'(l —lq) + 2(, so eventually (p(lq)) does approach zero.

rq. r = 2[K(lp+ l]) + K(l —lp) —K(lp) —K(l —lp —ly)].

(3.45)

With this change, the previous equations remain valid.
Another useful result can be obtained from (3.43). We

can And an expression for the conditional average of a
scalar Product of unit vectors, (Pp.P2), where Pp

——P(lp)
and p2 = p(lp+lq), by using analogues of (3.39): namely,

E. Triple joint probabilities

We shall also need to consider more complex joint
probabilities, such as the triple joint probability of the
configuration shown in Fig. 2. We find

p(lp) =, p(l2) =
~l0 2

(3.46)

ro rr2 r
(rp(lp) r2(l2)) rp r2 + — (r r )(")'

2 [K(l) + K(l —lp —l2) —K(l —lp) —K(l —l2)]

+—[K(l) + K(lp) —K(l —lp)) [K(l) + K(l2) —K(l —l2)]
r2 —K(l)

4 K(l) 2
(3.47)
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Hence, differentiating with respect to both /p and l2, we get

r2 —K/
(po p2) = —,

'K" (/ —/o —/2) + 4z[K'(/o) + K'(/ —/o)][K'(/2) + K'(/ —/2)]
K(/) 2 (34g)

Comparing with (3.41), we see that the conditional covariance function of po and p2 is again independent of r (but
smaller than the unconditional value):

(p(/o) p(/2)) —(p(/o)) (p(/2)) = 2K"(/z) — [K'(/o) + K'(/ —/o)][K'(/2) + K'(/ —/2)].4K (/)

Note that as before these equations continue to hold
even when either lp ol l2 is negative.

The ratio K~2l/K, which is s in the Gaussian case, be-
comes

F. Small-l behavior K(2) (/) g4 /—-+ 0 as / -+ 0. (3.55)

The Gaussian approximation obviously breaks down
for very small values of l. To obtain information about
the time evolution of the smallest-scale structures, we
need to have approximate formulas that can be used in
that region too.

For very small l, the expectation value of r takes the
forzn given in (i) of (3.16):

(3.50)

K(2) (/) g2 /

K(/)2 15 ( (3.56)

IV. DERIVATION OF BASIC RATE EQUATIONS

In particular, if the distribution of kink angles is Gaus-
sian, then

(rz) = rz = /z /g -+ 0. (3.51)

We shall also need to consider the probability distri-
bution for a small segment of length /q within a larger
segznent of length / and extension r. From (3.41), it fol-
lows that the direction of rq is correlated with that of
r. However, the length is not; the expression (3.37) does
not hold in the limit of small /i. In fact, in that limit
the length is essentially fixed; the probability distribu-
tion for rz is concentrated in a thin shell near ~rz~ = /z.
Therefore,

The evolution of the system of strings is a complicated
process. The mechanisms represented by the various
terms in (2.19) do not act independently. At least to
a first approximation, gravitational radiation is separa-
ble from the others, because the dominant scale involved
is much smaller. We shall therefore postpone its discus-
sion. As we shall see, however, the remaining three act
in a complex synergy.

We begin this section by deriving the basic equations
for these processes, reviewing for completeness the dis-
cussion of KC and CKA [20,21].

K(/) = / —sD/ (1 —cosg) / —sD/ g2. (3.52)

The characteristic scale g of the small-scale structure,
defined by (3.12), is

(3.53)

Similarly, we obtain

Another important difference &om the Gaussian case
concerns the variance of r, which is no longer given by
(3.18). In fact, for small /, the leading term in K~2~ is
clearly of order l . To obtain a more specific result, con-
sider for example a model in which small-angle kinks are
randomly distributed on the string, with D kinks per unit
length, and suppose the kink angles are distributed ac-
cording to a (two-dimensional) distribution with (sznall)
variance 82. Then for values of / such that D/ « 1, we
And

A. Hates of change of length and extension

From the equations of motion (2.5), we can derive ex-
pressions for the expected rates of change of the length
l and extension r of a chosen segment, expressing l and
r as functions of / and r. Here, unlike KC, we use dots
to denote derivatives with respect to real time; in par-
ticular, / stands for the average value of d//dt over the
ensemble of segments of given length and extension.

Similarly, we can derive an expression for (L),t„ the
contribution of stretching to the rate of increase in the
overall length of string within a given large comoving
volume.

It is very important to note that there are consistency
requirements. As before, let us denote by an overbar the
average value of any function of r over the probability
distribution p[r(/)] for given length /: e.g. ,

K(2)(/) = s'OD/ g4, l m0. (3.54)
l = d r/pr l (4.1)
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The lengths l of diIII'erent segments will stretch by dif-
ferent amounts, depending on the value of r and other
factors. However, the entire string can be chopped up
conceptually into segments of any prescribed length l,
and its overall growth is obviously independent of l. Thus
for every value of l we must have

tk2

l(t) = 2R dux„(u, v(u, t)),

while its extension is
tt, g

r(t) = 2R dux„(u, v(u, t)).

(4.10)

(4.ii)

(L) ~

l L
(4 2)

To find the rates of change, we use

r —+ r = r+rdt. (4.3)

The total length will also change of course, according to

Deriving the expression for (Op/Ot), q, &om I and r is
actually quite subtle, because of the dependence of l on
r; a sample of segments initially of equal lengths does not
remain so.

Consider a small time interval dt during which the ex-
pected changes of l and r are

/Ov1 1 (Ov) 1 (Or 1 1

i Ot) R (Or) „R(Ov) „Rxo
Hence from the equations of motion (2.5),

dl B "'
0—= —l + 2 dux0„—

B
I —2R— dux„(l+ p q)R

= —2B dux0p q. (4.i3)

L m L' = L + (L),~,dt. (4 4) As before, we denote averaging over the ensemble of
segments with given values of l and r by angular brackets.
We then have

Now suppose that within V we select segments at ran-
dom by choosing independently a random starting point
and a random length l, chosen from a uniform distri-
bution &om 0 up to a large upper limit, say L. The
changes of length and extension of the chosen segments
over a short time interval dt will vary randomly, with
expectation values given by (4.3). However, because of
the consistency requirement (4.2), the final distribution
will still be uniformly distributed in I' (at least so long as
I « I, so that the upper cutoff of lengths is irrelevant).
Hence we have the important equality

l = —2B
'tt 2 B

du(x p q) = n(r, /) —I, (4.14)

say. Note that in order to satisfy the consistency require-
ment (4.2), the average value of n over the r distribution
must be a constant o., independent of l. We must have

(L),g,
——n L. —B

B (4.15)

Thus n may be identified with the constant n of KC [20]
and CKA [21]. More generally, we shall find later that n
has the form

dl'
p[r'(I'), t'] —,d r' = p[r(l), t] —d r. (4.5) n(r, l) = n+ n(l)

r' —K(l) (4.16)

Now

( ai)
dl' = 1+dt — dlR (4.6)

Similarly, we obtain

dr B—= —r —2R du x„(p + q)dt B
and hence

(4.17)

d r' =
~
1+dt r'

~

d r. —
Or )

Hence it follows that

(4.7)

&Opl O O . (L) ~.= ——(tp) ——.(rp) +
qOt) „, Ol Or L

(4.8)

This is consistent with the normalization condition be-
cause, from (4.2),

tl2 R
r = 2R du (x„q—)—:P(r, I) —r. (4.18)

The parameters n and P are related but distinct. In
particular, there is no special condition on the mean value
of P. It w'ill emerge later that P may be taken to be a
function of l alone, independent of r.

It is convenient to rewrite (4.14) and (4.18) in terms of
the path-length variable y introduced in (2.15). We then
have

(L) i
Bl I

As before, let us consider a left-moving segment of
string, de6ned by the inequalities ui ( u ( u2. The
length of our chosen segment at time t is

and

nl = — dy (p.q)
0

l

Pr = — dy (q).
0

(4.19)

(4.20)
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We shall return to the computation of these averages
in the next section.

Substituting l and r into (4.8), and using (4.16), we
thus find

Bp c) (. r' —Ki
Hn—l ——H

i
ln(l) p i

Ol Rq K
O—H&(l) —( p) (4.21)

Or

H—
~

nlK+ nl
~

+2HPK+HnK~ ( - K(2)&
Bl ( K )

——,~

nl
~

. (4.22)
c) f „K(2)l
N g K

= H 2PK —nl
Bl

B. Intercommuting probabi1ity

where as before H is the Hubble parameter, H = B/B
Taking a moment of (4.21), we find for the rate of

change of K:
(c9K i
i Bt ) „,

(4.27)

where y is the average value of the scalar triple product
~x', n, x', (x, —x, ) ~.

The rms values of (x') and (x) are g(1+ n)/2 and

g(1 —n)/2, respectively. One way of estimating y is
to use these as typical values. Then averaging over all
angles, maintaining the orthogonality of x: and w, intro-
duces a factor of 2/vr. Thus typically

1+ o. 1 —o.

7r 2
(4.28)

Although y therefore has a weak o; depend. ence, this is
probably not suKciently important to make it necessary
to use an r-dependent value. We shall see that this is in
fact probably an overestimate of y.

Another way of estimating y is to rewrite the scalar
triple product in terms of p and q vectors, as

IP1~P2'(ql q2) + (Pl P2) ql ~ q2I. (4.29)

Next we review brieHy the derivation of the intercom-
muting probability given by KC [20). This also provides
an opportunity to refine the argument.

Consider a large volume V, which, according to (2.16),
contains a length L = V/( of long string. In other words,
each volume ( contains on average a length ( of string.
The model introduced in KC was to regard this string
as formed of N independently moving straight segments,
each of length (, where

(4.23)

Choose any pair of these segments. For simplicity, as-
sume that at the relevant time, the spatial coordinate o.

along the string is chosen to coincide with the variable
y which measures length along the string. The two seg-
ments will intersect at some time during a short interval
bt if there is a solution to

~01 + yi~& + &~i = ~02 + y2~2 + ~~2 (4.24)

with

0&yi &() 0 & y2 & (, 0 & t & bt. (4.25)

Equivalently, if the starting point of one of the seg-
ments, xoi, is fixed, intercommuting will occur if the
other starting point, x02, lies within a small volume

bV = ('bt~x', n, «', .(x, —x, ) ~. (4.26)

[The additional factor of 4 appearing in the paper by
KC, Eq. (4.26), was an error. ] The probability of inter-
commuting between this pair of segments is bV/V. To
obtain the probability that a chosen segment undergoes
intercommuting, we multiply by the number of segments,
R, given by (4.23). Thus the probability that a string
segment of length l will undergo intercommuting during
a time interval dt is

Averaging over all directions of the p and q vectors, as-
suming that they are independently and isotropically dis-
tributed, yields

2~
y = ——0.18.

35
(4.30)

[It is easy to see why this result should be smaller than
our first estimate (4.28). Using typical average values of
the magnitudes of x' and x ignores the anticorrelation
between them; including it would tend to reduce the es-
timate. ] We can improve the estimate (4.30) by allowing
for the correlation between the p and q vectors, corre-
sponding to the nonzero value of o.. This gives a corrected
value

2' 4' o. = 0.20.
35 105

(4.31)

It might be argued that the model used here, assuming
straight segments of length (, is inaccurate. The length
scale on which strings are roughly straight is not ( but

A better approximation might be to assume that the
string is composed of straight segments of length (. How-
ever, this actually makes no diR'erence to the final answer.
The small volume bV is then proportional to ( bt, while
N becomes N = V/( (, so the probability of intercom-
muting is still proportional to the length of the segment,
in this case (.

The eKects of small-scale structure on the strings are,
however, more problematic. When we view the string
confi. guration on a suKciently small scale, the kinkiness
is irrelevant. Consider two kinky segments of string, each
of length (. For simplicity, suppose that one of them is in-
stantaneously at rest, while the other is moving. During
a short time interval bt, the moving segment will trace
out a thin ribbon of width ~x~bt. Intercommuting will
occur if the other segment intersects the ribbon. So long
as bt is small compared. to the small-scale structure, the
probability of this is clearly proportional to the lengths
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of the segments and is in no way reduced by the fact that
they are kinky.

However, although this calculation should give a cor-
rect estimate of the total number of intercommuting
events, it tells us nothing about their distribution. If
the strings were really composed of independently mov-
ing straight sections, the intercommuting events would
be uncorrelated. But this is not true for kinky strings.
When two kinky strings approach each other, it is clear
that there are likely to be several intercommuting events
within a small region. It could be argued that only one
of these should really count as a long-string intercom-
muting event; the others are either loop formation or
reconnection events. Indeed, bursts of loop formation in
the vicinity of a long-string intercommuting have been
observed in the simulations.

There has been one estimate of the number density
of long-string intercommuting events, by Shellard and
Allen [19], which gives a much lower figure than ours,
equivalent to y —0.03. This arises because the large-
scale coherent velocities of long segments of string tend to
be quite low. With our definition, however, that is clearly
an underestimate of y. We have chosen to define as a
loop those sections of string that become permanently
detached from the network. We should therefore count
as intercommuting events those at which transient loops
are formed and reattached.

We conclude that the correct value of y with our defi-
nition is probably somewhat below 0.2 but substantially
greater than 0.03. It would be safe to say that y 0.1
within a factor of 2.

C. ESect of intercommuting

We now turn to the e8'ect of long-string intercommut-
ing on the probability distribution p[r(l)].

Clearly there is a negative term in [(9(Lp)/(9t]z, sr due
to the destruction of segments by intercommuting, equal
to

FIG. 3. EKect of intercommuting.

sion r is the sum of the extensions ri and r2 of the two,
generally speaking uncorrelated, segments thus brought
together.

The number of segments created is exactly equal to
the number destroyed. The probability that one of these,
chosen at random, is composed of lengths li and l —li,
within an interval dli, is dli/l. Then the probability
that the corresponding extensions are ri and r2, within
intervals d ri and d r2 (see Fig. 3), is

p[ri(li)]d ri p[r2(l —li)]d r2. (4.33)

To find the probability that the total extension is r, we
have to set r2 ——r —ri and integrate over ri. Thus the
positive term in [B(Lp)/(9t]z, si is

ylI '
dig+ (~

In contrast to the case of loop formation, here the as-
sumption that the two probabilities are independent
should be a good one, because the two segments involved
generally come &om regions that are far apart along the
string.

In this case, we evidently have

(4.32)

In this case, the corresponding positive term is rather
more complicated. For each segment destroyed, a new
segment of equal length l is created. However, its exten-

(4.35)

Hence, putting (4.32) and (4.34) together, we obtain

&~s& x ~'» y(»(4) I pf(~ —») (&
—4)) —&sf~(&)) ))LSI ( 0

(4.36)

It is again straightforward to find an expression for
the rate of change of K. When we multiply by r and
integrate, in the first term it is best to go back to using ri
and r2 as integration variables. Since there is assumed to
be no correlation the mean value of ri r2 vanishes. Thus
we find

(DKi
dh(K(4) + ~(& —4)) —&~(&)

Ik ot )r,si &' o

(4.37)

Note that in general we expect
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K(E) ) K(Ei) + K(E —Ei), (4.38) A(I) = /d rs(r(I)]sl(r, l). (4.45)

so the efFect of long-string intercommuting is to reduce
the value of K (unless K is a linear function of E, in
which case it is unchanged).

By symmetry, we can simplify the expression (4.37)
slightly:

The parameter A determines the overall rate of loss of
length to loop formation. Consider a very long section
of string, of total length L. Then the expected rate of
change of I is

2 dI, IC(I, ) —IK (I))
.

4 ~t)isi (4.39) ) loops
(4.46)

From this, we can And the rates of change of the various
length scales. Intercommuting has no e8'ect on L, or,
therefore, on (.

The length scale $ is defined by (2.27). To find its
rate of change we differentiate (4.39) and then allow E to
approach inanity:

The dependence of 8 on r is unknown and may well
be complicated. However, consistent with our Gaussian
approximation, it seems reasonable to assume that, ex-
cept for very small values of l, this is also Gaussian,
parametrized by a variance function Q(E). Specifically,
we assume that

d( . cEKI (E)

dt l~ Ot
(4.40}

sj2
8(r E)

—A(E)
~

&(E)
(4.47)

This yields

(LSI X
/QJ 2 (4.4i)

Similarly, from (3.50) we find

2( . (9K'"(E)—= lim
i~o Bt

(4.42)

(,'Lsi x(,"
2

' (4.43)

Of course, for this to be consistent, we also have to verify
that the rates of change of K, K', and K" all vanish in
the limit. This is easy to do. Thus we 6nd

We now turn to the expression for the efFect of loop
formation on the evolution of p[r(E)]. Let us consider the
expression for ((9(Lp)/I9t)i p, . It consists of a negative
term representing the number of segments lost to loop
formation and a corresponding positive one representing
the number of new segments created by the process.

Consider a segment of length jt and extension r. It will
disappear if a loop is formed within it, overlapping either
end, or enclosing it entirely. Let us ask for the probability
that this happens within a short time interval dt due to
the formation of a loop of length lq, within a range dlq.

We denote the starting point of the loop segment rela-
tive to that of our chosen segment of length E by yo (see
Fig. 4). Allowing for all possible overlaps, the range of
possible starting points is

—lp &yp &l'. (4.48)

D. EfFect of loop formation

Next we review and revise the derivation of the proba-
bility of loop formation. This is perhaps the most prob-
lematic aspect of our analysis; we shall approach it in
several stages.

Consider a segment of string of length l and extension
r. We want to evaluate the probability that this segment
will form a loop during a short time interval. To be
specific, let e(r, E) dE dy dt be the probability that a loop
will form in the time interval dt, of length between / and
l+ dl, and with starting point within the small interval
dy. This is the function we aim to estimate.

Prom 0, we can compute rates of change due to loop
formation of all the quantities we need. In particular,
the probability that any particular point on the string
will be incorporated into a loop within the time interval
dt is clearly Adt, where

[The total number of starting points, with discretization
scale b, is (E + Ei)/b. ] The probability that a segment
of length lq starting &om one of these points has exten-
sion ri within a volume E) is p[ri(Ei) ~r(E), yo]h, where
the symbol p[. . . ~. . .] denotes a probability conditional on
both the value of r(E) and on the position of the starting
point yp. Rather than using this conditional probabil-
ity, it is more convenient to work with the corresponding
joint probability, using the identity

dE EA(E),
0

(4 44)

FIG. 4. Position of excised loop segment.
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p[ri(li), r(l) ~yp] = p[ri(li) ~r(l); yp] p[r(l)]. (4.49)

However, the joint probability is still conditional on the
position yp of the starting point.

The probability that within a time interval dt a loop is
formed of length between /i and /i+d/q, starting between
yp and yp + dyp is, according to the discussion of Sec. V,
O(ri, li) dli dyo dt.

Thus we find for the negative term the expression

OO l

L— dli " ri O(ri, li) dyo p[ri(li), r(l) ~yo].
0 —l1

(4.50)

In evaluating the corresponding positive term, we have
to consider excision of a loop entirely within a segment
of length /+ /q. Thus it is

OO l

dll d rl e(rl ll) dyo p[rl (/1) (r + ri)(l + li) ~yp].
0 0

(4.51)

Putting (4.50) and (4.51) together, we have

r'B(Lp) i
d ri 8(ri, li) dyo p[rz(li), (r + rz)(l + lz) ~yp]—) ioo s 0

l

dyo yfr, (l, ), r(l) fyo]) . (4.S2)
—E1

It is straightforward to perform the integration over r to find ((9L/Bt)i z„because clearly

d r p[rz(li), r(l) ~yp] = p[ri(li)], (4.53)

independent of yp. This of course reproduces (4.46) with A given by (4.44).
Combining (4.52) and (4.46) we obtain

(Dpi
dlz d ri O(rz, la) dyo p[rz(lz), (r + rz)(l + li)lyo]

J loops 0

l

dyosf»(~r) r(~)lyof + 4yf»()r)lyfr(~)I).—l1
(4.54)

E. Probability of loop forxaation

Now let us turn to the calculation of O(r, l), or equiv-
alently A(l) and Q(l). Our segment of length l will form
a loop during a short time interval dt if the correspond-
ing total extension rq i, given by (2.10), vanishes at some
instant during that interval. In other words, the corre-
sponding left- and right-moving segments, each of length
/, must have the same extension, r.

To simplify the counting, let us imagine that space-
time is partitioned into cells each of volume b, and more-
over that the string is partitioned into small segments of
length b.

The probability that a left-moving segment of length /

has an extension r within a b volume labeled j is

number of length steps within a given range dl is dl/h.
The number of time steps within dt is 2dt/b. (The factor
of 2 arises, as explained by KC [20], because the segments
are moving with the speed of light in opposite directions,
so that each encounters a new segment after a time b/2. )
The number of starting points on dy is dy/8.

However, we should not merely multiply these factors.
Particularly for small loops, the angles between the var-
ious vectors are small.

A typical configuration is shown in Fig. 5. The ques-
tion is, by how much can we vary the length /, the start-
ing point y and the time t without moving the difference
in extensions of the two segments out of the b volume.
This is essentially the same calculation that we did ear-

(4.55)

The probability that a loop is formed is essentially the
probability that the corresponding right-moving segment
also has the same extension. Assuming for the moment
that the probabilities are uncorrelated (which as we shall
see is by no means true), this probability is also p~. We
have to multiply it by factors relating to d/, dt, etc. The FIG. G. Excision of a small loop.
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xI h x2.(xq —x2)
~

dl dy dt. (4.56)

Thus we should include in our expression for the loop-
formation probability a factor

lier in estimating the parameter y that determines the
rate of long-string intercommuting. The volume swept
out by the total extension r«when the parameters vary
over ranges dl, dy, and dt is

triple product will be small. On the other hand smaller
values of r imply large-angle kinks and correspondingly
less correlation between the unit vectors. So we expect
A to decrease with increasing ~r~.

Except for very small loops, where 4 is in any case
small, r is generally much less than l . Thus it would
seem reasonable to assume, consistent with our earlier
assumptions, that it has the form of a Gaussian,

(4.60)

The number of cells within the volume d r is d r/bs.
Hence our required probability is

p[r(l)]O(r, l) d rdldydt = p. — D(r, l),
2d rdl2dtdy

4

1.e.)
(4.58)

H(r, l) = 2p[r(l)]A(r, /). (4.59)

Note that the factors of b cancel, as they must.
Inclusion of the factor L eliminates the problem of

multiple counting of loops noted by KC [20]. This was
avoided by CKA [21] by imposing a small-scale cutoff
and treating the contribution of small loops separately.
However, that procedure introduced additional problems
associated with the choice of the cutoff. It is better to
treat loop production within a unified &amework.

So long as the loops are reasonably large, it is reason-
able to assume that the unit vectors involved are inde-
pendently randomly distributed on the unit sphere. Then
we can replace 4 by its average, A = y = 0.1.

For very small loops we expect 4 to be small. Consider
for example the model in which the strings are composed
of straight segments joining randomly distributed kinks.
For very short loops one would expect to find only a
single kink on each of the left- and right-moving segments
forming the loop. However, it is easy to see that in this
case the scalar triple product (4.56) vanishes identically,
because the three vectors are coplanar. This is because
a triangular loop is necessarily planar. The point is that
the loop-formation condition in this situation is satisfied
only on a set of configurations of measure zero.

This is of course an idealized model, but even in a more
realistic model we should expect that the 4 factor would
be very small for loops with only a single pair of kinks.

It follows from this argument that 4 should vanish
rapidly as l —+ 0. In the simple model, the leading contri-
bution would come from loops with at least three kinks
all together. If the kinks are randomly distributed, with
a separation of order (, then the number of kinks on a
segment of length l is Poisson distributed, with mean

I/g, so for three or more kinks we expect a factor of at
least (I/()

Also for small loops, the r dependence is likely to be
important. For values of ~r~ close to l, the segments form-
ing the loop must be nearly straight with a high degree
of correlation between the p vectors at the two ends, and
also between the p and g vectors. In that case the scalar

(4.61)

If we assume that over the relevant period ( at least ap-
proximately scales, i.e. , ((t) oc t, then the integral yields

( ~lt )
& ~(t)'r (4.62)

(It is not necessary here to allow for the variation of l

with time, due to gravitational radiation, which occurs
over a very much longer time scale. ) To allow for the
probability of reconnection, we should replace (4.59) by

O(r, I) = 2p[r(l)]e ~"~~ D(r, l). (4.63)

The exponential provides an effective upper cutoff in
(4.44) at a scale of order (2/t. Above that scale, loops are
rather likely to reconnect; below it, they mostly survive.

It should be noted that the assumption of approxi-
mate scaling is a very weak one. Even if ( does not
exactly scale, the dominant contribution to the integral
(4.61) will come from close to the lower limit so (4.62)
will change at most by a factor of order unity.

Even with the modifications described, the expression
(4.63) is still not entirely correct, because it neglects any
possible correlation between the left- and right-moving
segments. This turns out to be the most important effect
of all. These correlations form the subject of the next
section.

where a is a constant of order unity. The overall factor Ao
approaches y at large t and vanishes at least like (l/()s
as l ~ 0. The Gaussian factor yields a contribution to
1/Q(l) of magnitude 2a/3l2.

The formula (4.59) is still not accurate, for several rea-
sons, but particularly because it neglects all correlations
between the left- and right-moving strings. The rate of
change of L due to loop formation is to be computed us-
ing (4.46) and (4.44). As it stands, this expression would
give problems at both ends of the range of integration
over l. At the upper end, we have to consider the proba-
bility of reconnection; we aim to include only loops that
do not reconnect. At the lower end, the integral would di-
verge, because of the neglect of a very significant angular
correlation effect.

We deal first with reconnection. For a loop of size l, the
probability of reconnection within a short time interval
dt is yldt/( . The probability that the loop will survive
reconnection to a much later time is therefore
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V. CORRELATIONS BETWEEN LEFT
AND RIGHT MOVERS

Taking account of the correlations between left- and
right-moving segments, we should really write

O(r, l)p[r(l)] = 2p[r(l); r(l)]e ~' ~~ A(r, l), (5 1)

where p[r(l); r'(I)] d r d r' is the joint probability that
the corresponding left- and right-moving segments have
extensions r and r' respectively.

One approach might be to extend the Gaussian ansatz,
representing the joint probability distribution by a six-
dimensional Gaussian with an appropriate covariance
function r r'. However, this is not a good represen-
tation of p[r(l); r'(I)]. The covariance is actually quite
small (and negative), suggesting that the correlation ef-
fect yields merely a small reduction in the loop-formation
probability. But this is quite false: the joint probability
distribution is in fact very sharply reduced in the forward
(r = r') direction.

We begin by considering the correlation of the indi-
vidual p and q vectors. There are two quite separate
processes that generate such correlations. In CKA [21]
we considered only the effect of stretching, but in fact
loop production also plays an important role, and indeed
intercommuting cannot be ignored.

Consider a particular p segment, p(uo), and the ap-
proaching g segments, in particular a segment q(vp)
which encounters it at time to. (See Fig. 6.) We wish
to estimate how the angular probability distribution of
q relative to the direction of p changes as the vectors
approach one another. It is again convenient to use the
path-length variable y defined in (2.15). Let us define
4(y, z), so that the probability that p(yo) cI(yi) = z,
within the range dz, is

dz
@(y,z) —.

2
(5.5)

I et us recall that
1 dz—.+(y .) = f(y)

2—1
(5.6)

where f is the function defined in (3.1). (When it is
necessary to distinguish, we denote the mean value of z
with respect to the distribution 4 by z@ and that with
respect to 4 by z@.)

A. The exponential ansatm

To reduce the problem to manageable proportions,
we make a simplifying assumption concerning the an-
gular distribution function 4, analogous to the Gaussian
ansatz, namely that (except when y is very small) it takes
the form of an exponential:

We are assuming here that the process of establishing an
angular correlation as the vectors p and q approach takes
a relatively short time, compared to the time scales for
evolution, so that 4 may be regarded as a function only
of z and of the path length y between them, not explicitly
of the time. This is reasonable because the angular cor-
relation sets in only when the vectors are already quite
close. For similar reasons, we are justified in neglecting
the effect of gravitational radiation which is small on the
scales of interest here.

We also introduce the corresponding angular probabil-
ity distribution for the p vector that encounters q at yq

..
the probability that p(yo) p(yi) = z within the range dz
1S

dz
C(y, z) —, (5.2) @(y,z)= . e',k

sinh k
(5.7)

where y = yo —yz. With this normalization, the initial
condition for 4 at large yo —yj is

where k is a function of y. The relation between k and f
ls

4(oo, z) = 1, (5.3)
1

z@ = J'(y) = cothk ——.
k

(5.8)

OC (84) (0@i (BC )+ +E~y). , k~y) rsr &~y) roo . (5 4)

representing a completely random distribution when the
segments are far apart.

Let us now seek to write down an evolution equation
for 4, of the form

k k3

3 45 (y large). (5.9)

(As we shall see the ansatz breaks down for very small
values of y.)

It will be useful to examine the limiting cases of large
and small values of y. First, when y is large, f « 1 and
consequently also k &( 1. In that case we have

In most cases, therefore, a linear approximation k 3f
will be adequate. Neglecting k, we may write

ilJ = 1 + kz = 1 + 3fz (y large). (5.10)

FIG. 6. Coordinates on the string world sheet.

In the opposite limit, where y is small (but not small
enough to render the ansatz invalid), we have 1 —f « 1
and hence k )) 1. In this case, the leading approximation
1S
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1k=
1 —f y

(y small). (5.11)

Here we may write

—A:{1—z)
(y small). (5.12)

The distribution becomes concentrated near z = 1 within
a range of order 1/k.

It is interesting to note that in the intermediate re-
gion, both approximations are in fact reasonably good.
For example for f = 2, the leading large-y and small-y
approximations give respectively k =

2 and k = 2; the
correct answer is k = 1.8.

When the exponential ansatz is valid, all the moments
of the distribution are of course determined by the ex-
pectation value. In particular,

shufIIes the string segments on this time scale, providing
a very effective long-distance cutoff.

During the time interval dt, the small interval by1 on
the string effectively becomes a little shorter, because
some members of the ensemble are eliminated by incor-
poration into loops. In fact, dbyi/dt = —Ahyi, so byi is
replaced by by1 —Adt by1. The angular distribution of the
remaining vectors changes &om C (y, z) to 4(y + dy, z),
with dy given by (5.15). To find the difference between
these, we need to know the angular distribution, X(y, z)
say, of the vectors that have been eliminated. Here
X(yo —yi, z) &

is the probability that a vector q which is
incorporated into a loop within a short time interval has
p(yo). q(yi) = z within the range dz. If we can estimate
X, then we can obtain a difFerential equation for 4. In
fact (ignoring stretching and intercommuting contribu-
tions),

2cothk 2
k2

1 2k 1 2z= —+ +
3 45 3 5

8yi C (y, z) = (byi —Adt Syi) 4(y + dy z)
+Adt 8yi X (y, z), (5.17)

(y large) . (5.13) or equivalently

Indeed, so long as k « 1 it is a good approximation to
set (z2)

The exponential ansatz can also b.e applied to the q
distribution 4, in the modified form

b
C(y z)= . e

sinh b
(5.14)

(Since the directions of p and q vectors are
anticorrelated, with this definition b is positive. ) How-
ever, as we shall see, the ansatz ceases to be a good ap-
proximation for very small values of y. When the approx-
imation is valid, the evolution equation for 4 effectively
reduces to an equation for b or equivalently z@.

(2+ Ay) i i
= —A4+ AX.

&841
y ) loops

(5.18)

Note that this is consistent with maintenance of the nor-
malization condition f "2'4 = 1 provided that X is also
normalized.

The key observation is that since loops are formed
by matching segments of left- and right-moving string,
the angular distributions of excised p and q segments
should be identical. Clearly, the probability of obtaining
a matching pair must depend on the probability distri-
butions of both p and q. It seems reasonable to assume
that X is proportional to the product 44. Normalization
then requires

B. Equation for 4
where

X(y, z) = K(y) @(y, z) C (y, z), (5.19)

dy = —(2 + Ay) dt, (5.15)

Now let us consider the ensemble of approaching q
vectors, in particular those that at a given time t fall
within a small interval by1 at yi.

In the time interval dt, these vectors either move closer
to yo or else are eliminated by being incorporated into a
loop. The expected distance by which they move closer
is

1d
N (y) = —4(y, z)4(y, z).

—1

Thus we find

= —Ae+ A~em.(04 )
y ) loops

(5.20)

(5.21)

with y = yo —y1. Here the 2 is the normal velocity of ap-
proach and the extra term Aydt represents the expected
loss of length between y1 and yo due to loop formation.
Integrating this relation, we And

A{to—t) (5.16)

where to is the time at which the segments coincide. Note
that the distance y becomes exponentially large for time
difFerences larger than 1/A. Loop formation electively

So far we have ignored both intercommuting and
stretching, both of which will also have an efFect on the
angular distribution 4. Consider first the efFect of in-
tercommuting. The probability that an intercommuting
event occurs between y1 and yo within the time interval
dt is yydt/( If it does occur .the relevant members of the
ensemble of q vectors are deleted and replaced by new
vectors drawn kom an essentially independent random
distribution. In other words, 4(y, z) on the left-hand
side of (5.17) is replaced by
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( yydt l yydt
(2 (2 (5.22)

Thus the effect of intercommuting is described by

(2+ Ay)
~ ~

= — (1 —C).xy
y) LSI

(5.23)

Finally, let us consider the effect of stretching. The
equation of motion (2.8) for q may be written

Bq
Bt

= —II(pi —qq pi), (5.24)

(2+ Ay)
~

/BC i
(~y).t,

0 (Oz
~. E~~ )

0 22Hz@ (—1 —z )C
OZ

(5.25)

Bringing all three contributions together, we may write
the equation for 4 as

where pq denotes the vector p(yq) = p(uq, vo) (see Fig.
6). Strictly speaking, the Hubble parameter H is a vari-
able quantity here, but, since the correlations extend over
distances which are small compared to the horizon dis-
tance, it should be a good approximation to treat it as a
constant.

We now have to average this result over the angular
distribution of p(yq). In principle, this vector is corre-
lated with both p(yo) and q(yq). However, any contribu-
tion proportional to q(yq) cancels out in (5.24). Thus it
is reasonable to consider only its correlation with p(yo),
and to replace p(yj) by z@p(yo).

There is an exactly similar expression for the rate of
change of p(yo) which yields an identical contribution.
Taking account of both we thus find

be able to write down a very similar equation for the
evolution of 4. However, there is a very important dif-
ference, concerning the rate at which one p segment ap-
proaches another. The most obvious difference is that
the distance y = yo —y~ between the two p vectors de-
creases only because of loop formation. In other words
the term 2 in the factor on the left of (5.18) is absent in
the corresponding equation for 4.

But there is a further point: it is no longer reasonable
to assume that dy/dt is independent of z. In fact, if
it were, the string would never develop the long-range
directional correlation that it does. The formation of
loops (except for the very smallest) depends strongly on
the large-scale configuration of the strings. If the left- and
right-moving sections are relatively straight, the large-
loop formation probability is low, because the values of r
for given / are large. On the other hand, if the strings are
curled up tightly, typical values of r are small and large-
loop formation becomes highly probable. In the former
case, positive values of p(yo) p(yq) are clearly favored.
Conversely, if p(yo). p(yq) is positive, the expected value
of dy/dt w—ill be smaller than if it is negative. Roughly
speaking, we may expect

dy
dt

= —IAy —(z —z~)v(y)], (5.28)

0
t9y

Ay — z —z@ vy

where v(y) is a function that could in principle be deter-
mined &om the later discussion of the detailed effects of
loop formation. There is no doubt a similar effect even
for the cross correlation between y and q, but in that
case it seems likely to be negligibly small.

It follows that for 4, in place of (5.26), we would have

04 0(2+ Ay) = 2Hz~ —(1 —z )C
Dy Bz

—A4+ AN%4.

(1 —4)

(5.26)

2IIz+ (1——z')@——,(1 —0) + ANC@.

(5.29)

When the exponential ansatz is valid, all we need is the
equation for the rate of change of z@. namely,

(2+. Ay) = 2IIz@ 1 —(z ) j + zg, —Azc, + Azx,
Bz@ — gy-
Oy

(5.27)

Similarly, the analogue of (5.27) is

Ayz@ — z2 —z@ v y

= 2Hz', 1 —(z2) + z~ + Azx. (5.30)

where z~ is the mean with respect to the distribution
X =KCC.

D. Solution of equation for 4

C. Equation for 4

Before trying to solve the equation for 4, some paren-
thetical remarks about the possibility of deriving a simi-
lar equation for 4 may be in order.

The effects of stretching and intercommuting on 4 are
very similar, and we have assumed that the distribution
X of excised segments is the same for both. So we should

Having set up the equation (5.26) for 4 we now set
about solving it. For the moment at least, we shall treat
4 as given, via the exponential ansatz, in terms of the
correlation function z~ = f(y).

Consider first the region of large y where the linear
approximation (5.10) for 4' and C should be valid. In
this case, we need consider only the evolution equation
for z@. So long as z@ remains small, we can also use the
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approximation (z2) @
--s. Note also that under these

conditions, the distribution X is also linear, with
does not become large [9,19]:

z@(0) = —n = —0.14 (5.40)
Z~ = ZQ + z+. (5.31)

Thus we find

(2+ Ay) = z@+
~

A+ H—
~

z@.
Bz~ yy ( 4

Oy ( 3 )
(5.32)

A+ ,H—,f 2+ Ay')"

x( s)/ t —
(y ) (5.33)

It is straightforward to integrate this equation using
an integrating factor, to obtain

(in the radiation-dominated era). Hence it is reasonable
to assume for all values of y that z@ (( 1. This does
not necessarily mean that the exponential ansatz is valid
(a point we shall return to shortly), but so long as it
is we can still use (5.27), with (z2)@ = s. However, as
y ~ 0, we can no longer use (5.31); instead, we have
both z@ —+ 1 and z~ ~ 1. The net effect is that in
the small-y region, the exponent n —1 in (5.33) becomes
n. But since Ay and Ay' (( 2 in that region, the effect
is minimal. The expressions obtained above should still
give a good approximation to z@.

where

= 2X
A2tL2

(5.34)

As we noted earlier, the exponential ansatz breaks
down near y = 0, but if we ignore that for the moment,
we can estimate the value of a = —z@(0), as

E. Behavior near y = 0

To get at least a rough estimate of the value of zc, (0) =
—6, let us first assume that A( » 1 and A( » 1. Then
in (5.36) both x and n are small. The leading term in
the expansion of I'(n, x) for small x and n yields

4H ~ n 1—
2 o ( 2 )

(5.35)

~ =~
~

1+ lin(A()
4HI
3Ay

(A( » 1). (5.41)

iv(A+ 4H)
zc, (y) = — x "e* "I'(n., z) (5.36)

For large values of y, z@ is expected to fall off expo-
nentially. The model described in Sec. II suggests that
z@ ive, with B = iv/(. In that case, z@ is express-
ible in terms of the incomplete I" function:

This is, however, much too large, clearly inconsistent
with our assumption that z@, always remains small.

It is perhaps more plausible to assume that A$ « 1
and Ag « 1. Then both 2: and n are large, and roughly
equal, and the asymptotic form of the incomplete gamma
function gives

where

/B n)x =
~

—+ —
~
(2+ Ay).

qA 2) (5.37)
3A y

(A( « 1). (5.42)

Expanding for large x, the leading term is

(A + s H) ice

(B+ —,'nA)(2+ Ay)
(5.38)

v(y) = 3
~

ivA+ —
~

ye
x(l
&') (5.39)

which seems entirely reasonable.
For y » 1/A, —z@ is small compared to z@. But as y

falls it grows rapidly. For moderate values of y the two
are of comparable magnitude, assuming that 1/A is of
the same order as ( and (.

We know from the simulations that even at y = 0, zc,

As a consistency check, we may substitute this solution
into the equation (5.30) for the large-y 4 distribution an'd

verify that it can be satisfied with a reasonable form of
the unknown velocity-distortion function v(y). In fact,
we find, for the leading approximation,

Although z@ remains small, the exponential ansatz is
not in fact a good approximation near y = 0, because the
distribution 4 becomes so sharply peaked near z = 1.
The distribution functions in the last two terms of (5.26)
are of course both normalized, but the second one is neg-
ligibly small over most of the angular range, becoming
very large near z = 1. Thus, while a linear approxima-
tion to 4 remains good for most values of z, near z = 1
it becomes very poor. As y ~ 0, 4 acquires a deep hole
in the forward direction. For this reason, our estimate of
z@(0) requires some correction.

To estimate the likely size of the effect, let us assume
that the exponential ansatz is at least qualitatively rea-
sonable down to values of y of order (. So when we come
to consider the equation (5.26) in the region of small y
we can use the exponential (or indeed linear) form as our
initial condition at y

When y « ( we can use the approximation (5.12) for
4, with z~ 1 —(y/(). Then our equation (5.26) for e
becomes
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BC ( yb B
(2+ Ay) = 2—H

i
1 ——

i

—[(1 —z )O
By ( () Bz

"(1—4) —WC + WN=. -l'- l«~C.2C

(2 y

(5.43)

order solution, Co+ 4q, where

(1 11 1 (1 15
4'i(k z) = HC

qko k) 2 qko2 k')
x [2z + bo (1 —z )]4(ko, z) . (5.45)

It is convenient to change from y to k = (/y as the
independent variable. The equation involves three small
parameters, A(, H(, and y( /( . Since the last of these
is very small indeed, the intercommuting term will give
a very small contribution in this region. Neglecting this
term, and also neglecting Ay in comparison with 2, we
And

2k =2H(i 1 ——
i (1 —z )4, B4 ( lb B

Bk g k) Bz-
+Xq(1 —2Nk. -"~'-.i)4. (5.44)

We now seek to solve this equation, starting with some
initial value ko of k, at which we assume that 4 has the
exponential form (5.14), with a value bo of b Sin. ce we
expect both H( and A( to be small compared to unity,
we may adopt a perturbation approach, taking as our
zero-order solution, @o(k, z) = 4'(ko, z), independent of
k. We regard the H( and A( terms in (5.44) as separate
small perturbations, so we may treat their contributions
one at a time.

Let us consider first the H( term. Substituting the
zeroth-order solution into this term we can obtain a first-

We are particularly interested in the average value
z@(y = 0) = —n, obtained by multiplying by z and inte-
grating. This gives a contribution equal to

2 (1 1
n, = —-Hq( ——

3 (ko 2ko )
(5.46)

This is of course a small term. Its dependence on ko must
of course be canceled by terms in the contribution of 40.
In fact, 6q can be made to vanish by appropriate choice
of ko (e.g. , ko ——2). It will be convenient to make such a
choice.

Now let us turn to the effect of the A( perturbation,
ignoring the H( term. The zero-order value of N is given
by

Now we can substitute this into the right-hand side of
(5.44) and integrate, obtaining in first order,

1 6 e-'
No = —2ke "l 'l4'(ko, z) = 4(ko, 1) =

2
' ' sinh 60

(5.47)

4 (k, z) = 4(ko, z) exp
(~q
(2ko

= 4(ko, z) exp
~

( A(
(2ko

A(———A(No
2k

dk
k'

2k
+ A(No(EiI —ko(l —z)] —EiI—k(1 —z) } ~, (5.48)

where Ei is the exponential integral.
It is interesting to examine the special case z = 1. At that point, we have

4(k, 1) = No exp
(

(A( A(i (k )
(2ko 2k) &ko)

(5.49)

Note that 4 (k, 1) approaches zero as k ~ oo (or y ~ 0), but very slowly.
The most interesting limit of course is k + oo. Strictly speaking, in this limit the first-order approximation in A(

breaks down, but in fact it does so only at such large values of k that B4/Bk is already negligibly small. There seems
no need to go beyond first order. For z g 1, we have, in that limit,

4(k = oo, z) = 4(ko, z) exp
~

+ A(NoEi[ —ko(l —z)]
( A(
(2ko

The behavior of this function near z = 1 is given by

(5.50)

C(k = oo, z) = No 'e 'l' 'iexp
~

[ko(1 —z)]"~
2ko)

(1 —z « 1). (5.51)

This clearly exhibits the expected sharp dip near z = 1:
the last factor vanishes at that point, but is close to unity
over most of its range.

Finally let us examine —o., obtained by multiplying

(5.50) by z and integrating. Since 4(y = 0, z) is a prod-
uct of two factors, each of which separately gives a small
value of z, the two effects are approximately additive,
and we may write
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o'lin + nl) (5.52)

where the subscripts stand for "linear" and "nonlinear. "
Here the linear contribution 6~;„ is the value given by
(5.41), (5.42), or soinething in between, while the non-
linear term n„i comes from the second factor in (5.50).
To first order in At,", it is

A
~ i = —(~c).i =—

2
(5.53)

VI. ANGULAR CORRELATION AND LOOP
FORMATION

We are now in a position to return to the calculation
of the probability of loop production, 8(r, l). The pro-
visional formula (4.63) is wrong because it assumes that
the probability distributions of the left- and right-moving
segments are independent. It should be replaced by (5.1).

To complete our program of expressing all the terms
in the equation for Op[r(l)]/Bt in terms of p itself, we
have to reexpress the joint probability here in terms of
individual probabilities.

p 8 qp[r(l); r(1)] = 4(0, p q)

&p[r(&) lp(l/2)1 p[r(t) lq(t/2)] (6.1)

r=Sp, (6.2)

where

S = r.p = K'(l/2). (6.3)

where p[r(l) ~p(l/2)] is the probability distribution of ex-
tension conditional on the direction of the vector p at
the midpoint, d p denotes an integration over the unit
sphere and of course C is the angular distribution func-
tion for z = p.q evaluated at the point where the two
vectors meet, namely y = 0. It is reasonable to assume
that, apart &om their mutual correlation, the p and q
vectors are uniformly distributed on the sphere.

The Gaussian approximation should be valid, both for
the conditional probabilities and for the loop-production
function 8(r, l), since there is an effective cutoff in the
region of very small loops due to the behavior of the an-
gular distribution function and the volume factor. Then
p[r(l) ~p(l/2)] is the Gaussian distribution with appropri-
ate values of r and r2. By (3.40),

A. Small loops

Let us first consider the case of very small loops. We
shall deal separately with larger loops in the next sub-
section.

In the case of small loops, the essential effect is due to
the angular correlation between p and q vectors. To be
completely correct, we should consider the joint proba-
bility distribution of all the p and q vectors forming this
section of string. This would obviously be a very com-
plicated object; we are not in a position to deal with it.
However, in the case of small loops, the internal correla-
tion between p vectors at different points is very strong
(as is that between q vectors), so it seems reasonable,
in order to represent the effect of the p-q correlation, to
choose a single representative vector from each class. We
choose the pair for which the effect is strongest, namely
the vectors at the midpoints of the segments, namely
p(l/2) and q(l/2). (We have considered as an alterna-
tive averaging over the chosen position; this makes little
difFerence. )

Thus we take

The value of r2 is unaffected by p: r2 = K(l). This
means of course that the variance of r is reduced:

K(l) =r2 —r =K —S . (6.4)

ES=l ——,
4( 'I (small l). (6.5)

We can now compute 8, or the variance function Q in
the Gaussian approximation.

Substituting (6.1) into (5.1), we obtain

It is worth remarking that for moderately small values
of E the Gaussian ansatz is a much better approximation
for the conditional probability p[r(l) ~p(l/2)] than it is for
the unconditional probability p[r(l)]. For small I, the
probability distribution is of course concentrated near
the sphere r = 'E and is nothing like a Gaussian cen-
tered at r = 0. However, the Gaussian approximation to
p[r(l) ~p(l/2)] is centered near that sphere and has much
smaller variance, since, for small l,

O(r, l)p[r(l)] = A(l) ] [
e ' ~ ~& ~

)

e
(2~Q(l) ) 2mK(l) p

=2e ~ ~~ A(r l) 4(0, p.q) p[r(l) )p(l/2)] p[r(l) (q(l/2)]. (6.6)

It is easy to carry out the integrations over p and q, leaving only a single integration which may be written

3

8(r, l)p[r(l)] 2e ~ ~ A(r, l)
~

~

e
&2~K j

(6Sr )
du@(0, 2u —1) sinh

~

u
~

. (6 7)
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Without having a specific form for C, it is not possible to proceed further. However, we can get a good idea of the
likely effect by assuming that 4 has a sharp step-function cutoff, i.e., C = 0 for z ~ zo

—= 1 —2o.„) and 4 = const for
z & zo. We then find

(6.8)

with

3SrX= Ql —n„i
K

(6.9}

Using (4.60), we can now perform the integration over
r in (4.45) to find A. For small l, S /K 6(/l, so there
is a strong exponential cutofF for I & (. Thus we can
legitimately set A(r, l) Ao. Then we obtain

~ i/~
/

i

3 , S /JC 3S /tC)
47r(l —n„&) q7rK) S'

(6.10)

B. The intermediate-scale region

The formula (6.1) incorporates our model of the p-
q correlation which, as we have seen, provides a very
effective cutoff for values of I of order ( or less. However,
it would still predict an impossibly large value of A. If
we substitute &om (6.10) into (4.44), this arises &om the
contribution of the intermediate region, where

(6.11)

In this region, K m(l —iU)l, while S2/K m/(1 —m)
is of order unity, so the integrand in (4.44) behaves like
1/l . Thus we find A 1/(, up to a constant of order
one. This would mean an extremely rapid decrease of L,
on a time scale of order (, which is clearly not consistent
with the results of the simulations.

The explanation for this discrepancy again lies in the
angular correlation effect, but of longer segments of
string, not merely individual p and q vectors.

Think of a section of string of length l and extension r,
and suppose that ( (( t &( (. In. other words, the section
contains many kinks, but viewed on a large scale it is
likely to be fairly straight; i.e., ~r~ is a sizable fraction
of L. Now consider the collection of p vectors on this
section. Their ensemble average is of course (p) = r/l.
So the distribution of p vectors will be strongly skewed,
concentrated into a cone around the direction of r.

The q vectors on the corresponding right-moving sec-
tion will also be concentrated in a cone, around the direc-
tion of r, . In most cases, the two cones will not overlap
much, and rather few loops will form. On the other hand,
where the cones do overlap, many loops will form. Such
a section will disappear rapidly in a burst of loop forma-
tion. After a short time, regions where the distributions

overlap will be rare (cf. [32]).
Of course, regions of overlap are continually being re-

formed, as sections of string meet new partners. In par-
ticular, the intercommuting process brings together seg-
ments of string that had been far apart and are therefore
more or less uncorrelated. In some fraction of cases, de-
pending on the size of the cones, these segments will have
overlapping distributions, so a &esh burst of loop forma-
tion will be triggered. This burst phenomenon has indeed
been observed in the simulations.

It is important to note that the angular concentration
effect will be even more pronounced for somewhat larger
loops. One may think of the string section as composed
of short straight segments of length g, with randomly
varying orientation within the cone around r. Thus their
transverse extensions are essentially a two-dimensional
random walk. If we select a length n(, its overall ex-
tension will be close to n(r/l, with a transverse spread
proportional to ~ng. Hence the angular distribution of
such sections will be concentrated in a cone whose angle
is reduced by a factor 1/~n compared to the cone of p
vectors.

The question we want to answer is: how does the loop
formation probability depend on the three scale lengths
C, (, ('-

In approaching this question, let us begin by consider-
ing an initial state in which all three scales are compa-
rable in magnitude, as would be expected shortly after
the string-forming phase transition: ( ( ( & t. In
this case, the upper cutoff of the loop-formation integral,
at (2/yt, may well be smaller than the lower cutofF, (.
What this means is simply that almost all loops formed
reconnect to the network. There is then no reason why
either ( or ( should grow rapidly. If we consider only the
stretching terms, we expect (in the radiation era)

(6.12)

Here o. may be dependent on the ratios of length scales,
but its value is presumably small, say around 0.2. This
implies that ( oc to ~. Thus we reach a regime where

( &( ( & t. The upper cutofF does grow, if only
rather slowly: (z/yt oc to 4.

The next stage is easy to describe, at least qualita-
tively. Large numbers of small loops start to form, with-
out reconnection, increasing the rate of growth of (. But
also ( starts to grow. This is because of the selective
nature of loop formation. Some sections of string will
be relatively straight. On those, the distributions of p
and q vectors will be confined to cones. In a few such
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cases, the cones may overlap, leading to rapid disappear-
ance; in most, they will not. By contrast, on the more
wiggly sections of string, p or q vectors will readily find
partners. Those sections will disappear too, though not
perhaps quite as rapidly as where there are overlapping
cones. The net result will be to eliminate selectively the
more wiggly sections of string, leading to growth of (.

One consequence of this that will be important later
is that the function 8(r, I) representing the probability
of loop formation will be more concentrated towards r =
0 than would otherwise have been expected. In other
words, the variance function Q defined in (4.47) will be
smaller than the original form (4.59) would suggest.

Although ( starts to grow, there is still no reason for (
to do so. Every intercommuting event and every loop for-
mation introduces new kinks, keeping down the average
interkink distance. (As we shall see later, there is good
reason to believe that t,

' does eventually start to grow, but
only when gravitational radiation becomes important. )

Thus, within a few expansion times, we may expect
to reach a regime where g &( ( (& ( ( t. How, in such
a regime, does the loop formation rate depend on the
various length scales? In other words, what correction
factor do we need to apply to the rate (5.1) calculated
neglecting the angular correlation efFects?

Consider a particular loop size l within the range
g &( I « ( /yt. We also assume that I (( (. Typically
then a segment of length / will be part of a longer section
that is roughly straight on a scale of order (, with many
kinks separated by distances of order (. The segments
of length I, will be concentrated around this overall direc-
tion. Unless this is a region where there is a burst of loop
formation, the corresponding right-moving segments will
be concentrated in a similar, but essentially nonoverlap-
ping, cone—simply because regions where cones overlap
quickly disappear.

In these circumstances, loop formation will occur
only when segments meet new partners with a difFer-
ent overall direction. This happens for two reasons-
intercommuting and the steady progression of left and
right movers.

Consider first intercommuting. The probability that a
segment of length / experiences intercommuting within a
time interval ht is ylht/(2, or, to put it another way, the
average time between such events is ( /yl.

The steady progression will bring a given segment
alongside ones with a diRerent overall orientation when
the left and right movers have moved relatively by a dis-
tance of order (, i.e. , after a time g/2. In the regime
we are presently considering, this is a much shorter time,
so the steady progression is the important effect. (The
intercommuting time would be shorter only for segments
well above the upper cutoff length. ) It is therefore rea-
sonable to ignore the intercommuting efFect.

It is important to realize that this does not mean in-
tercommuting plays no role; quite the contrary. What
we are saying is that the direct efFect of intercommuting
within the chosen segment is unimportant. The indirect
eRect of nearby intercommuting is one of the things that
keeps ( down, and is in fact clearly crucial.

If the orientations of the segments of length l were

(6.13)

where c is a dimensionless parameter rather less than
unity. This parameter was treated as a constant by KC
[20] and by CKA [21] was expressed as a sum of separate
small- and. large-loop terms. Here, however, we regard
it as a function of the ratios of length scales and the
horizon. It is expected to be less than unity, perhaps of
order 0.1.

Note that the index n defined in (5.34) is

2X ('
c2 (2 (6.14)

So n is expected to be larger than unity except in the
rather unlikely event that ( is very much larger than (.

C. Rates of change of ( and (
We now take up the calculation of the efFect of loop

formation on the rates of change of the length scales in

random, a given segment would meet another of essen-
tially difFerent orientation every time it moved on by a
distance I, i.e. , after a time I/2. As it is, because of the
long-range correlation, it will meet a segment with an es-
sentially difFerent orientation only after a time (/2. On
this ground, the rate of loop formation should be sup-
pressed by a factor of approximately //( (for I ( (; there
is no suppression for l ) ().

This is not the end of the story, however. We have
to consider what happens when a new segment is en-
countered. The new right-moving section of string may
have any orientation relative to the left-moving section.
We may assume that the relative orientation is random.
Thus if o. is the angle between the two, then coso. should
be uniformly distributed between —1 and 1.

As we saw, the left-moving segments of length / lie
within a cone whose semivertical angle P is proportional
to 1/~n, where n is, roughly speaking, the number of
sizable kinks on the segment, namely n —I/g. The solid
angle within the cone is of order mP m(/l.

Now clearly, if a is significantly larger than P, then
our chosen segment is very unlikely to meet a matching
partner. On the other hand, in the relatively rare cases
in which o. ( p, loop formation is extremely probable. In
other words, we may expect another suppression factor,
roughly equal to the solid angle of the cone divided by
4vr, namely (/4/.

Putting these two suppression factors together, we ob-
tain an additional factor in A(l) of about (/4(. We
now insert the expression for A(t), given by (6.10) with
this factor, into the formula (4.44) for the overall loop-
formation rate A. Here we have to integrate from the
lower limit ( to the upper limit ( /(yt). Since A(l) oc

1/I, the integral behaves like jdl/I, and it is the lower
limit that dominates —as must be true if most loops pro-
duced are indeed small. Hence the integral is of order
I/(. Taking account of the extra suppression factor, we
see from (6.10) and (4.44) that
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the problem.
First, we consider (. It is of course defined in terms of

L by (2.16), from which it follows that

while for the second it is

Kg K—
K, K (6.20)

2L
(6.15) where

loops

2 2(' (6.16)

Thus the rate of change of ( due to loop formation is
K =

2 [K(li + yo) + K(l —yo)

K(yp) —K(l —li —yp)],
K = K(l). (6.2i)

where the dimensionless function c is given by

c
i

—,—,—
i

= A( = ( dl /A(l).&('('() o
(6.i7)

The exponent in the first term of the integrand in
(4.54) contains the inverse of (6.18) plus a single-entry
contribution from the extra factor e(ri, li). In other
words, the inverse of K is replaced by the inverse of a
new matrix L, given by

Kg K— K. Kb
(6.is)

where

Ki ——K(li),
K =

2 [K(li + yo) + K(l + li —yp)
—K(yp) —K(l —yp)],

Kg = K(l+ li), (6.i9)

For the other two scales, we have to examine the rate
of change of the variance function K. The Gaussian ap-
proximation should be valid, since there is an effective
cutoK in the region of very small loops due to the behav-
ior of the angular distribution function and the volume
factor.

It is then straightforward to derive an expression for
the rate of change of K by performing the integrations
over ri and r in (4.54) explicitly.

In the Gaussian approximation, the joint probabilities
are given by expressions of the form (3.26) with K re-
placed by the covariance matrix (3.31) and r ri given by
(3.45).

For the first term of (4.54), the appropriate covariance
matrix is

—1 —1L =K +, 00 (6.22)

with Qi ——Q(li). Thus

Qi+ Ki 0

q, K. q, (6.23)

whence we find

QiKi
Q, +K, QiK

QiK
K.(Q +K )-K2

It is now straightforward to take moments of (4.54) to
find (BK/Bt)~ ~, When w. e perform the r and ri inte-
grations, we obtain a determinantal factor, which essen-
tially cancels the normalization constants, and a factor
corresponding to the expectation value of r in the ap-
propriate distribution.

I et us consider the expectation value factor. In per-
forming the r and rq integrations in the first term, it is
simplest to change variables &om r to r' = r+rq, so that
r becomes (r' —ri) . Hence the appropriate expectation
value comprises a sum of elements of the matrix L. In the
second term, we have only a single element contributing.

In this way we obtain

2Qi
Qj + Ki

d K 1
ypK +

«, A(l, ) l
~

K, —K++q, +K, &

L L

dyp K i+Ki dQp K (6.25)

From (4.40) and (6.25), we now obtain D. Rate of change of g

p, 1
2'&'&) ' (6.26)

dl, A(l, ) i
2g, + q'(

Qi+ Ki (6.27)

where I is another dimensionless function of the scale
ratios defined by

Estimating the rate of change of ( is less straightfor-
ward. The region of the integrand where lz is very small
is strongly suppressed by the A(li) factor, so we need
not be particularly concerned with the behavior of the
remaining factors in this region. However, the same is
not true of the region where the length l of our original
segment becomes small. In the small-l case there is a
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special feature that requires separate attention.
We noted in Sec. IIIF that for small values of l» the

conditional expectation value of r» is no longer given by
the expression (3.37) but rather by (3.51); it reduces to
the unconditional expectation. The same argument ap-
plies to the conditional expectation value of r for small
l. It follows that in the contribution to (6.25) arisirig
&om the second (negative) term of (4.52), the integrand
should in that limit be simply K l, rather than
K —K2/(Qr + Kr).

The same argument applies to the first (positive) term.
It is true that neither l» nor l + l» goes to zero in the
small-/ limit, so the mean values of r», r' or r» r' in-
dividually should be well approximated by the Gaussian
form. However, we are interested in the expectation value
of r, which is a small difference of these large quantities.
Clearly, it too must approach I in the limit l —+ 0.

If we simply set the mean value of r everywhere equal
to K(l), the entire contribution would cancel out. How-
ever, this may not be quite correct.

Suppose a loop is formed and that we choose a very
small segment of length l on the loop. What is the vari-
ance of its extension? Clearly the leading term for small
l is l, but we could easily have

(1+k) l'
loop (6.28)

with a value of k g 0. Indeed, it seems likely that loops
are generally kinkier on small scales than long strings, in
which case we would expect A: ~ 0.

In this case, we easily And

loops (6.29)

VII. STRETCHING

To complete our central task of deriving the various
terms in the evolution equations for p[r(l)] and K(l), we
have to estimate the various parameters and unknown
functions that appear in them. For the stretching terms,
we need to examine the parameters n and P, which are
defined by (4.19) and (4.20).

To match the notation of the preceding section, we
denote the integration variable in these expressions by yo.
Note that the expectation values appearing here are those
conditional on the extension r of our chosen segment of
length l.

However, we can use a simplifying ansatz. The effect
of r is important mainly in the region of relatively large
values of yo —y», in which it is reasonable to use a gen-
eralization of the exponential ansatz (5.14): namely,

Ibl
C'[q(»)l = „.„h]b]e

' (7.1)

where, as in (5.10),

b = 3(q(»)). (7.2)

(2+ Ay)
~(q(»))

Oy
= &(p(y ) —«p(y ))

+, (q(»)) —A(q(»))

+A(q(y )) (7.3)

with y = yo —yi as before. Note that because p(yo) does
not appear here, there is only a single stretching term
on the right-hand side; the factor of 2 that appeared in
(5.27) is absent.

Consider first the region of large y, where the expecta-
tion values are small. Within this region we may write,
as in (5.31),

(q(»))x = (p(»)) + (q(»)) (7.4)

and replace (p(yi) —qq. p(yr)) by s(p(yr)). Then, as in
(5.33), we find

A+ sH t' Ayl"
(q(y. )) = — ' dy

I
1+

0 4 2)
~e '""' (p(y )) (7.5)

where n is again given by (5.34).
The conditional expectation value (p(yi)) which ap-

pears here was evaluated in the Gaussian approximation
in Sec. III. It is given by (3.41).

As before, there will also be a nonlinear contribution
to (q(yo)) arising from the sharp hole in the angular dis-
tribution for z close to 1. So long as the contributions to
this quantity are both reasonably small (which appears
to be the case), it should again be well represented by a
sum

(q(yo)) = (q(yo))i -+ (q(»))-i.

Thus all we need is an equation for the expectation value

(q(»)).
The required equation is a simple generalization of

(5.27): namely,

A. Evaluation of P
Moreover, the nonlinear contribution to q(yo) p(yo) is
not much affected by the value of r, so it is reasonable to
set

First consider p, given by (4.20). To estimate the ex-
pectation value (q(yo)) conditional on the values of r,
we again use the equation of motion for q, (2.8).
could now derive an equation, similar to that for 4 in
the preceding section, but now for the complete angular
distribution, 4'[q(yr)] say, of q(yr).

Substituting from (7.6), (7.5), and (7.7), we thus ob-
tain
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(~(yo)) = —~-~(p(yo))
A+ sH ( Ay)"

dy 11+—
I

o & 2)
'"'"' (p(y —y)).

Now, by (3.41),

(7 8) Thus, (4.20) yields

K'(yg) + K'(l —yg)

2K(l)
(7.9)

P(l) =~ i+ '
dyo dy[K'(yo —y)+K'(I —yo+y)] l

1+—
l

+ 3 ( Ay)"
4K(l) 2)

We may now perform the integration over yp, obtaining finally

P(t) = n„&+ dy [K(l —y) + K(t+ y) —2K(y)]
l
1+—

l

e
A+ 3H ( Ay&"

4K(t) 2)

(7.10)

(7.11)

[Recall that for negative values of the argument, K(y) is to be interpreted as K(lyl). ] It is interesting to note that at
least in this approximation P is actually a function of l only, independent of r.

Although we shall not require an explicit form, it is interesting to note that if K is assumed to have the two-scale
exponential form (3.10), the integral (7.11) can be evaluated in terms of the incomplete I' function. (Note that to do
this, one must split the range of integration into separate ranges 0 & y & l and l & y & oo. )

B. Evaluation of a

Now let us turn to the evaluation of n. The analogue of (7.5) is of course

(p.a(yo)) = — ' d»
l
1+

l

e '"' (p(yo). p(yo —y)).
+ sH ( A(yp y]) )

)
(7.12)

The factor of s is replaced here by s because, as in (5.33), we now have to include the effect of the rate of change of
p(yo).

Substituting &om (3.48) and adding a nonlinear contribution, we then get as before

A+ -', H ].
(p 9(yo)) = —~-i — ' dy K"(y) + —lK-'(yo) + K'(& —yo) 12 p 2 4

x [K'(yo —y) + K'(l —yo + y)] l
1 + —

l

r —K(l) ( Ayl"
K(l)2 q 2 ) (7.13)

First, let us examine the mean value n, given according to (4.19) by

dyo p'g(yo). (7.14)

From (7.13), it is obvious that p.g(yp) (to which the second term in the braces does not contribute) is in fact
independent of yp. Hence we find

A+ sH „( Ayl"
~ = —pa = ~-i+ ' dyK"(y)

l
1+—

l4 o

w+ -', a ( Ayi"= ~ i+ ' "y&(y) 11+—
l2 p 2 )

~
—XtI/&6'

~
—xu/&4' (7.15)

which may be compared with KC, Eq. (3.36). The important differences are the two extra factors in the integrand,
especially the exponential representing the effect of intercommuting, and the fact that A appears as well as H in the
factor multiplying the integral.

It will be useful to define the dimensionless function E by
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A+ ,'H-„„(Ay)" '
dyK y 1+

~

e &il/

0 E 2) (7.i6)

If f = zK" is assumed to have the two-scale form (3.9), and if the length scales of interest are large compared to
1/A, then F is expressible in terms of incomplete I' function:

with

& = 2~
~

1+
~

x "e*l'(n, x),
4H)
3A)

(7.17)

2B +n (7.18)

Returning to the remaining terms in n, we see from (4.19) and (7.13) that it may be written in the form (4.16).
The function 6 is given by

l6(l) = dyo [K'(yo) + K'(t —yo)]

Ayl" '
x dy [K'(yo —y) + K'(l —yo + y)] i

1 + —
i

e """
0 2) (7.i9)

Unfortunately, it is no longer possible to perform the
yo integration explicitly without assuming the form of K.

If we use the same large-l approximation in the expres-
sion (7.19) for nl we see that the yo integral is of order
$2l. Clearly therefore

C. Rates of change of length scales n(oo) = 0. (7.24)

It is now easy to compute the rates of change of the
various „.scale lengths.

The rate of change of I is given by (4.15) [together
with (7.15)]. Prom (6.15), we thus find

These two results together yield

('-" = H'[2P(oo) —n] = H
~

cx„$ + G — F~ . (7.25—)

4 j (7.20)

p(oo) = n„)+ —G,
2

(7.21)

where the dimensionless function G is given by

((( tl ( 2 ) ( Ayl"
GI —,—,—

f

=
I
A+ —H

I
dy

I
1+—

I

&) 4 3 ) 0 & 2)
X~

—xu/&&' (7.22)

This function can be explicitly evaluated in terms of
the incomplete I' function as

For the other length scales, we examine the rate of
change of K, given by (4.22). To do this, we need to
examine the large- and small-l behavior of the parameters
o, and P.

First, we consider the liinit l -+ oo, where K(l)
2O+ constant. Substituting this form in the expression
(7.11) for P, we find

Next, we turn to the small-l limit, using the approxi-
mation K(1) = l2 —ls/3$. Now in (7.11), the expression
in square brackets in the integrand is clearly an even
function of /, equal to l2K"(y) + O(l4). We shall need
the terms in P up to order l. Since the denominator is of
order /2, the l term in the integrand is irrelevant. The
integral that appears here is then exactly the same as the
one in (7.16).

It is no accident that P(0) is almost exactly equal to n.
In fact, it is physically obvious that for short segments,
the extension r and the length l must expand by identical
factors. There is an apparent difFerence between the two,
namely the replacement of (A + s H) by (A + 2sH). How
ever, this difference is spurious. It arose because in the
one case we included the effect of the rate of change of
p(ys), while in the other we ignored the change of r. But
for very short segments, r and p have of course essen-
tially the same direction, and it is no longer reasonable
to neglect r. Therefore in the small-L limit, we ought to
replace (A+ sH) by (A+ sH).

In this way, we find

2Hi
G = 2

~

1+
~

~ "e"I'(ii,~).
3A j (7.23)

1 ( l
p(l) = pe+ pi —= u„)+ I"

~

1+ —
~

(I (( —g). (7.26)
2 ( 3()
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dyp [2l] [lK"(y)] = 2l K"(y). (?.27)

Again, therefore, we find the integral E appearing:

The l/( term arises from expanding the denominator.
Next we turn to a. For small l, the leading term in the

gp lntegl al is
l

Another way of expressing (8.1) is to think of the grav-
itational radiation as being generated by each encounter
between a pair of kinks, one left moving and one right
moving. If we think of (, roughly speaking, as the mean
interkink distance, we find that the number of such en-
counters on a left-moving segment of length L in a time
interval dt is

o'(l) = np + O(l) = —E + O(l) (l M 0).
1

2
(7.2s)

2L dt
(s.2)

In this case, we shall not need the O(l) term.
To evaluate the l term in (4.22), we need to examine

the limiting behavior of the function K(2l(l). As we saw

in Sec. IIIF, as l ~ 0, K(2l oc l /(; to be specific let us
assume that

iPG 2q (8.3)

Hence (8.1) is equivalent to saying that each kink-kink
encounter generates the release of an amount of energy
equal to

~5

K(2) ~ C

Equivalently, C is given by

K(2) (l)
K~ (l)

l m0.

l m0.

(7.29)

(7.30)

The gravitational radiation from infinite strings has
been studied by several authors [33,34,27]. In particular,
Hindmarsh has obtained a formula for the power emitted
from encounters between left-moving and right-moving
sequences of small-angle kinks. He finds [Ref. [27], Eq.
(23)] that the power per unit length is

Now from (4.22), we find, using (7.26) and (7.28),
= 2((2)Gp 0„0„1n(d/r~)d

dz
(s.4)

"' = H(3a —2Pp + 6/i —12Cnp)

3 —12C=H n„)+ )
(7.31)

VIII. GRAVITATIONAL RADIATION

There is one final effect that we have not so far con-
sidered, but which is in fact of great importance in the
long-term evolution of the string network: gravitational
backreaction. We have been able to ignore it so far be-
cause it operates on a very different length scale from
most of the other effects.

Consider the gravitational radiation from a large
length L of string. Essentially the only scale that can
have any relevance here is the smallest scale (, which can
roughly be identified with a mean interkink distance. We
expect the rate of loss of energy, or equivalently length,
to be

)2 2
02 ~—

)2 (s.5)

Hence the formula (8.4) suggests that the rate of loss of
length should be proportional to (l —r )/l .

As in the case of stretching there is an important con-
sistency condition. The long string can be divided up
conceptually into segments of any chosen length, and the
proportional rate of loss of length must be independent
of the choice, and must agree with (8.1), i.e.,

where O„and 0 are the kink angles of the left- and right-
moving kinks, d is the interkink distance, and r~ is the
width of the string. Since the logarithm is slowly varying,
it is reasonable to replace it with a constant, of order 10
to 102. The length d is of course related to our (; by
(3.53), d - 02(.

Now let us consider how to apply this formula to our
problem, namely, how to estimate the rate of loss of
energy or length from a chosen segment of left-moving
string of length l and extension r. Consider first a rela-
tively short segment, containing a single small-angle kink
of angle 20. Clearly, we have

(Bl i
&~t) cR

= —rG~ —, (s.1) I'Gp
lGR = — I. (8.6)

where I is a constant of order 10 or 10 . In other words,
the lifetime of the small-scale structure would be of order
(/I'Gp, .

It should be noted that numerically I' here may be
expected to differ somewhat Rom the values quoted in the
literature, which have mostly been derived from studies
of oscillating loops, because in those cases the length scale
used was the length of the loop, whereas ( is defined
somewhat differently. In fact, since the typical loop size
is probably a few times (, our I' is probably somewhat
smaller.

Putting these two requirements together, we find that
the expression for lGR must be

~ I'Gp )2 —r2

l2 —K(l)
l (s.?)

So far, we have concentrated on the change in the
length I, of our segment, but we should also ask whether
there will be any change in the extension r. At first sight,
it might seem that the answer should be no. Certainly
in the case where / is large, gravitational radiation will
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change the extension at most by an insignificant amount.
However, it is also clear that for small l, particularly if
the segment is chosen to end near a kink, there could be
a signi6cant reduction in r. Indeed, as we shall see, it
turns out that this is essential for consistency.

If there is a reduction in r it seems reasonable to sup-
pose that, for segments of a given length l, it too is pro-
portional to (l —r ); certainly we would expect it to
vanish in the extreme case of a straight segment, with
r = l . Let us therefore assume that it takes the form h(0) = 1 —-', C

(s.16)

Consider the limit l —+ 0. For small l, the leading terms
in K(l) are given by (3.50), so l —K = l /3$. Moreover,
as we saw earlier, K(2) Cl /g. Thus we find that
the expression in the curly brackets in (8.13) has a term
that behaves like / for small /. This is inconsistent with
the assumed form of K. Hence for consistency of our
approximation we must assume that the coefficient of l
vanishes, which requires that

(8.8)

where h(l) is an as yet unknown function.
It also seems plausible to assume that for very large

segments gravitational radiation has no significant efFect
on the overall extension. This would imply that

(cR - I Gp,
(8.17)

The value of h'(0) turns out also to be important, but is
not constrained by any consistency requirement.

Then, by (4.42), the l term in (8.13) yields

h(l) -+ 0 as l m oo. (8 9)

From this, we easily And

(c)K) & . , LcRlcRr2 + 2r rcR + L
K. (8.11)

&~t JcR
Substituting &om (8.1), (8.7), and (8.8), and using the
identity

r2 I,2 —r2 — r2 —~ Z(2)
j2 ~ t2 ~ j2 (8.12)

we obtain

We are now in a position to evaluate the change due
to emission of gravitational radiation in the probability
distribution p[r(l)). It is obtained in exactly the same
way as in the case of stretching, from the analogue of
(4.8): namely,

K(l)= ' — +, +

C,&'
+ 0 ~ ~

j2
h.il

h(l) = h(O) — +

(8.18)

then

C = —3(1 —12Cs + 3k4C) + 2h(0)(1 —9Cs + 4k4C)

+6hi (1 —3C) . (s.19)

From (3.56) we see that if the model of Gaussian-
distributed small-angle kinks is correct, then

02C= —.
15

(s.2o)

where C is another constant, related in a somewhat com-
plicated way to the leading terms in the power-series ex-
pansions of K, K~2), and h. Specifically, if

fMC)
) cR

rGp, t9 f' () )
Ol gl' —K)

In any event, it seems likely that C (( l.
As a good erst approximation, we may set C = 0 and

Cs ——0, which means that h(0) = 1 and the value of k4
becomes irrelevant. Then (8.17) becomes

(s.13)
(6„1)rG (s.21)

(cR rGIj'
2C

(8.14)

As before, we can now find the rates of change of the
various length scales. Prom (6.15) and (8.1), we get Note, however, that the value of hi is clearly important.

The sign of this term is crucial, as we shall see, in deter-
mining the nature of the solution. In our rough approxi-
mation, C ) 0 requires hq & 6.

Similarly, from (4.40) and (8.13), we find

&cR (8.15)

When we come to examine the third length scale, g, we
can see why the presence of 6 is essential for consistency.

IX. OVERALL EVOLUTION EQUATIONS

We can now combine all the various terms together to
give composite rate equations for L, for p[r(l)j, and for
K(l). We hope to return to these equations at a later
date. For the moment, however, we shall not write them
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down explicitly, but concentrate instead on the equations
for the three length scales.

A. Rates of change of length scales

We begin with (. Prom (7.20), (6.16), and (8.14), we
obtain

( (3—=H/ ——
g2

O'nl rG&
E~ —+ =c+

4 ) 2( 2(
(9.1)

( 1 l y ( 1 I'Gp
= = H

~
cx„, g G — F~ —-——,+ =I+, (9.2)

2 ) io (2 2(

where I was defined in (6.27).
Finally, we turn to the small-distance scale length (.

Using (7.31), (4.43), (6.29), and (8.17), we find

( 3 —12C l yg k I'Gp, -—=H „i+ E — += + C, 93

where the dimensionless functions E and c were defined
in (7.16) and (6.17).

For the other large length scale (, we have, from (7.25),
(4.41), (6.26), and (8.15),

still comparable in magnitude, but for the most part it
can be safely neglected.

Now let us turn to the function G which, in (7.23), was
expressed in terms of the incomplete I function. It de-
pends primarily on the value of A(. According to (5.34),
when A( is small, n &) 1. Then we can use the fact that
asymptotically I'(n, n) 21 (n) to get

2H I 2vrG= /1+ 3A) n
(A+ zH)( (small A().

(9.5)

In the opposite (unrealistic) limit of large A(, where
H( is certainly negligible, we have

G = —2Ei( —n) = —2lnn = 4ln(A() (large A().

(9.6)

Next, let us consider the function F, given by (7.16).
There are two large scales involved here (quite apart from
the small scale (). The function F depends primarily
on the two variables A( and A(, though it also has a
weak dependence on the small length scale. Note that,
according to (7.18), the argument x of the incomplete p
function in (7.17) is

where C was defined in (8.19). 2B 2~ 2y
A A( A2(~ (9 7)

B. Estimation of parameters

cj,'
O'nl

2 2(
(9.4)

This parameter will be very small, o.„~ &( 1, throughout
most of the relevant region of parameter space, initially
because c « 1 and later because ( « (. There might be
just a short period in which it becomes non-negligible,
when ( has grown large compared to (, but ( and ( are

To determine the outcome of the evolutionary pro-
cess, we first have to estimate how the unknown func-
tions c, E, G, I depend on the ratios of length scales,
and the likely magnitude of the additional parameters
~n)) 'Uj) +) C) and k.

In some ways the most basic parameter is c, which gov-
erns the rate of loop formation A via the relation A = c/(.
As we argued in Sec. VI B, if initially all the length scales
are of comparable magnitude, then A will be very small
because almost all loops formed reconnect. In that sit-
uation, c « 1. Only when the upper cutoff ( /t has
grown to be significantly larger than g do many loops
start to survive. Once that happens, we expect c to be-
come of order 0.1 to 1. At present, we are not able to
calculate the value very precisely, because it is strongly
inBuenced by the intermediate-scale angular correlation
effect discussed in Sec. VIB, for which we have only a
very qualitative treatment. Fortunately, the precise value
of c is not critical, because it appears as a common factor
in several of the important terms.

We note that, according to (5.53),

Consider first the case where A( )) (A() . Then x n
and so (if H (( A)

A( » (A()' . (9.8)

Note that, directly from the integral definitions (7.16)
and (7.22), it follows that, at least when H is negligible,
we always have E ( G.

In the opposite limit, where A( « (A(), we have z =
2io/A( )) n, and consequently E « G. If A( (( 1, we
can use the large-x form of the incomplete I' function to
get

F = (A+ sH)( =
~

1+
~

c( 4H~
(small A(). (9.9)

On the other hand, if A( ever became large, we cauld use
the small-x approximation, obtaining

F = 2~Uin(A() (A()' » A(»1j. (9.10)

In the intermediate region, where A( and A( are of
order unity, or somewhat less, E and G are both likely
to be, very roughly, of order unity, with E & G.

Strictly speaking, the expressions for E and G are both
based on a linear approximation and cease to be valid for
large A$ or A(. Recall that E/2 is the linear contribution
to the value of o, . Prom the simulations, we know that
6 0.2, so E is almost certainly significantly less than
unity.

Now we turn to the function I defined by (6.27). Ini-
tially, if all the length scales are comparable, I, like the
other functions, will be small, because the loop-formation
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(I) —Q(t)
o K(l) + Q(I)

(9.11)

Clearly, the ratio Q/K plays a very important role here.
If it is approximately constant over the relevant range,
then we get a very simple expression for I:

probability is small. Consider, however, a later time at
which loop formation has started and ( has grown to be
)) g. The integral is then dominated by the region where
li is a few times g. In that region, Ki « 4(li. Hence we
have, to a good approximation,

must be g/I'Gp.
Finally, we have to consider the parameter k. Like

I/c, k is related to the parameter q —1 defined by CKA
[21], except that it is not concerned with the large-scale
wiggles described by ( but with the small-scale kinkiness
described by g.

One indication of its magnitude can be obtained by
considering a related but slightly different parameter.
Consider loops of length / and extension r. The probabil-
ity of finding such a loop is proportional to p[r(l)]8(r, t).
Hence if we choose a loop of length l at random, the
variance of its extension is

K —Q — K —QI=2 A/=2 c.K+ K+ (9.12)
(9.14)

Now, how large is Q likely to be'? If the original ex-
pression (4.59) for the loop-formation probability func-
tion 8(r, l) were correct, we should expect

1 1 2G

Q K 3E2 ' (9.i3)

where the second term arises from the volume factor A.
But in addition to this, we saw in Sec. VI 8 that the an-
gular correlation effect would be expected to contribute
another term to 1/Q. Although we have at present no
means of estimating this contribution with any precision,
it seems reasonable to expect that it too would be propor-
tional to 1/I and of a similar order of magnitude. Even
from (9.13), we see that 1/Q should be significantly larger
than 1/K. The additional angular correlation term en-
hances this effect, suggesting that 1/Q should be very
substantially larger. Consequently, Q « K and it may
be a reasonable first approximation to set Q/K = 0,
which would mean that I 2c. In any event, we expect
that the ratio I/c will be not too far below 2. We shall
see later that I/c is closely related to the parameter q
introduced by CKA [21]; in fact I/c = q —1.

There are several other unknown parameters that enter
our evolution equations. The parameter m is defined in
terms of the large-l behavior of the variance function K:
for large /, K 2(l —2( /ui. It was originally introduced
in terms of the illustrative two-exponential model of Sec.
IIIA, which suggests that it is limited to the range 0 (
m ( 1; a typical value might be 2. So long as it is not
very small compared to 1, the precise value of m is not
critical.

The parameter C is defined by (7.29) in terms of the
small-l behavior of the function K~2l (l). Simple models of
kinks suggest, e.g. , as in (8.20) that C is small compared
to unity, say of order 0.1 or less. Within this general
range, the precise value is probably not significant.

The effect of gravitational radiation on the small length
scale ( is governed, according to (8.17), by the parame-
ter C, defined by the rather complicated relation (8.19).
In view of the number of independent parameters that
contribute to this relation, it seems to be very dificult
to estimate C &om first principles. However, on physical
grounds it seems clear that C should be positive, and pre-
sumably of order unity. The effect of gravitational back-
reaction must be to smooth out the small-scale kinks on
the string, and the expected time-scale for this process

Since we know that Q is small compared to K, this vari-
ance is (( K. This statement applies to the whole loop,
not to a segment on the loop, but of course the two are re-
lated. If a loop typically has an extension much less than
that of a similar piece of long string, the same must be
true for a small segment on the loop, though the effect is
probably less dramatic. So we must expect ri2 & K(l),
which implies k ) 0. It is not so easy to estimate its mag-
nitude, but as we shall see there are reasons for believing
that it cannot be large.

C. Equations for scaling variables

In our previous work [21], to discuss the possibility of
scaling, we expressed both our length scales as &actions
of the horizon distance Bw. It turns out, however, that
we can obtain slightly simpler equations if instead of the
horizon we use the expansion time, 1/H We defin. e the
three dimensionless ratios

1 — 1 1
H(' H(' H(

(9.15)

c=ci —,—,—i.&~'v p)
(9.16)

Then, substituting into the evolution equations and
dividing by H, we obtain

y—pt-
y

y—pt—
'Y

/'3 n„i Ii ) c I Gp= —p+ i

—— " ——i+ —p+
q2 2 4) 2 2

= —p+
~

n)+ G ——
~

— + —p+ I'Gpe,
2) urp 2

(9.17)
C

pt = —p+ in—y+-
e

+I'GpC~.

3 —12C + kcp
2 )

In the radiation era, p and p are identical to the variables
used by KC and CKA, but in the matter-dominated era
they are half as large.

We also define p so that R oc t ~", i.e. , H = 1/pt. Thus

p = 2 in the radiation era and p =
2 in the matter era.

The dimensionless functions E, G, c, I may now be re-
garded as functions of the ratios of these variables, e.g. ,
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It is trivial to write down equations for the rates of
change of the ratios of length scales. In particular, we
find

(9.is)

This will be useful later.

D. Scaling of ( and g

We now return to the main issue: what do the evolu-
tion equations tell us about how the length scales evolve?

Let us suppose, as in Sec. VIB, that we start with all
three length scales comparable in magnitude, and at least
somewhat smaller than the horizon size. Initially, most
loops that form will reconnect, so c will be small, as will
the other dimensionless functions E, t, and I. It is then
clear that ( will start to grow, because of the stretching
effect, while initially ( and ( will not. This will continue
until loop production starts to be significant, when the
upper cutoff ( /t exceeds a few times (. In that region,
we have (

As A grows, it will first reach the point where A( 1,
while A( is still small. In that region, c, F, and I remain
small, but G becomes of order unity. From (9.18) it is
clear that the ratio (/( will then start to grow.

Some time later, we may reach the point where A( is
approaching unity, while A( )) l. If so, c, I', and I would
be not far below order unity but G would be even larger,
so ( would grow rapidly until it caught up with (.

Assuming the gravitational radiation terms are still
negligible, do we then reach a regime where ( and ( at
least approximately scale?

For this to happen, the right-hand sides of the first
two equations in (9.17) must vanish. If we suppose for a
moment that the values of c, E, G, I are known, then we
can solve for p and p. The erst equation always yields a
positive value of p:

(9.19)

The condition that the second equation yields a positive
value of p /p is

I ( I')
(—2p+ 2n„~ + 2G —P) + —

~
2p —3+ a.„i+ —

~

& 0.2)
(9.20)

The ratio I/c plays the same role as q —1 in CKA. Scaling
requires a sufBciently large value of this parameter.

If the condition (9.20) is not satisfied, scaling cannot
be achieved at the given values of c, E, G, I. But of course
these are not constants. If p satisfies (9.19) but (9.20) is
violated, then clearly p will start to grow. The right-hand
side of the First of Eqs. (9.17) then becomes positive, so
p begins to fall. In other words, ( grows faster than (.

This of course afI'ects the values of the various functions.
If c = A( remains of order 0.1 to 1, then A( must grow,

leading eventually to an increase in G (and a smaller
increase in I"). This in turn decreases the right-hand
side of the first equation in (9.17) and increases that of
the second, leading us back towards scaling. It seems
likely therefore that the parameters will adjust to reach
the point where ( and ( do indeed scale.

We must also consider what happens to the third
length scale in this partial scaling regime. To find out,
we examine the third of Eqs. (9.17).

Let us assume that p, p « e « (I'Gp) . Then both
the intercommuting and gravitational radiation terms in
the third equation are negligible. The essential question
is: what is the sign of the right-hand side? Using the
partial-scaling value of p, given by (9.19), we find that
for e to grow we need

p —n„i —
2 (1 —4C)I"

k& 12p —3+ rx„)+ 2E
(9.2i)

For example, if we take o.„~
——0, C = 0, F = 0.4, and

p = 2, then we require k & ~s. (For a similar value of I",
the condition is less restrictive in the matter-dominated
era, where p = 2.)

In passing, it is worth asking what would happen if
the condition (9.21) were violated. In that case of course
e would decrease; ( would start to catch up with ( and

If the dimensionless functions c, I",G, I were simply
constants, ( would continue to grow faster than ( and
( until it actually exceeded them. This is obvious non-
sense. What really happens is that eventually A starts
to drop, thus returning us to a situation closer to our
starting point. In fact, it appears that we would then
reach a complete scaling regime even without invoking
the gravitational radiation term.

This should not be a surprising conclusion. We have
already noted that k, like I/c, is analogous to the parame-
ter q —1 of our earlier work; A: represents the fractional ex-
cess small-scale kinkiness of a loop as compared to a long
string. If A: is large, this means that the loop-formation
process very efIiciently removes small-scale kinkiness, so
that complete scaling of all three length scales is indeed
possible.

What the simulations suggest, however, is a very dif-
ferent scenario, in which ( and ( at least approximately
scale, but ( does not. This is exactly what we expect if
the inequality (9.21) is satisfied.

Our conclusion here is really a straightforward gener-
alization of our earlier results. In Ref. [21], we showed
that scaling should occur if the parameter q —1 exceeds
a critical value. In our present work, we treat separately
the large-scale and small-scale kinkiness.

The parameter that represents the excess large-scale
kinkiness is I/c. Provided it is big enough, ( and ( will
scale (and, as we have argued, that is not a restrictive
condition, because the parameters can adjust themselves
until it is satisfied). On the other hand, for ( to scale as
well, without (/( becoming large, the excess small-scale
kinkiness parameter k would have to exceed a critical
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value. This condition is almost certainly not satisfied in
the real system.

E. Possibility of complete scaling

A consistent solution requires that the numerators of
both these expressions be positive. This places a lower
bound on C: namely,

I et us assume then that (9.21) holds. Then while p
and p settle down to scaling values, e continues to grow.

This transient scaling regime continues until e grows to
be of order (I'Gp) i, so that the gravitational radiation
terms become important. The question is: do we then
reach a new scaling regime in which all three length scales
grow in proportion to t? Equivalently, do we reach a fixed
point of the three equations (9.17)'?

If there is a complete scaling solution, it is in the region
where e » p p. This means that the intercommuting
term in the third equation, » /e, is very small. If we
neglect it, then it is straightforward, for given values of
c, E, G, I, to solve the first and third equations for p and
e, and then to find p from the second.

The solutions for p and e are given by

(2p —3)c —p+ (c+ i)n„, + -'(c+ 3 —12C)z
'Y = 11

(C —k) c

(9.22)

p —(2p —3)k —(1+k)n„i ——(3 —12C+ k)E
(C —k)rG&

J —~„,——,'(i —4C) r"
C» ', A:,

2p —3+ o.„)+2E
(9.23)

where the second inequality is merely (9.21).
We recall that, according to (8.17), C is the param-

eter that defines the efficiency with which gravitational
radiation removes small-scale kinkiness. It is not at all
surprising to find that this parameter must exceed some
critical value if scaling is to be achieved. In fact, the sec-
ond inequality in (9.23) ensures that loop formation is not
sufficient to induce scaling of g, while the first inequality
ensures that gravitational radiation is sufficient.

The corresponding scaling value of p is found from the
second of Eqs. (9.17). As before, there is a consistency
condition stemming from the requirement that p /p be
positive. This condition may be written

( Il
(p —3+ 2o'nl+ G)(c —k) &

~

1 ——
~

([2p —3+ 6„i+ E]C —[p —-6„$ —-(1 —4C)r']).
2c n n (9.24)

Since both factors on the right-hand side are definitely
positive [the second in virtue of (9.23)], this requires a
minimum value of G:

G+ 26„) & 3 —p. (9.25)

F. Stability

As in the earlier transient scaling regime, if this condition
is not satisfied, then p will start to grow and p to fall until
it is.

We conclude that the parameters C and k are the most
important in determining whether complete scaling will
be achieved. The essential condition is (9.23).

2 I
top 2

k|"

j. G'p,
2

rG~
+ I"GpC

(9.26)

for solutions proportional to t . Strictly speaking, of
course, the functions c, E, G, I are functions of these pa-
rameters, but we shall assume that they vary slowly over
the relevant range, so that they may be treated for the
purpose of the stability analysis as constants.

The condition for stability is that the three eigenvalues
A are all negative. In other words, if we linearize the set
of equations (9.17) about the presumed scaling solution,
the resulting 3 x 3 matrix must be positive definite. This
matrix is

Let us assume that a scaling solution exists and ask
whether it is stable.

To study this question, we consider small perturbations
in the three scaling parameters, bp, bp, and be, looking

There are three required conditions, the positivity of
the trace, of the sum of 2 x 2 principal minor determinants
and of the determinant. The first is automatic. The other
two are

X'Y c+I'Gp C~ + —
~

—kc +y
~

+ —~+ —I'Gp, &0,
- (»' ri 7' f»' ri

'ID' gutp2 2) e2 gzop2 2) (9.27)
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(C —k)I'Gp + — I Gp,
~

cXV'+ ——c~+ )0.
2 ) tope

(9.28)

In both cases, the terms are ordered according to the
number of powers of the sinall quantities I'Gp and p/e
that they contain. We see that in both equations, the
leading terms are automatically positive. Thus we con-
clude that if the scaling solution exists it is almost cer-
tainly stable. The essential conditions are the bounds
(9.23) on k and C required for the solution to exist.

X. CONCLUSroNS

We have analyzed in considerable detail the various
processes that acct the evolution of a network of cos-
mic strings —stretching, intercommuting, loop formation,
and gravitational radiation. We have derived a set of cou-
pled evolution equations for the three length scales that
describe the configuration —(, the interstring distance, (,
the large-scale persistence length along the string, and (,
which characterizes the small-scale kinkiness.

We showed that under reasonable assumptions ( and
( reach a scaling regime, growing in proportion to the
horizon, while ( grows slowly if at all. This continues
until the ratio (/( becomes large enough for gravitational
radiation efkcts to be significant. Thereafter, it is likely
that a new scaling regime is reached, in which all three
lengths scale, with ( ( and g/( I'Gp.

These conclusions depend on estimates of various func-
tions and parameters that are still somewhat unreliable.
The most significant parameters are A:, which describes
the excess small-scale kinkiness of loops as compared with
long pieces of string, and C, which determines the rate
at which gravitational backreaction smoothes the small-
scale kinkiness. The fact that small-scale structure is
seen to build up in the simulations strongly suggests that
loop formation alone is not able to smooth the small-scale
kinkiness, or in other words that k is less than the critical
value, (9.21). The essential condition for a full scaling so-

P

lution to be reached is that C exceeds the critical value,
i.e., that gravitational radiation is e8'ective in smoothing
the small-scale kinks.

It would obviously be desirable to be able to estimate
the parameters k and C &om first principles. We hope
to do this at; a later date.

Another key part of the discussion concerns the
buildup of angular correlations between the left and right
movers due primarily to loop formation. We have given
a fairly precise account of the small-scale efFect, lead-
ing to correlations between the p and q vectors, but the
treatment of the intermediate-scale correlations involving
segments of length a few times ( is still rather sketchy.
It is therefore very important to try to improve this part
of the discussion. We hope to return to this question
shortly.

Once some of the remaining uncertainties have been re-

solved, we should be in a position to give a more accurate
description of the scaling regime. It is very important to
realize that the simulations performed so far, which ne-
glect gravitational radiation, may have given misleading
information about the typical scales involved. From the
evolution equations, (9.17), it is clear that when the grav-
itational radiation terms come into play, the eKect will
be to make p decrease. [It is easy to verify that the value
of p in (9.22) is less than (9.19) provided that (9.21) is
satisfied. ] In other words, the typical persistence length
in the final scaling regime is probably a larger fraction of
the horizon distance than it was in the temporary scal-
ing regime where gravitational radiation was negligible—the only one so far accessible to simulations. Whether
p also decreases is less obvious. That seems to depend
primarily on the magnitude of the ratio I/c. We hope
to provide a more detailed analysis of this behavior in a
future publication.

There are many interesting questions that we should
be able to address. With an analytic model it should be
possible to estimate the typical density fluctuations, and
hence microwave anisotropies, generated by a network of
strings. Such an approach has previously been adopted
in [14] using the one-scale model, but it is essential that
we understand the role the small-scale structure plays
in determining the form and amplitude of the fluctua-
tions. For example, do we see any evidence of the effects
from the string tension renormalization as indicated in
the models of Albrecht and Stebbins [5]?

Another interesting aspect which we hope to address
concerns the transition period &om radiation to matter
domination. What happens to the scaling solutions in the
two regimes? Do they smoothly evolve &om one scaling
value to the other? A more detailed analysis of the evolu-
tion equations will enable a determination to be made of
the approach to scaling. We have established the condi-
tions required for scaling but have not discussed the time
scales over which such conditions could be met. In partic-
ular, it would be interesting to examine the way in which
the duration of the transient scaling regime and the way
in which it is goes over to full scaling. This is important
because the numerical simulations only directly give us
information about evolution over a few expansion times.
It might be possible to tackle this problem numerically
in a simulation incorporating the eKects of gravitational
radiation.

There are still many issues to be resolved, but we be-
lieve we have provided a firm foundation for future ana-
lytic work on the evolution of a network of cosmic strings.
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