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It is shown that rotational cosmological perturbations can be generated in the early Universe,
similar to gravitational waves. The generating mechanism is quantum-mechanical in its nature, and
the created perturbations should now be placed in squeezed vacuum quantum states. The physical
conditions under which the phenomenon can occur are formulated. The generated perturbations can
contribute to the large-angular-scale anisotropy of the cosmic microwave background radiation. An
exact formula is derived for the angular correlation function of the temperature variations caused
by the quantum-mechanically generated rotational perturbations. The multipole expansion begins
from the dipole component. The comparison with the case of gravitational waves is made.

PACS number(s): 98.80.Cq, 04.30.+x, 42.50.Dv, 98.70.Vc

I. INTRODUCTION

The recent discovery of the large-angular-scale
anisotropy of the cosmic microwave background radia-
tion (CMBR) [1] is leading to important implications.
It shows that the deviations of our Universe from ho-
mogeneity and isotropy extend to the very large lin-
ear scales, of order and longer than the present day
Hubble radius l~. The main contribution to the large-
angular-scale anisotropy is usually provided by perturba-
tions with wavelengths A of order of l~. In other words,
the lower index multipole components of bT/T, such as
quadrupole (l = 2), octupole (l = 3), etc. , are usually
dominated by such long wavelength perturbations. In
general, all possible wavelengths contribute to every sin-
gle multipole. One can devise a spectrum of cosmolog-
ical perturbations in such a way that the contributions
to, say, the quadrupole component will be dominated by
perturbations with A && lH or, instead, by perturbations
with A (( LII. But, if the spectrum is not exceedingly
"red" or "blue, " the quadrupole component will be dom-
inated by perturbations with wavelenghts A of order of
l~. This means that the existence of the very long wave-
length cosmological perturbations can now be considered
as an observational fact. (We assume, of course, that the
measured 8T/T is a genuine cosmological effect and not,
say, a result of the poor data processing or unaccounted
sources of different nature. ) It is very likely that per-
turbations with such long wavelengths are "primordial, "
survived from the epochs when the Universe was much
younger. It is hard to arrange for these perturbations to
have been generated or contaminated by the local phys-
ical processes within the present day Hubble radius. If
so, what is the origin and nature of these perturbations'?

Following Lifshitz [2], it is customary to identify the
perturbations superimposed on homogeneous isotropic
cosmological models [Friedmann-Lemaitre-Robertson-
Walker (FLRW), models] as density perturbations, ro-
tational perturbations, and gravitational waves. This di-

vision is dictated by the classification of the 3 x 3 symmet-
ric matrix whose elements describe all the independent
components of the perturbed gravitational field. Two
transverse-transverse components correspond to gravi-
tational waves, two transverse-longitudinal components
correspond to rotational perturbations, and two remain-
ing components, one of which is scalar and another is
longitudinal-longitudinal, correspond to density pertur-
bations. The associated gravitational field of all of these
perturbations is capable of affecting the propagating pho-
tons of CMBR and. producing the angular anisotropy
bT/T [3]. So, in principle, one of these perturbations or
all of them together could. be responsible for the observed
bT/T. However, in the framework of classical cosmology,
there is not much to say about the expected types, am-
plitudes, and spectra of the perturbations. In classical
cosmology, perturbations are put in game "by hand. " If
there is no initial perturbations, there is nothing to dis-
cuss.

It is remarkable that the situation changes dramati-
cally if one takes into account the principles of quantum
mechanics. It turns out that there may be no need any-
more for initial perturbations, there may be no need for
complicated generating mechanisms. It may be suKcient
to have just what we already have: the variable gravita-
tional field of the nonstationary homogeneous isotropic
universe and the zero-point quantum fluctuations of cos-
mological perturbations listed above. The strong vari-
able gravitational field of the early Universe plays the
role of the "pump" field. It can supply energy to the
zero-point quantum fluctuations and amplify them. It
was first demonstrated for gravitational waves [4], and
we will do here the same for rotational perturbations.
In a more strict and precise language, the perturbations
are parametrically coupled to the variable gravitational
pump field and their interaction Hamiltonian is time
dependent. The initial vacuum state of the quantized
perturbations transforms, as a result of the quantum-
mechanical Schrodinger evolution„ into a multiparticle
state known as a squeezed vacuum state. This applies
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to gravitational waves and density perturbations [5], and
to rotational perturbations too, as will be shown below.
The quantum mechanically generated perturbations can
be useful for many purposes. Among other things, they
are capable of producing bT/T (for gravitational waves,
see [6]).

It is important, however, to stress from the very be-
ginning that there is a significant qualitative difference
between gravitational waves on one side and rotational
and density perturbations on the other side. Gravita-
tional waves exist in empty space, they do not require
any material medium for their definition. One or another
sort of matter in FLRW models is only needed to govern
the variable gravitational pump Beld but has nothing to
do with gravitational waves themselves. Moreover, there
is no ambiguity as for how gravitational waves couple
to the pump field. The form of coupling follows from
the Einstein equations and is such that the waves can
be amplified indeed. In contrast, rotational and den-
sity perturbations are only defined if there is a cosmo-
logical medium, they are perturbations in the medium.
The solutions to Einstein equations give zero for all non-
transverse-transverse components of the perturbed grav-
itational Beld, if there is no matter. The difference be-
tween gravitational waves and other cosmological per-
turbations is about the same as the difference between
photons, which exist in empty space, and phonons and
various "excitons" which exist only in a condensed mat-
ter. It is necessary for the primeval cosmological medium,
which has been filling the Universe in the very distant
past, to be capable of supporting free oscillations of den-
sity and rotation regardless of the presence or absence of
the pump Beld. In other words, a deformed element of
the primeval medium should have been capable of expe-
riencing the necessary restoring forces even if the element
had been experimented with in our laboratory on Earth.
Moreover, the coupling of these "harmonic oscillators"
to the gravitational pump Beld should be appropriate if
one is intended to amplify their zero-point quantum fluc-
tuations. Thus, every attempt to apply the quantum-
mechanical generation mechanism to density and rota-
tional cosmological perturbations will always require the
satisfaction of additional physical hypotheses, as com-
pared with the case of gravitational waves, and we will
not be able to avoid making such additional hypotheses
in what follows.

It is very interesting that the behavior of particles and
fields in the nonstationary Universe bothered Schrodinger
as long ago as in 1939 [7]. His paper is remarkable in sev-
eral aspects. It is instructive to follow his argumentation
in order to understand better the physics involved and
what we will be doing below.

Schrodinger considers "the familiar wave equation of
the second order

1 02vP—&0+ — + u'0 = 0
c2 Bt2

(p = 0 for light, p = 27rmc/h for material particles)"
which "is to be regarded as the covariant equation"

specialized for the line element of the nonstatic universe,

ds = c dt —R (t)dl,

where dl corresponds, in his paper, to a three-sphere. He
discusses "the decomposition of an arbitrary wave func-
tion into proper vibrations" and notices that the positive
and negative frequencies of proper vibrations "cannot be
rigorously separated in the expanding universe. " He says:
"Generally speaking this is a phenomenon of outstanding
importance. With particles it would mean production or
annihilation of matter, merely by the expansion, whereas
with light there would be a production of light travel-
ing in the opposite direction, thus a sort of reflection
of light in homogeneous space. " He also describes this
as a "mutual adulteration of positive and negative fre-
quency terms in the course of time" giving rise to what
he calls "the alarming phenomena. " Schrodinger con-
cludes: "They are certainly very slight, though, in two
cases: viz. , (1) when R varies slowly, (2) when it is a
linear function of time, " and he also says, with a sigh of
relief: "in this case the alarming phenomena do not oc-
cur, even within arbitrarily long periods of time, " "there
is nothing like a secularly accumulated pair production. "

From the position of current knowledge, we can make
some comments on Schrodinger's paper. (It is easy to be
critical of a great physicist's paper if you are doing this
more than half a century later. )

First, Eq. (2) with p = 0 is not the equation for light, it
is the equation for a hypothetical "massless scalar parti-
cle." As for light, Schrodinger would, perhaps, be pleased
to know that electromagnetic waves in the nonstatic uni-
verse (3) are totally "immune, " there is no "mutual adul-
teration" and reflection" of electromagnetic waves at all.
The covariant Maxwell equations

BFpv Fva Fn p"+ + "=0,
Ox Bx& Ox"

0

specialized for the line element of the nonstatic universe
(3) have solutions E„exactly the same as solutions
F~ to the Maxwell equations in the Minkowski world.
The scale factor R(t) participates in the electromagnetic
energy-momentum tensor and makes the energy density
vary as B,which is consistent, of course, with photons
being redshifted or blueshifted. But, if one sends light at
t = tq and receives at t = t2, the result is totally inde-
pendent of the variability rate of R(t) in the interval of
time between tq and t2 (in sharp contrast to what takes
place for gravitational waves).

Second, Schrodinger's conclusion about the extreme
weakness of the "alarming phenomena" when R(t) is a
linear function of time, for the kind of the wave equation
with p = 0 he studies, is premature. This statement re-
quires us to go into some detail. Schrodinger takes the
function vP as a product of the time-dependent amplitude
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f(t) and a spatial eigenfunction with the wave number
n. For f (t) he derives the equation

s d ( sdf ) c2n(n+ 2)
dt ( dt) R2 (4)

We may note that the same equation in the spatially fIat
universe (3) would read

f)~
dt E dt) R2

and

(, R"lu" +
/

n — /u=O (6)

if one makes the substitutions u = fR, R(g)dg = cdt,
' = d/diI.

Schrodinger investigates the special case

B = a+bt

He writes: "Specialising for light (p = 0) and putting for
the moment

c2n(n+ 2) =k +1

c n =k +1,

where n is continuous and can go to zero. In this case,
one can even accept b ( c, as there will always be some
n's for which k is imaginary.

The factor (cn/6) plays a crucial role. This factor is the
ratio of the characteristic time scale on which R(t) varies
and the period of wave with the wave number n. Accord-
ing to Schrodinger's assumptions this ratio is much larger
than 1. But this is precisely the condition which allows us
to say that "R(t) varies slowly, " adiabatically. If this con-
dition is satisfied, the second Schrodinger case belongs,
in fact, to the same category as the first case. There is

we have .f = RR+'"." He comes to the conclusion
that the solution f (t) is oscillatory, with the amplitude
being proportional to B,and that the waves traveling
in opposite directions keep rigorously separated for any
length of time. This conclusion is a consequence of his
following statement: "Since n is very large, A: is real, for
b is certainly not much larger than c."

It is here where the core of the problem lies. Presum-
ably, it is hard for Schrodinger to accept that the velocity
of change of the scale factor can be larger than the ve-
locity of light, this is why "b is certainly not much larger
than c." If he relaxed this assumption, the left-hand side
of Eq. (8) could be made less than I and, hence, k could
be made imaginary, at least, for some values of n. This
could be done even in the closed universe, where the set
of n is discrete and begins from some lowest wave number
labeling the longest wavelength which can still fit into the
Universe. In the spatially Hat universe, the situation is
even better. Equation (8) now reads

no wonder that the efFect is "very slight. " Schrodinger's
assumptions exclude the possibility of the "alarming phe-
nomena" from the very beginning. It is precisely when
this ratio is less than 1 that the character of the solu-
tion for f(t) changes, it ceases to be oscillatory, and the
final efFect becomes significant. It is not a particular
functional dependence R(t) itself that is important, but
comparison of the tiine scale of variation of R(t) with the
period of a given wave.

This can be conveniently illustrated with the help of
Eq. (6). In the interval of time where R(t) obeys Eq. (7),
the height of the "potential barrier" U(g) = R"/R is
just a constant: R"/R = 6 /c . One can arrange for
the R(rl) to be such that U(g) would go to zero, more
or less gradually, outside this interval of time. Then,
for the high-frequency waves, i.e. , for n )) 6 /c, the
solution is u = A sin(ng + p), where A is almost a con-
stant, the "alarming phenomena" do not occur. How-
ever, for the low-&equency waves, for which n (( 6 /c,
and which, therefore, hit the barrier, the solution is
u = A sin(nial + pi) initially, that is far to the left of
the barrier, and u = Bsin(nrI + p2) finally, that is far
to the right of the barrier. The remarkable fact is that
one always gets B )) A (the overbar denotes averaging
over the arbitrary initial phase pi), and the wave ampli-
fication takes place. It is not even important whether the
Universe was expanding or contracting. With the spatial
dependence taken into account, the efFect means amplifi-
cation of the traveling wave and simultaneous generation
of the "refl.ected" wave, exactly as Schrodinger envisaged.

Equations (5) and (6) are precisely the equations for
the time-dependent amplitudes of gravitational waves
(not electromagnetic waves). They have been investi-
gated in [4] and the scale factor of the form (7) has
been considered as an example (unfortunately, I did not
know about Schrodinger's paper at that time and became
aware of it much later). The quantum-mechanical version
of the process considered above leads to the generation of
gravitons (gravitational waves). The initial vacuum state
evolves into a strongly squeezed vacuum state with the
expectation number of gravitons much larger thorn one.
One can also think of this process, in classical terms,
as of generation of standing gravitational waves. It is a
pity that we will never know whether Schrodinger would
qualify the production of gravitational waves as an "out-
standing" or "alarming" phenomenon.

It is necessary to say that a systematic study of the
quantized version of Eq. (2) was first undertaken by
Parker [8]. He investigated the general principles of the
field quantization in spatially Hat FLRW models and for-
mulated a number of important theorems. In particular,
Parker emphasizes the important role of conformal in-
variance and exhibits the ambiguity in the choice of the
equation for scalar particles. He recognizes that the zero
or nonzero production of the massless scalar particles de-
pends on the chosen form of the wave equation (form of
coupling of particles to the external gravitational field).
However, one of his conclusions, "we show that massless
particles of arbitrary nonzero spin, such as photons or
gravitons, are not created by the expansion, regardless
of its form, " turned out to be incorrect in part of the
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gravitons.
The conviction that massless particles cannot be cre-

ated in FLRW gravitational fields was predominant in
late 1960s through early 1970s. Since the creation of
massive particles (with masses less than the Planckian)
was shown to be negligibly small, it has led to the study
of anisotropic cosrnologies. It was believed that only in
this case the effects are nonvanishing and interesting. For
instance, Zeldovich and Starobinsky, in an influential pa-
per [9], have laid a foundation for quantization of Belds in
the spatially flat anisotropic models. One of their conclu-
sions is "It is established that vacuum polarization and
production of particles of a zero mass Geld are absent
only in the isotropic case, " and they call the isotropic
case "degenerate. "

The interest toward quantized fields and quantized cos-
mological perturbations has increased in the context of
the in8ationary hypothesis [10]. The in8ationary mod-
els belong to the class of FLRW homogeneous isotropic
models and have a specific form of the scale factor B(t).
The authors of papers on quantized perturbations often
associate the generating mechanism with such things as
"inflation, " "rolling the scalar field down the inflationary
potential, " "horizons, " etc. The reader can find a review
of the extensive literature on the subject in [11]. The
important early references on the quantization of density
perturbations are [12,13].

Our goal is to study the quantum-mechanical gener-
ation of rotational perturbations in FLRW cosmologi-
cal models. The notion of a gravitational pump field
acting on a harmonic oscillator, often used above, may
seem to be too vague and overly mechanistic. In my
view, however, this notion accurately and precisely de-
scribes the physics involved, if one is willing to use the
"field-theoretical" formulation of Einstein's general rel-
ativity (see, for instance, [14]). In this approach, the
FLRW cosmological models get represented as gravita-
tional fields in Minkowski space-time and the scale factor
R(t) manifests itself, literally, as the gravitational pump
Geld. The coupling of the gravitational pump Geld to
the quantized gravitational perturbations is provided by
the nonlinear character of the total gravitational Geld.
The form of coupling follows automatically (at least, in
the case of gravitational waves) from the Einstein equa-
tions which acquire now the form of nonlinear wave equa-
tions in Minkowski space-time. Along this route, one
can easily demonstrate the far-reaching analogy between
the quantum-mechanical generation of cosmological grav-
itational waves and the generation of squeezed light in
the laboratory settings of quantum nonlinear optics [15].
However, the "field-theoretical" approach is not familiar
to, or not accepted by, most researchers on the subject,
and, therefore, we will be mostly using here the usual
geometrical formulation.

The basic equations for rotational perturbations in the
spatially flat FLRW cosmological models are presented in
Sec. II. As one of our physical hypotheses, we assume that
the perturbations could sustain as torque oscillations in
the primeval cosmological medium. In other words, we
assume that the torsional velocity of sound was not equal
to zero and, in fact, it could be as big as the velocity of

II. BASIC EQUATIONS FOR ROTATIONAL
PERTURB ATIONS

We write the unperturbed metric in the form

ds = a (g)(dr/ —dl ), (10)

where

dl = dx +dx +dx

The scale factor a(g) is governed by matter with the
energy-momentum tensor T~ . The nonvanishing com-
ponents of the unperturbed T~„must have the form
To ——e(q), T;" = —p(q)b,". The perturbed metric can
be written as

ds = a (g)(q„+ h„)dx"dx". (12)

Without loss of generality, one can choose a synchronous
coordinate system, so that h, pp = 0 kp' = 0. The non-
vanishing components of h„ form a symmetric 3 x 3
matrix 6;~.

The construction of rotational perturbations is based
on the three-vector fields Q;(x, x2, xs) with vanishing
divergence [2]. They are eigenfunctions of the Laplace
operator in the three-space (11) and satisfy the equations

Q, i, "+n Q; =0 Q*;=0.
All the manipulations with Q; are to be performed with
the help of the metric tensor defined by Eq. (11). Using
Q, , one can construct a symmetric tensor Q;~ and an

light. We also assume that the coupling of the torque
oscillations to the curvature was "minimal, " that is, the
same as for gravitational waves. Under these conditions,
the time-dependent amplitudes of the rotational pertur-
bations satisfy Eq. (6) and the most of the results pre-
viously derived for gravitational waves can be used here.
The quantization of rotational perturbations is consid-
ered in Sec. III. The important difference with the case
of gravitational waves is only in the form of polarization
tensors. All conclusions with regard to squeezing and
standing waves are essentially the same. In Sec. IV, as
an application to realistic cosmological models, we con-
sider the scale factors which are power-law dependent on
the g time. They include the scale factors of the infla-
tionary models. We assume that the torsional velocity
of sound drops to zero at the beginning of the matter-
dominated stage. The torque oscillations get converted
into usual rotational perturbations governed by the con-
servation law for the angular momentum. In Sec. V, we
consider the angular anisotropy of the CMBR produced
by rotational perturbations. Rotational perturbations
generate all multipoles of bT/T beginning from the dipole
component (I = 1). An exact formula is derived for the
expected angular correlation function of bT/T caused by
rotational perturbations of quantum-mechanical origin.
The results are compared with those for gravitational
waves. A brief summary is given in Sec. VI.
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antisymmetric tensor W,.~'

1 1
Qv = ——(Q',~+ Q~, ') Wv = ——(Q". —Q", ).

2n ' ' 2n

In Sec. II we need only to know the general properties
of rotational perturbations, which are listed above, but
we will also discuss their explicit functional dependence
later on.

With a given eigenfunction Q, is associated the' contri-
bution to 6;z which can be written as

h,~
= 2h(g) Q,~ .

T; = a 'u)(q)Q;,
To = —a '(u(q)Q;,

T;" = 2a g(g)n Q,". (15)

The perturbations in the matter distribution and the
accompanying perturbations in the gravitational Geld are
governed together by the perturbed Einstein equations.
The functions h(i7), w(g), y(g) are to be determined from
the equations

a'h" + 2—h' = 2ry(g)n

The nonvanishing components of perturbations to the
energy-momentum tensor T„„may only have the general
for m

(20)

The antisymmetric tensor cu,z
——T, —T; is the rota-

tion tensor defined locally, in every point. The antisym-
metric tensor f;~ = T;"& . —T"&, .describes the torque
forces acting on an element of the deformed medium. In
flat space-time, the components of the energy-momentum
tensor can be taken in the same form as in Eq. (15) as-
suming that a(il) = 1 [see also Eq. (10)]. Then, one gets

2nur—(g)W~ and f;~ = —2ny(i7)W, &. The function
w(i7) plays the role of the angular velocity. The nonzero
u(g) is a confirmation of the fact that we are dealing
with the rotational motion, as opposed to the potential
motion. (We will not be going here into further detail
such as the presence or absence of vortex lines, etc.) By
substituting u;z and f;z in Eq. (20) one derives the equa-
tion

QJ ++=0
which basically expresses a familiar law: the rate of
change of the angular momentum is equal to the torque.
This equation is precisely the limiting form of Eq. (18)
in the limit of a'/a ~ 0.

Not every deformed medium experiences torque forces.
But if it does, the medium can support torque oscilla-
tions. They arise if a given element of the medium is
displaced from the equilibrium position at a small angle
8(q). The restoring force is usually proportional to 0(g):
g(g) 5 0(g), where b = v~/c and vi is the torsional
velocity of sound. One can write

(17)
y(g) = n'6'9(g). (22)

where K = 8mG/c . A consequence of Eqs. (16) and (17)
is the equation Since cu(q) = 0'(q), Eq. (21) takes the form of the equa-

tion for a harmonic oscillator with frequency nb:
G+2—(8++=0.
0 (i8) 0" + n'b'0 = 0. (23)

TO + ~k 0 (19)

The components T; describe fluxes of energy (mo-
menta), the components T;" describe fluxes of momentum
(stresses). Taking derivatives of Eq. (19), one arrives at
the equation

One can also consider Eq. (16) as a consequence of
Eqs. (17) and (18). [Equations (16)—(18) are consistent
with those in Bardeen's paper [16] if one corrects the fol-
lowing misprints: the factor k/5 in Eq. (A2c) should read
k and the factor k in Eq. (A5) should read k/2. ]

Let us first study Eq. (18). This equation is the lin-
earized version of the covariant equations T; . = 0 which

)

have the meaning of the differential conservation laws in
curved space-time, that is, in the presence of gravita-
tional Geld. They have, of course, a deGnite physical
meaning even when the gravitational field can be ne-
glected.

In case of a material medium placed in flat space-time,
we write

Equation (22) provides us with the simplest dispersion
law known in the theory of vibrations: frequency of os-
cillations is linearly proportional to the wave number. In
the limit of vz ~ 0, the frequency goes to zero and the
angular velocity w(g) takes a constant value (free rota-
tion) .

In cosmological problems, one often considers an ideal
fluid with the energy-momentum tensor T„= (e +
p)u~u„—pg~„. A deformed element of the ideal fluid
does not experience torque forces. The perturbed com-
ponents of T" are T; = (e + p)u bu;, T;" = bpb,", —
and the tensor f,~ vanishes. This means that the y(g)
should be put equal to zero. The angular momentum
conservation law in the nonstationary Universe, Eq. (18),
leads to w(g) = const xa 2. In other words, rota-
tion in the expanding Universe filled with the ideal fluid
can only decay. (This was recognized by Zeldovich long
ago [17].) Accordingly, the function h'(q) accompany-
ing rotational perturbations does also decay, as follows
from Eq. (17). Moreover, if ur(g) = 0, Eqs. (16) and (17)
require h(g) = const which means that there are no per-
turbations at all, as h;~ = const x Q;~ can be reduced to
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zero by a simple transformation of spatial coordinates.
Our main physical hypothesis is that the primeval cos-

mological medium could have supported torque oscilla-
tions. We assume that Eq. (22) was valid in the very
early Universe. Then, Eq. (18) reads

very early Universe, as long as they lead to interesting
and verifiable consequences.

It is also worth mentioning that there may be some
ambiguity in coupling of the perturbations to the external
gravitational field. We intend to use the simplest formula
(22). However, one could alternatively suggest

a
0 +2—0 +n 6 0=0. II

y(g) = n 8(g) b (22')

Also, with the help of Eq. (17), one can write Eq. (16) in
the form

a' ]h" + 2 —h,'+ n2b2h. = 0 (24)

and, by introducing p(q) = ah(g), in the form

p" + (n b —a"/a) p = 0. (25)

Equations (24) and (25) govern the time-dependent am-
plitude of components h, ~ of the perturbed gravitational
Beld accompanying torque oscillations in the medium.
These equations have the same form as equations for the
time-dependent amplitude of gravitational waves. The
only difference is that the constant 6 is not strictly 1, as
in the case of gravitational waves, but can now lie in the
interval from 0 to 1. We will not hesitate to assume that
6 can be close to 1 or equal 1. In general, the properties of
the primeval cosmological medium (presently unknown)
could require the relationship (22) to be more compli-
cated and could make the torsional velocity of sound a
function of time. Nevertheless, it is sufhcient for our
purposes to ignore these possible complications and to
consider the simplest assumptions formulated above.

Having reduced the problem to the problem of a para-
metrically excited oscillator, we can expect that torque
oscillations in the primeval cosmological m". dium could
have been generated quantum mechanically (see Sec. III),
very much similar to gravitational waves. They would
evolve as torque oscillations until the primeval medium
became an ideal Quid. At this time, the torsional velocity
of sound. drops to zero and the oscillations convert into
free rotational perturbations. Without having support
of restoring torque forces, they will gradually decay in
the course of expansion, as was described above. How-
ever, according to this hypothesis, the amplitude of rota-
tional perturbations in the postrecombination Universe
is not necessarily zero and might have been determined
by laws of quantum mechanics, not by a voluntary choice
of initial conditions.

In the contemporary inQationary scenarios, the favorite
model of the primeval medium is one or another modifi-
cation of a scalar Beld. Scalar Gelds can support neither
torque oscillations nor rotation. There is no use in scalar
Gelds or ideal Quids in terms of quantum-mechanical gen-
eration of rotational perturbations. However, whether or
not the inflationary stage of expansion (if it took place at
all) was governed by a scalar field or by something else
is totally unknown (in this context, see, for instance, [18]
about the superstring-motivated cosmologies). One may
hope that there will never be shortage in the "micro-
physical" models for the constituents of matter in the

Both formulas would agree in flat space-time (a(g)
const) but the second one would be a diferent general-
ization to the case of the variable a(g). Equation (22')
would lead to p" + n2b p, = 0, instead of Eq. (25). As in
the case of electromagnetic waves, the oscillations would
not be superadiabatically amplified, regardless of the rate
of variability of a(q). (Similar ambiguity is also involved,
but rarely acknowledged, in attempts to generate density
perturbations through the amplification of the scalar Beld
fluctuations. ) It is not clear whether the hypothesis (22')
is fully consistent, it requires a separate study, but I do
not think that it can be simply ignored.

III. QUANTIZATION OF ROTATIONAL
PERTURBATION S

In flat three-space (11), the vector eigenfunctions
Q; (xi, x2, xs) can be conveniently written as Q,
q;e' + q,'e ' ' . The second of Eqs. (13) requires the
complex vector q, to be orthogonal to n'. q, n' = 0. There
are two independent real unit vectors orthogonal to the
unit vector

n/n = (sin 8 cos y, sin 8 sin y, cos 8)

and to each other. We take them in the form

1
q, = t, = (siny, —cosy, 0),

2
q, = m, , = +(cos8cosy, cos8siny, —sin8) .

In the definition of the vector m;, the sign + is valid
for 8 ( Jr/2 and the sign —is valid for 8 ) Jr/2. The
vectors l, , m; are the basis for the construction of the

S
polarization tensors P,J (n), s = 1, 2:

1 1 2 1P ( J) n(t ~J + IJ~,), P;, (n) = —(~'~, + ~,~')n n

They describe the transverse-longitudinal degrees of free-
dom since

2 n'
PV —= m'

n
S

and &,~n'n~ = 0. Other important relations are

P;J.h*J = 0, P,J(—n) = P,J(n), P,JP = 2h.". . .

In Qat space-time, the general expression for the com-
ponents h;~ can be written as
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h,, (t, y) = C
2

d'k ) ~;, (k)
8:1

—i~gt ik.y i~I, t —ik.y

CXD

(Oi tood yi0) = —5
(3O 2

d'k ~k ).(0laka~+a~a~ l0) .

S S t
For the classical 6;~ field, the quantities ak, ak are com-
plex conjugate numbers. In the quantized version of the

8 8 t
field, ak and ak are the creation and annihilation opera-
tors for a rotation wave traveling in the direction k. The
frequency of the wave is uri, = vi]k~.

As usual, the normalization constant C is determined
from the requirement of having energy zRuk in each k
mode:

By using Eq. (47) from Ref. [14] specified to boo ——0,
hoi ——0, and 6~„q~ = 0, one obtains

vtoo ——-6'~ 06,~ 0 —-6'~' 6i 0 —-6"'"6i.
A, + -6'~'"6-A. i.

The second and third terms cancel each other if 6 = I,
which we will assume for simplicity in what follows. The
last term gives the factor (—1/2) contribution of the first
term. (In the case of gravitational waves, all terms, ex-
cept the first one, vanish. ) As a result, we find the con-
stant C: C = 4+2vrclpi. Then, we make the rescaling

The component too of the energy-momentum tensor t„
for the field h~ has been defined in [14]. The symbol
h„denotes diferent objects here and in Ref. [14] but in
the approximation that we are working in they coincide.

k = —, y = ax, ~g = —,a„(t) = as~2c„(g) .
CL G

This allows us to write the normalized expression for
h;i(xt, x) in curved space-time (10) as

h;, (g, x) = 4(2~)'~—
2

d'n ) @,, (n)
2n

c„(rI)e*""+ c„(rt)e (26)

In this expression, a(xI) has the dimension of length, lp~ =
(Gh/c ) ~ is the Planck length, all other quantities are
dime nsionless.

As in the case of gravitational waves [6], the time evo-
lution of the operators c (rI), c" (q) (for each s) is gov-
erned by the Heisenberg equations of motion dc /dq =
—i[c,H], dct /drt = —i[et, H] with the Hamiltonian

H = nct c„+nc „c „+2a. (g)etc „+2o*(rt)c„c

where o(rt) = ia'/2a. The solution to the Heisenberg
equations of motion is

c„(g) = u„(rt)c„(0) + v„(rt)c „(0),

c"„(rt) = u„* (rt)c„(0) + u„*(il)c „(0),

where c (0), ct (0) are the initial values of the operators
taken at some initial time g = qo. The complex functions
u (q), v (g) satisfy the equations

iu' = nu + i(a'/a)v*, iv' = nv + i(a'/a)u*,

where ~u
~

—~v„~ = 1 and u (0) = 1, v (0) = 0. One
can easily show that the function p = u + v' should
satisfy the equation p" + (n2 —a"/a)p = 0 and the
initial conditions

t (0) = 1 V'(0) = -in+ (a'/a)(o) .

For both polarizations 8 = 1, 2, the solutions are identi-
cally the same.

8 St
The operators c (0), c (0) obey the cominutation re-

It
lations [c (0), c (0)] = 8" b (xx—xxx) and the same is true

for the evolved operators: [c (g), c (xt)) = b" hs(n —xn).
In the Schrodinger picture, the initial vacuum state

evolves into a strongly squeezed vacuum state. The
squeeze parameters can be derived from the solutions for
u (rt), v (g) (see [6] and references therein). The total
linear momentum and the total angular momentum of
the field remain equal to zero. In the Heisenberg picture,
which we will adopt for further calculations, the quantum
state remains a vacuum while all the dynamical prop-
erties of the field are described by the time-dependent
annihilation and creation operators. In Sec. V we will
be calculating the expectation values with respect to the
vacuum state defined by c (0) ~0) = 0.

As is clear from the physical description of the phe-
nomenon, there is nothing specifically "gravitational"
or "cosmological, " let alone "inflationary, " in the am-
plification process. The kind of parametric interaction
that is provided by a(xt) in cosmology can be realized
by nongravitational means in the laboratory conditions.
It is not excluded that the squeezed vacuum state for
the analogue of torsional oscillations can be generated in
the quantum optics experiments similar, for example, to
those discussed in [15].
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IV. APPLICATION OF THE
QUANTUM-MECHANICAL GENERATING

MECHANISM TO SIMPLE COSMOLOGICAL.
MODELS

The presently available observational data about our
part of the Universe refer to the interval of evolution that
took place since the epoch of the primordial nucleosyn-
thesis. The major uncertainties in the functional form of
the scale factor a(il) pertain to the earlier times. This
earlier part of evolution was governed by an unknown
primeval cosmological medium with an unknown equa-
tion of state. The "microphysical" details of the primeval
medium are quite irrelevant as long as we are only inter-
ested in the scale factor a(g). The function U(g) = a"/a
is essentially all we need to know in order to find so-
lutions to Eq. (25) and calculate the present-day char-
acteristics of the quantum-mechanically generated per-
turbations. The origin of perturbations makes it clear
that it is only a(g) (the pump field) that is directly in-
volved and responsible for the Anal result. For example,
the spectrum of gravitational waves is in one-to-one cor-
respondence with the variable Hubble parameter of the
very early Universe and can be used for its reconstruc-
tion [19].

We will explore the g-time power-law scale factors:
o.(q) = as' +~, where P is a constant. This parametriza-
tion has been used before [4]. It provides a simple de-
scription of the two cases when the barrier U(q) = a"/a
vanishes: P = —1, 0. The value P = —1 gives the fiat
space-time; the value P = 0 gives the scale factor of the
radiation-dominated universe. The matter-dominated
universe is described by P = 1. We call evolution con-
trolled by P = 0, P = 1 the e stage and m stage, respec-
tively. Any value of P smaller than —1 describes a sort
of inflationary (i stage) expansion. The expansion is in-

Aationary in the sense that the length scale equal to the
Hubble radius at some early time of expansion can grow
at the consecutive i, e, m stages up to, at least, the size
of the present-day Hubble radius lR. The value P = —2

corresponds to the de Sitter case.
Specifically, we consider expanding models with the

following scale factor (see also [20]).
i stage:

a(q2)/a(qR) —10 . The i stage is governed by "mat-
ter" with the effective equation of state p = q(P)e where

~(P) = (1 —P)/3(1+ P).
The general solution to Eq. (25), for a given mode n,

is

p„= (nb@) Ai Jp+i/2(nba) + A2 J p i/2(nb77)

(29)

In order to work solely with the Bessel functions, as two
linearly independent solutions to Eq. (25), we exclude
(temporarily) the half-integer P's. The form of the solu-
tion (29) shows explicitly, once again, that the most im-
portant parameter involved is the ratio of the &equency
of the wave to the frequency of variations of the scale fac-
tor (&equency of the pump). In terms of g time, those
frequencies are, respectively, u = nb and w~ = 2vra'/a.
Their ratio, which can be called the parameter of adia-
baticity, is nb@/2'(1 + P). For periodic parametric cou-
plings, the equality w„= 2u is the condition of the
parametric resonance. The solution (29) ceases to oscil-
late and loses its adiabatic character when the &u /w„
falls down to a number of order 1. This is when the
parametric amplification becomes significant. If 6 && 1,
this happens long before the wavelength of the oscilla-
tion, A = 2vra/n, gets comparable with the length of the
Hubble radius, l = a /a'.

To simplify calculations and make them identical to
the case of gravitational waves, we will assume that the
torsional velocity of sound at the i stage was equal to the
velocity of light, 6,. = 1. We will also assume that the
value of b at the e stage was not zero (at least, in one
unspecified component of the prerecombination matter)
and could be close to 1, b, = 1. And, Anally, we assume
that 6 has fallen down to zero at the m stage, 6 = 0.
We will be working directly with the functions h(g), h'(i))
where p, (q) = ah(q). It is h'(g) at the m stage that we
will eventually need for calculations of bT/T. Then, the
solution to Eq. (25) can be written at the three stages as
follows:
i stage:

e stage:

m stage:

u(~) =~olnl'+~, n& ni,

+(1) 4u (9 I ) r/i + r/ 5 n2

e stage:

1 —~nb. (g—qe) + gg +~nb. (q —g. )

u(~)-

(30)

(31)

a(g) = loa (il —
r/ )

m stage:

where a, = —(1 + p)lail~, g~ = p71i/(1 + p), a~
a, /4(g2 —q, ), g = —g2 + 2g„and lo is a constant
with the dimensionality of length. The scale factor a(g)
and its first derivative o'(g) are contiiiuous at q = gi and

We will denote the present time by g = g~.
The scale factor at the beginning of the m stage o, (q2)
is related to its present-day value a(gR) by the relation

h(q) = (') C,n2(q —q )z +
(

'
)

(32)

1 3nC&
%&J

The initial conditions (27) taken at q = go lead to
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A» ———
cos

i(ngP+mP/2) A A
—ivrP2» 1 2 n

C» = ——iBb —cos —,
3 n A. '

where n[qo[ &) 2vr[1 + P~. It is worth noting that had we
assumed b; = 0, the solution to Eq. (25) at the i stage
would have been

h(g) = Ai+ A~ f a 'dq

and the initial conditions p, (go) = 1, p'(rlo) = a /a(iso)
would have required A2 ——0, h(g) = Ai. This is another
way of saying that the perturbations could not have been
generated quantum mechanically in a medium with zero
torsional velocity of sound.

The coeKcients B», B2, C», Cq are determined by the
continuous matching of solutions (30)—(32) at rl = rh and

g = q2. We are interested in waves that have interacted
with the barrier U(rl) at the i stage. Their wave numbers
obey the equation n~rli~ && 2~~1+P~. For the coefficients
B», B2 with these wave numbers, one derives

8. 1 fnl' n
C2 = iB—

~

—
~

cos —,
3 b qn ) n„'

and the dependence of C», C2 on n is oscillatory. There
exists a series of frequencies n at which both, h(rl) and
h'(rl), go to zero for all rl & rl2. These frequencies are de-
ffned by the requirement that the factor cos(n/n„) van-
ishes. In the framework of quantum mechanics, one can
say that the n modes with those &equencies are having
been "desqueezed, " stripped ofF the energy accumulated
at the i stage by the very late times of their evolution at
the m stage [21].

The n-dependent spectrum of the field h'(rl), which we
will need in our further calculations, is smooth for n (( n„
and is oscillatory for n &) n„. For a qualitative descrip-
tion of the spectrum we introduce h'(n) = lpi(~p ~/a)'.
Then we can write

Bi = B2 --—,'e—'""'(P+ l)@(P)(nrli)~ —= B,

where g(P) = ~ze' ~~ [2l+ ~ I'(P + 3/2) cosPvr]
[Q(P)[ = 1 for P = —2. The exact formulas for Ci, C2
are

3 p a 'l7 n„
(35)

2

h'(n) = —~g(P) ~b, n„n~+ cos —,n )& n

1
Ci ——

2 [Bi(sin b,y2 + 2bzy2 cos b2y2)
12g2

+B2 (cos b, y2 —2b, y2 sin b,y2)],

C2 ——sy2[Bi(sinb, y2 —b, y2 cosh, y2)

+B2 (cos b, y2 + b, y2 sill b, y2)],

The absolute values of h'(n) are primarily determined by
b, and by the parameters lo, P of the i stage.

In the limiting case 6, = 0, the form of solution for
h(rl) is the limiting form of Eq. (31):

1
h(g) = Bin(rl —rl, ) + B2

a(g)

where Bi ——i(B2 —Bi), B2 ——Bi + Bz, and y2

n(q2 —q ). The coefficient Ci represents the constant
part of h(il) which plays no role in our calculations in
Sec. V and can, in fact, be eliminated by a coordinate
transformation, but we will discuss C» together with C~
for the completeness of our analysis. The formulas for
Ci, C2, simplify due to Eq. (33) and their approximate
expressions can be written as

Ci = —
s iBy2 (sin b, y2 + 2b, y2 cos b, y2),

(34)

where Bi and B2 are constants. The h'(g) at g = g~ is
not zero, as would follow &om the approximate formulas
(35) in the limit b, = 0, but is really very small, its value
is determined by small terms omitted in the course of
derivation of Eq. (35). In the case of b, = 0, rotation
is still being generated at the i stage but decays since
the beginning of the e stage and its small amplitude now
makes it probably useless for astrophysical applications.

V. ANGULAR ANISOTROPY OF THE CMBR
CAUSED BY ROTATIONAL PERTURBATIONS

C2= —
s iBy2(sin b, y2 —b, y2 cos b, y2) . Our major goal is to derive the angular correlation

function for the anisotropy hT/T produced by rotational
perturbations of quantum-mechanical origin. However,
we will start from the analysis of the problem at the
classical level.

The solution (32) for rotational perturbations is given
in a synchronous coordinate system. It is convenient,
first, to go over to a comoving coordinate system
where, by definition, the components Tp of the energy-
momentum tensor T„vanish. This allows us to describe
the world line of the observer by simple equations x' = 0.
It is assumed that the observer's world line is one of the

The wave number n = I/b, (rl2 —rl, ) defined by the
condition b y2 ——1 separates the functional dependence
of C», C2, on n into two difFerent regimes. For n (( n„
one has

and the dependence of C», C2 on n is smooth. For n )&
n„, one has

1- 2 8.
Ci --——iBb, —', C2 —— iB——

2 ' n ' 9 b. qn)
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77 g) x x C2 1
(q —rI )Q', (36)

where g, x', are the coordinates of the comoving system.
The transformed metric tensor is

ds = a (q)(q„+ /i„)dx"dx

world lines of the matter. If the observer has a pecu-
liar velocity, the observed bT/T will have an additional
dipole component which is known how to deal with. The
spatial hypersurfaces of constant time should be retained
the same as in the synchronous coordinate system. The
energy density of matter is constant over these hypersur-
faces and the radiation temperature was everywhere the
same at the time of decoupling of the CMBR. This allows
us to define the emission time of the photons of CMBR
as g = g~ regardless of the direction of observations.

The transition to the comoving coordinate system is
achieved with the help of a small coordinate transforma-
tion

To=0, T,'=a '~Q, , T,"=2n 'a XQ,'. (39)

The transition from Eqs. (12) and (15) to Eqs. (37)
and (39) has been done with the help of a usual coor-
dinate transformation. I prefer to reserve the notions
of gauge transformations and gauge invariance to the
"field-theoretical" formulation of general relativity where
they have their genuine meaning: distinct from coordi-
nate transformations, independent of any approximation
scheme, unrelated to any prescribed form of the partici-
pating functions, etc. However, if one wishes to use a dif-
ferent name for coordinate transformations of the type of
Eq. (36), one can say that the transition from Eqs. (12)
and (15) to Eqs. (37) and (39) has been performed with
the help of a "gauge transformation. "

The calculation of the CMBR temperature variations
caused by the gravitational field of cosmological pertur-
bations was first undertaken by Sachs and Wolfe [3]. The
authors work in the comoving coordinate system and de-
rive the formula

where

C2 1
/ioo = 0, ho' = —Q' = g(g)Q',8 a

/i;, = 2 /i(q) + Q,, = 2h(rI)Q;, ,

and

1 3nC2 1

(38)

1 nC2

a(q) 4n(q —g )

After performing the transformation, we do not write the
overbar over the coordinates x~ which are now supposed
to be the comoving coordinates. The transformed com-
ponents of the perturbed energy-momentum tensor are

'' —2 ' 'l dy, (40)T 2, 0 Bq c)7) )(o)

where e" is a unit vector in the direction of observations.
This formula is valid for all types of cosmological pertur-
bations.

The expression under the integral in (40) depends on
/i'(g), g'(q), Eq. (38). The spectrum of perturbations in
comoving coordinates is di8'erent from the one in syn-
chronous coordinates. In our case, the approximate ex-
pressions for the spectrum /i'(n) in synchronous coordi-
nates are given by Eq. (35). To derive the spectrum /i'(n)
in comoving coordinates one should combine Eqs. (38)
and (35). For the spectrum /i'(n) at the present epoch
7) = qR, one finds /i (n) n~+ for n && nH, h (n)
n~+' for nII && n && nh'(n) - ni'+'l cos(n/n„)l for
ny& n„.

We will now turn to the calculation of the angular
correlation function for bT/T caused by rotational per-
turbations of quantum-mechanical origin. For quantized
perturbations, the 8T/T becomes a quantum-mechanical
operator. In our case, by using Eqs. (40), (26), (38), we
can write

DO 2

d n) r (r)~ —ui)c (0)e' "' +r (q~ —io)c (0)e
S=1

where m = q~ —g, x = e m, u)1 ——g~ —gI:, , andk k

S S 1 —
/ 1

r~(g~ —io) = P;~(n)e'e~ f —2ig~. (n)e~P, f = /i', P = g' .
v'2n "' "

v'2n "

The mean value of bT/T is obviously equal to zero: (Ol bT/T l0) = 0. The expectation value of the angular correlation
function is defined as
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where e1 and ez are two diferent unit vectors with the angle b between them, cos b = e1ezb;~. It is easy to show that

1 ~K = —/p) de
0

(3O

d'n ) r„(nR —u)) r„(nR —Cv) e'""~

8=1
(41)

where g" = ezto —ezzu. One can also show that

where

" (nR —~)" (nR —~) = f (nR —~)f"(nR —~)R"(n)
s=1

+2i f (nR —m) rtp„*(nR —e )R (n) —2if '(nR —e )p (nR —m) R (n)
+4/„(nR —~)p„*(nR —ra) R (n), (42)

2 2

P;~ e1e1P,~ e2 e2, B ——g P,~ e1e1&~.e2,
s=1 s=l

2 2

P~ &&~29~ &» B = g g, e1g~ e2.
8=1

The next step is integration of the functions B 1 B12 B21,B multiplied by e' "~ over the angular variables
Our intention is to derive the formula in the most general form, applicable to arbitrary functions f (nR —~),

$~(nR —ur), so we leave the integration over m, ut, and n to the very end. A lengthy calculation gives the following
results. For B

sin 0 d0 cos(nag" )R"(n) = 167r ((3 -'&-I)(-~)-"J.r.(-~)+[- b(-"b-I)---

For B"

—4(3 cos b —1)](n() Js~2 (nP) —8 cos b(cos b —1)nur nuj(n() ~ J&y2 (n()
-(-" — )'(-)'( -)'(-c)-" ~ .( r))

sin 0d8 sin(nkvd")R (n) = 8~ ([2nmcosb —nm(3cos b —1)](nP) 5~2J
g (nP)

For B22

+(cos 8 —1)nmnzu[ntu —nw cos b](n() ~ J~~2(ng)) .

2m 7r

dp sin 0 d8 cos(nk(")R (n) = 4vr
0

(2 cosh(n() ~ Js)2(n() + (cos b —1)nmnru(n() ~ J5(2(n()),

where ( = (m2 —2zuCo cos b + ur2) ~~2. The integration of R2~(n) gives the result which differs &om the above one for
R (n) by the replacement w f +m and by the op—p-osite total sign.

One should now use the "summation theorem" [23] and the relations between the Gegenbauer polynomials and the
associated Legendre polynomials [24] which can be combined together into the formula (for half-integer v)

(nj,') J (n() = v'2~ ) (v+ k)
" —,PI,+,g2(x),

J„+I,(nu)) J +1, (nba) d

k=o

where x = cos 8 and P~(x) are the Legendre polynomials.
In agreement with Eq. (42), the expression for K can be presented in the form

where the K involves products f f*, the K involves products f P* and f*P, and the K involves products P
By using Eq. (43) one obtains, for K~,

K = lp, ) K,'Pj(x),
1=1

where
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8l(l + 1)
l

GQ)

(nu) )
s)'2 [(I —1)Jt i(2(ntu) —(l + 2) J(+sy2(ntu) f~(rlR —iu) dn.

The expression for K is more complicated:

~2 = —]6)p2)

x[f (q R „m)g„'[qR —ui)(nw —nwx) + f (qa —„ui)4„'(qR —w)(ne —nwz)])l.

Js~2+) (n'u)) Jsy2+k(niu) d
dtu dtu n dn ) (5/2+ k). . . R,+2

0 0 0 k=o

x(f (rl~ —iu)p„*(rlR —tu) [ntux + nut(l —3x )] + fa(rlR —tu)p*(rlIt —iu)(ntux + ntu(1 —3x )])
J7/2+& (n~) J&)) 2+& (n~) d—(1 —x') ) (7/2 +k),], —,, „,I't,+s

k=o

(45)

Finally, the expression for K reads

where

K = lp, ) K, Pg(z),
L=1

K, = 8(2l+. 1)l(l+ 1) n2 dtU
Jt+i)2(niu)g (rlR —tu) dn. (46)

The total angular correlation function K is rotation-
ally symmetric (depends only on the angle b between the
directions of observations) and its multipole expansion
begins from the dipole term (l = 1). The numerical val-
ues of the multipole components are different for difFerent
cosmological models. The free parameters b„ lq, P of the
models considered in Sec. IV can be chosen in such a
way that the level of the predicted variations would be
consistent with what is actually observed by the Cosmic
Background Explorer (COBE) [1]. The derivation of the
detailed multipole distributions following from Eqs. (44),
(45), and (46) and the construction of the resulting cor-
relation function as a function of the separation angle b
require numerical calculations. This will be a subject of
a further discussion.

VI. CONCLUSIONS

We have shown that rotational cosmological perturba-
tions with a very broad spectrum might have been gen-
erated quantum mechanically in the very early Universe.
We have formulated conditions under which the phe-
nomenon could take place. The main emphasis has been
on long wavelength perturbations which are probably re-
sponsible for the observed large-angular-scale anisotropy
of CMBR. The angular correlation function was derived,
and it was shown that the multipole expansion begins
from the dipole term. (In the limit of the wavelengths
exceeding the present-day Hubble radius the dipole com-
ponent is suppressed [22].) The numerical values of
the expected variations bT/T depend on the parame-

ters of the cosmological models (essentially, parameters
of the cosmological pump "machine"). In principle, rota-
tional perturbations alone could account for the observed
anisotropy. The comparison with the case of gravita-
tional waves [20] shows, however, that the contribution of
gravitational waves to the large-angular-scale anisotropy
is likely to be much larger than that of rotational per-
turbations since gravitational waves do not decay in the
course of time as fast as free rotational perturbations
do. Moreover, quantum-mechanical generation of grav-
itational waves does not require any additional physi-
cal hypotheses to be satisfied, while the rotational per-
turbations (and density perturbations) do. However, it
is important to realize that the "primordial" cosmologi-
cal rotation, although small, could have been generated
quantum mechanically. The role of the "primordial" ro-
tation at smaller linear scales was out of the scope of the
present paper. Nevertheless, one may speculate that, if
the generating mechanism did really work, the "seeds"
of rotation of quantum-mechanical origin may have also
played a role at the smaller linear scales characteristic
of galaxies and their clusters (for instance, it is hard to
avoid the questions whether the Bat rotation curves in
spiral galaxies are an evidence for dark matter or may be
the remnants of the "primordial" rotation and whether,
or not, the "primordial" rotation could have played a role
in the generation of cosmic magnetic fields).
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