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perturbations of a topological defect as a theory of coupled scalar fields in curved space
interacting with an external vector potential
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The evolution of small irregularities in a topological defect which propagates on a curved background
spacetime is examined. These are described by a system of coupled scalar wave equations on the world
sheet of the unperturbed defect which is not only manifestly covariant under world-sheet
diIfeomorphisms but also under local normal frame rotations. The scalars couple both through the sur-
face torsion of the background world sheet geometry which acts as a vector potential and through an
eftective mass matrix which is a sum of a quadratic in the extrinsic curvature and a linear term in the
spacetime curvature. The coupling simplifies enormously for many physically interesting geometries.
This introduces a framework for examining the stability of topological defects generalizing both our ear-
lier work on the perturbations of domain walls and the work of Garriga and Vilenkin on perturbations
about a class of spherically symmetric defects in de Sitter space.

PACS number(s): 98.80.Cq, 03.70.+k, 98.80.Hw

I. IN'IQDUCTIQN

Topological defects of one form or another are expect-
ed to appear as by-products of phase transitions that oc-
curred in the early Universe. Their cosmological implica-
tions, however, appear to depend sensitively on their sta-
bility with respect to perturbations. For example, an in-
stability in the geometry of a closed cosmic string could
disrupt its collapse to form a black hole [l]. Recently,
Garriga and Vilenkin undertook an examination of the
stability of spherically symmetric topological defects nu-
cleating in de Sitter space [2]. The approximation they
use is to model the defect as a membrane propagating on
a curved background spacetime.

In this paper, we examine the evolution of small irregu-
larities on a topological defect moving in a general
curved background spacetime in the same approximation
without any restrictions on the symmetry of the defect.

In an earlier paper, we treated the perturbations of
domain walls [3]. The relevant covariant measure of the
perturbation then is its projection onto the normal to the
world sheet. %'e were able to show that this scalar
satisfies a Klein-Gordon equation on the geometry of the
unperturbed world sheet, coupling in a universal manner
through an effective mass both to the world-sheet scalar
curvature and the traced projection of the spacetime Ric-
ci curvature onto the world sheet. This provided a gen-
eralization of the wave equation derived in Ref. [2]
describing perturbations of domain walls in Minkowski
space.

In the case of a lower-dimensional defect there will be
one scalar corresponding to the projection of the pertur-
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bation in the world-sheet onto each normal direction. A
new geometrical structure which is antisymmetric in its
normal indices also appears. The geometrical role it
plays in perturbative theory is that of a vector potential
ensuring that the scalar field equations transform covari-
antly under local normal frame rotations. These scalars
will generally satisfy a system of wave equations which
are coupled not only through an eA'ective mass matrix but
also through this vector potential. In particular, this in-
troduces a derivative coupling between the fields.

We begin in Sec. II with a derivation of the exact
equations of motion for the defect. Our approach to per-
turbation theory in Sec. III will be to expand the action
describing the evolution of the defect in a manifestly co-
variant way out to second order in the perturbation about
a given classical solution. We model this on the treat-
ment of Hawking and Ellis of the second variation of the
arclength about a geodesic curve [4]. Geodesics, howev-
er, can be a poor guide to the behavior of higher-
dimensional surfaces. The proper length along a curve
has no higher dimensional analogue; the curvature of a
connection has no one-dimensional analogue. It is there-
fore extremely gratifying that the formal expression one
obtains is strikingly similar to the geodesic result when
the parametrization along the latter is not affine. We ex-
ploit the classical theory of surfaces to bridge the gap be-
tween formal mathematics and a tractable system of
equations with which one can begin to do physics [5].

In Sec. IV we discuss the equations of motion describ-
ing perturbations on various background geometries. In
practice, one is interested in perturbations about defects
possessing some level of symmetry. It is then, of course,
sufhcient to develop perturbation theory in a manner
which is tailored to the symmetry. In Ref. [2], doing just
this, it was shown that on a spherically symmetric string
of maximum radius in de Sitter space these equations not
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II. THE EQUATIONS OF MOTION

Let us consider an oriented surface m of dimension D
described by the timelike surface

x"=X"(P), (2.1)

with p=0, . . . , X —1, a =0, . . . , D —1, embedded in an
N-dimensional spacetime M described by the metric g„.
The D vectors

only decouple completely but each component tends to
mimic the single scalar characterizing the perturbation
on a domain wall in a de Sitter space of one lower dimen-
sion. It is probably fair to say, however, that in the ab-
sence of a more general framework to steer by one is at a
loss to provide an entirely adequate interpretation of the
physics. It is not clear what features of the underlying
geometry are responsible for the simplification in pertur-
bation theory discovered in Ref. [2]. Do we always ex-
pect the effective mass to be tachyonic? We attempt to
provide sufficient criteria determining when the equations
will decouple. In particular, we demonstrate that when-
ever the world sheet of the defect can be embedded as a
hypersurface in some lower-dimensional geometry, elimi-
nate the equations of motion completely decouple. As a
special case we rederive Eq. (58) of the first paper in Ref.

5S =~ [6X~+r~,(X.)y "X..x~, ]=0, (2.4)

where 6 is the scalar Laplacian,

a.(&yy "a,),
y

'
and I "& are the spacetime Christoffel symbols evaluated
on m. We return to the derivation at the end of this sec-
tion. Equation (2.4) is clearly a higher-dimensional gen-
eralization of the geodesic equation describing the motion
of a point defect. Even in Minkowski space, however,
this equation is highly nonlinear. The feature of string
theory which makes it tractable is the fact that the
world-sheet is two dimensional and any two-dimensional
metric is conformally fiat [6].

Despite the nice analogy, this form of the equations of
motion is not very useful in practice. This is because all
but N —D linear combinations of these equations are
identically satisfied. To see this, we note, both on shell
and off, Gauss's equation [see Eq. (4.8a) below] can be
rewritten in the form

v x~+r~(x )x x~ =K"'n"'~b, a aP , a , b ab

where V, is the world-sheet covariant derivative compa-
tible with y,b, n" is the ith unit normal to the world
sheet, i = 1, . . . , 1V —D, and the corresponding ith extrin-
sic curvature tensor K,'b' is defined by [5] (we introduce
the notation 2), =X",D„)

form a basis of tangent vectors to m at each point of m.
The metric induced on the world sheet is then given by

y, b =X,x,bg„=g (e„eb ) . (2.2)

S [X",X",]= —cr f d gV' —y .
m

(2.3)

The constant of proportionality o. represents the constant
(positive) energy density in the surface in its rest frame.
If the area is infinite the associated action will be infinite.
However, the change in area corresponding to a variation
in the embedding of compact support will always be
finite.

We confine our attention to closed defects without
physical boundaries. The only boundary of the world-
sheet is then the spacelike boundary, Bm„we introduce
to implement the variational principle, marking the tem-
poral limits of the world-sheet on which the initial and
final configurations are fixed.

The equations of motion of the defect are given by the
extrema of S subject to variations

X~(g) ~X"(g)+5X"(g),

which vanish on Bm, :

The action which describes the dynamics of our system is
the most simple generally covariant action one can asso-
ciate with the surface, proportional to the area swept out
by the world sheet of the surface as it evolves:

K"=—X D n" = —g(e 2) n") .ab, a v p a& b (2.5)

The tangential projections of the Euler-Lagrange deriva-
tives of S therefore vanish identically:

5S
5X"

(2.6)

As we have remarked in Ref. [3], the geometrical reason
for this redundancy is the invariance of the action with
respect to world-sheet diffeomorphisms.

It is now clear that the equations describing the world
sheet are entirely equivalent to the 1V —D equations

K' =0 (2.7)

These are just the equations describing an extremal sur-
face and are well known in the mathematical literature
[7]. They provide an obvious generalization of the more
familiar notion of extremal hypersurface.

To derive Eq. (2.4), we note that

5S=——o f d g& —yy' 2)sg (e„eb),1
(2.8)

where we introduce the spacetime vector field

s=nx~a„, (2.9)

to characterize the deformation in the world sheet. We
also set 2) s5X"D . The key observation in the deriva-

P
tion is that the Lie derivative of the vector field 5 with
respect to e, vanishes (the proof is sketched in Chap. 4 of
Ref. [4]):
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2)se, =X),5 .

Now

y' 2)sg (e„ei, ) =2y' g (2)se„e(, )

=2y' g (2),5, e(, )

=2y'"[2),g (5, e& )
—g (5,2), e& ) ] .

The first term on the last line can be reorganized as

yy'"n—.g(5, e, )=n. [V' yy g—(5,e), )]
—2), (V —yy' )g (5,e„)

(2.10)

Thus, the relevant equation is

&PE« y—y "e(, ) =o . (3.3)

world-sheet hypersurface to facilitate the calculation. In
general, there is no simple analogue of Gaussian coordi-
nates corresponding to a lower-dimensional embedding
[8]. It is fortunate, therefore, that the covariant formal-
ism we have been pursuing is tractable.

We now evaluate the second variation of the action at
its stationary points. This is given by

5 S =o.f d kg[5, 2)P), (V —yy' e(, )] . (3.2)

to extract a divergence. Because 5 vanishes on Bm, this
term will also vanish there. We are left with the simple
formal expression

While formally Eq. (3.3) describes small perturbations, it
is not very useful in its present form. What we need to do
is to cast Eq. (3.3) explicitly as a linear system of coupled
scalar wave equations

5S=o.f d kg[5, Xl, (V yy—' e„)] . (2.11)
X(;)(j)4' ' =0, (3.4)

The equations of motion are therefore

2), (V —yy'ge„) =0, (2.12)

Our task is to find the linear hyperbolic partial
differential operator X. Such an equation can be derived
from an action of the form

the spacetime components of which reproduce Eq. (2.4).

III. THE QUADRATIC ACTION

(P(0 —~ (I') 5XP
P (3.1)

At lowest order, the dynamics of the irregularities in
the defect is still expected to be accurately described by
the action Eq. (2.3). The approach we will follow will be
to expand the action out to quadratic order about the
classical solution satisfying Eq. (2.7). When this is done,
it will be a relatively straightforward matter to write
down the corresponding equations of motion.

As we have seen, variations along tangential directions
correspond to world-sheet diffeomorphisms. We can,
however, provide a diffeomorphism invariant description
of the perturbation 5X" in the wall by constructing the
X —D scalars

S =—5'S =— dDgV' ye"—)2 e(j'
2 2 (I)(j)

where X(;)(.) is some other linear hyperbolic operator. As

we will see X(,.)( )
is linear in first derivatives of the fields

4". As a consequence it will not coincide with X(;)( ).
We are always free to symmetrize X(,)( )

(but not X(;)( )
)

with respect to the indices i and j.
Let us examine projection of the left-hand side (LHS)

of Eq. (3.3) on n":

g [n '),Xl&X), ( V yy' e„)]—=0 .

We need only consider vector fields 5 which are norma1
to m. The idea is to push 2)s to the right through 2), and

e, . Let us begin then by exploiting the spacetime Ricci
identity on the spacetime vector field v =V' —yy' e(,

representing the independent projections of the spacetime
vector 5X" onto the different normal directions. The
choice of the N" is not unique rejecting the fact that the
defining relations for the normal vectors,

XlP), =vX),2)sv+ R (e„5)v .

We note that by exploiting the projection tensor,

g Pv abXP Xv Pv (k)P (k)v
, b

(3.5)

(3.6)

g(e n(i)) 0 g(n(i) n(j)) 5(i)(j)

only determine these vectors up to (N —D)-dimensional
frame rotations. If the geometry possesses some symme-
try, it is very convenient to choose the normal vectors so
that they reAect the symmetry.

In our earlier treatment of domain walls it was possible
to exploit Gaussian normal coordinates based on the

I

we can express

y' g(5, R (e„5)e(,)
(ivR (i)p (j)v

pv

NR (i))L (k)a (j)v (k)j3)q)(i)g)(j)
pal

We now decompose 2),2)&v into three terms as follows:

g (n ',2),2)s[&—yy' e), ] ) =2), [V —yy' g (n ",2)se& ) ]—2)s(V —yy' )g (2),n '), e& )
—(V' —yy'~)g (Q, n ",&&5) .

(3.7)

We examine each term separately. For the first term, we rewrite the argument of 2), :
V' yy "g (n "',nsei, ) =X—

i, [V' yy "g (n "',5) ] V'—yy "g (X),n "',5—)—
(V'y

yah�)(I

(i)
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so that

2), [&—yy' g(n", Xl e )]

y[Q@(&) V (Ta(&)(J)@(j))]

where we have introduced the surface torsion (or normal
form)

In the last line we use the background equations of
motion Eq. (2.7) to justify dropping a term proportional
to K". We can decompose

2)s(y, b ) =g (2)se„eb ) +g (e„2)seb )

=2'(j'e(J) .a

T(i)(j)— (~ (i) (j))— T(j)(i)
a a a

The second term gives

(3.8) We could have used this result directly to derive the
equations of motion, Eq. (2.7).

To evaluate the third term, we note that

&,(& yy")—g(X.n",.„)= n, (&—yy")—rC(„)

=&—yn(y )Z"'b.
g(g) g( ) ~ $)—7( )(j) V q)(j)+D n(i) D g(j) (y(j)a~ b a b pn ~7l

so that

(~—yy )g(~ n(') ~ $)=~—y(y bT(')(J) V (p J +hPvD i) ' aD i) j g) j )

=Q —y(yabT(i)(J) V q&(j)+It. (i)~(j)ab T(i)(k)aT(k)(J))
a b ab a

using the definition (3.6) of the projection tensor.
We now add the three terms on the RHS of Eq. (3.7). The action is given by

dDg+ (C (&)++ (i) 2C (&)T(&)(j)QV C (J)+@(i)V T(/)(J)aC (j)1

2 a a

+@(i)[N~ & (i)p& (j )v Ng (i)p(k)a , (j )v (k)p]@(j)+q&(i)( ~(i)~(j )ab+ T( i)(k)aT(k)(j ) ~c (j) )z~n n „&n n n n ab a (3.9)

This coincides with Eq. (A6) of the third paper in Ref. [2]
when the background geometry is Minkowski space. The
term involving the world-sheet divergence of T,"" ' can
be dropped because it involves a contraction on the nor-
mal indices of a term which is symmetric with a term
which is antisymmetric in these indices. Such a term will
however show up in the equations of motion. Let us now
define

(i) o( )(j)(g) (j) (4.2)

This is a system of X —D nontrivially coupled scalar
wave equations for the N" on the curved background
geometry of the world sheet.

It is worthwhile at this point to pause a moment to
comment on the geometric role played by torsion in Eq.
(4.1). Under a local normal frame rotation,

V(~)(g) =V g(i)( j) T(i)(j)
a a a

Then

(3.10) we note that V", " 'N' ' transforms covariantly. This is be-
cause the torsion transforms like a vector potential:

d Dg+ [g (i)g( )(j)ic, (j)1

2

T«)(j)~g(i)( )T( )(i)(o — )()(j)+(~ Oo —))«)(j)
a a a (4.3)

where

(')( ) =V'(')(k)V(k)(
a

and

C()(M )()()e(&)] (3.11)

(3.12)

The torsion is not itself gauge invariant. The gauge-
invariant measure of the torsion is its curvature defined
by

(V(i) V j V~ V j )@(j =T~ j @j
a b b a ab

so that

(M2) Ng (i)p (k)a (j)v (k)g
(i)(j) pavp

T()(j) V T()(j) T()(k)T(k)(J) ( b)ab b a a b (4.4)

n «)pg (j)„n n, b (3.13)

IV. THE LINEARIZED EQUATIONS

The variation of Eq. (3.9) with respect to @"gives

j( (i)(j )@(j) (~2) (p(j) 0(i)(j) (4.1)

All three terms involving torsion get absorbed into the
definition of 6"" '.

A choice of normals such that the torsion vanishes exists
if and only if T"" ',b =0. However, if one decides to be
perverse with one's choice of normals one can always in-
troduce a torsion. Whatever the value of T"" ',b, unless
torsion appears explicitly in Eq. (4.1), its covariance un-
der normal frame rotations will be lost.

It is always possible to orient the normals along a
curve P=:-'(s) in m such that the torsion vanishes along
that curve. This can be accomplished by re-orienting the
normals at parameter s with the rotation matrix
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)(()(j) O (0)(()(k)

XP exp[ —f ds'='(s')T, [:-(s')]]
0

(k)(j)

where I' represents the path ordered product. This is an
analogue of the well-known result that a coordinate sys-
tern always exists in which the Riemmanian connection
vanishes along any given curve.

There are two ways that the scalar fields can couple.
One way is through the effective mass matrix (M )(;)(~)
given by Eq. (3.13). If there is torsion, however, they can
also couple through 5, which therefore acts like an exter-
nal vector potential. Though T"" 'T,' " ' couples the
N" like a mass term, it is more naturally grouped in the
combination appearing in the definition of (7. (M )(;)( )

need not possess a global sign. It can be diagonalized at
any point with its eigenvalues forming its diagonal en-
tries. If the world sheet were Minkowski space, a nega-
tive eigenvalue of M(, )( )

would signal an instability.
However, in general, there is no simple correlation be-
tween tachyonic masses and instabilities. An explicit
counterexample is provided by perturbation theory about
a class of defects in de Sitter space discussed in Ref. [2]
and which we will examine below.

In the case of a domain wall with a single normal vec-
tor, both the torsion and the total projection of the space-
time Riemann curvature onto the normal vanish. Equa-
tion (4.1) then reduces to the form

in K,'b' in favor of spacetime and world-sheet curvature
scalars. This is because it is the traced product over the
normal indices, K,'b'K,'d' which appears in these equations.

The quadratics in T,'" ' which appear in the Ricci equa-
tions are antisymmetric in both world-sheet and normal
indices. These equations therefore do not help us to elim-
inate the quadratic in T,""J'appearing in Eq. (4.1).

If, however, we can choose our normal vectors such
that all but one of them, for example, n"', are parallel
transported along any curve on the world sheet,

n. n")=0 (4.5)

K"=0, i =2, . . . , N —D . (4.6)

Only one of the background equations of motion will be
nontrivial. The marvelous thing about Eq. (4.5) for our
present purposes is that the quadratic in K,b appearing in
Eq. (4.1) can be replaced by its trace:

then T,"" '=0 for all i and j. The vanishing of T,"" ' is
assured by the antisymmetry of T,"" ' with respect to its
normal indices. We thus identify a sufhcient set of condi-
tions on the embedding under which the surface torsion
vanishes.

In addition, the conditions Eq. (4.5) imply that the only
linear combination of extrinsic curvature tensors which is
nonvanishing is the one that corresponds to the excep-
tional normal direction:

b4+(R„n "n'+K' K,b)@=0 . (4.1') K(i)K(j)ab g(i)(1)g(j)(1)K(k)K(k)ab
ab ab

In this case, the quadratic in the extrinsic curvature can
be eliminated in favor of intrinsic geometric scalars using
the contracted Gauss-Codazzi equations. We reproduce
Eq. (4.1) of Ref. [2] with p=0. Henceforth, we will as-
sume that the codimension of the defect exceeds one.

Even when the background geometry is Aat so that
R)" &=0, Eq. (4.1) is extremely complicated, involving

scalars in the extrinsic geometry (K,'b' and T,'"J') in com-
binations which, it appears, cannot be eliminated in favor
of intrinsic geometric scalars. To see this, let us recall
the complete set of consistency conditions for the embed-
ding [5]. These are

g( R (e„eb)e„ed)= R,b,d+K,",Kbd' K,d'Kb,'—
(Gauss-Codazzi ),

+2 R n 'k'"n ' ' '" '"~—R»~&n n n n (4.7)

where we have exploited the definition of the projection
tensor, Eq. (3.8). The normal projections of the spacetime
Ricci and Riemann tensors are of a kind already encoun-
tered in Eq. (4.1). However, here they do not imply any
coupling between diA'erent N"'s.

To provide a geometrical picture for what Eq. (4.5) im-
plies, it is useful to recall the form of the Gauss-
Weingarten equations [5] which describe the change in
the basis vectors as one moves about the surface:

so that the contracted Gauss-Codazzi equation can be
used exactly as it was in the case of a hypersurface to
eliminate it in terms of curvatures:

K~"'k'K' '= R gv hvar —DR
ab pvoP

NR 2NR (k)j(L (k)v
pv

and

g( R (e„e„)n",n 1 )

( Codazzi-Mainardi ),
Z), eb =y', be, +K(b)n( ),

(()— K (i) b+ T(()(j) ( j)an abc a

(4.8a)

(4.8b)

= T'" ',b
—[K,",Kb ' (a~b)], (Ricci)—,

where T'"J',
b is given by Eq. (4.4). Note that the torsion

only occurs in gauge-invariant combinations in these
equations.

Unlike the case of a hypersurface, we cannot exploit
the Gauss-Codazzi equations to eliminate the quadratic

X).eb =y'.be, +K.'b'n(",
n'"= —K"'e'an ab e

(4.8')

where the y', b are the world-sheet connection coeKcients.
The consistency conditions we wrote down earlier are the
integrability conditions on these equations. When Eq.
(4.5) is satisfied, only n'" changes as we move about the
world sheet and Eqs. (4.8) reduce to the form
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and

2),n( '=0, I =2, . . . , N D—.

2) e =I '"n"'
(i) — ~())ev (4.10)

g AB,I

AI
(4.9)

Any defect in Minkowski space which lies in a D-
dimensional plane will satisfy these conditions.

Let us describe de Sitter space by a Friedmann-
Robertson-Walker (FRW) closed line element

ds = dt +H —cosh (Ht)dQN

where dQ, & is the line element on a round N —1 sphere
and H is the Hubble parameter. The subspace consisting
of any number of fixed azimuthal angles is also a de Sitter
space with the same Hubble parameter. A D-dimensional
defect in de Sitter space with N —D —1 fixed meridians
will also satisfy Eq. (4.9).

In the two cases considered above, spacetime is homo-
geneous and isotropic. A less trivial example satisfying
Eq. (4.9) is a string in Schwarzschild space on a fixed
meridian. Thus we see that Eqs. (4.9) is consistent with a
reasonably 1arge class of geometries.

Let us suppose, in addition, that the geometry of the
world sheet is spherically symmetric, i.e., invariant under
the rotation group, 0 (D —1). The world sheet of the de-
fect is then a D-dimensional FRW homogeneous and iso-
tropic closed universe described by the line element

ds = —dr +a (r)dQt~

The first two equations are simply the hypersurface form
of the Gauss-Weingarten equations. The world sheet can
be embedded as a hypersurface in a (D + 1) one-
dimensional submanifold of M, let us say JN, .

Let us now look for conditions on the geometry in the
neighborhood of the world sheet making it consistent
with Eq. (4.5). To do this, we construct a coordinate sys-
tem for M adapted to JR in the neighborhood of m. Let
y ", A =0, . . . , D be coordinates for A, in this neighbor-
hood. We now complete the coordinate system for M by
complementing the coordinates on Afwit, h N D ——1
coordinates Iz J, I =2, . . . , N Dsuch —that JK is given
by z =0. The norrnals to m, n' ', I =2, . . . , N —D are
then linear combinations of the gradients of the z evalu-
ated on m. With respect to these coordinates, Eqs. (4.5)
can be replaced by the following conditions on the space-
tirne metric evaluated on m:

The condition y'„=0 is the analogue of the statement the
acceleration along a timelike curve is orthogonal to the
velocity when the curve is parametrized by proper time.

There is another simplification which occurs whenever
D =N —2, an example of which is provided by a string in
any four-dimensional manifold. For then, the coupling
between the two scalar field components N") and 4( '

which is mediated by the terms of the form

~ ( )Pn (k) n (J) g (k)P@(J)
pavp+ (4.11)

If the background is de Sitter space, the Riemann curva-
ture coupling also disappears independent of the dimen-
sion of the defect. For then

2&).avt)=H (g) vgap g) t)gva) i

so that

&(i)Pn(k)an(J)v&(k)p H2(N D 1)g(&)(J)
pavpn

(4.12)

In particular, in the case of any defect lying on the sub-
space with N D —1 fixed m—eridans (it need not itself be
spherically symmetric) in de Sitter space, the best of all
worlds is realized. The scalar fields completely decouple.
Without any essential loss of generality, we will consider
codimension two. Now

(M2) Ng + Ng & (1)pn (1)v Ng & (k)p& (k)v
(1)(1) PV PV

+Ng n (1)pn (2)an (1)v (2)P N —2g
pavp n

(4.13a)

in Eq. (4.1) vanishes. Let i = 1. Then, the only surviving
term in Eq. (3.13) is

yg
(1)pn (2)a7$ (1)vn (2)P(y(2) ~

pavp&

the fields decouple. This condition may not be indepen-
dent of Eqs. (4.5).

If the background spacetime is Einstein, with cosrno-
logical constant A,

2A
ap N 2 gap

the Ricci curvature coupling between difFerent scalar
fields disappears:

8 n "Pn'J' = 2A g(~)(J')
PV

where ~ is the proper time registered on a comoving
clock. The function a(r) is the proper circumferential
radius r on the D —1 sphere at proper time ~. Consisten-
cy then demands that the spacetime metric be invariant
under some O(d —1) with d )D with D —1 common
axes of symmetry. The only nontrivial dynamics now
takes place in a (1+1)-dimensional subspace of At The.
Gauss-Weingarten equations mimic the Frenet-Serret
equations describing the motion of a particle in this two-
dimensional spacetime:

(M2) Ng tt (2)pn (2)v
(2)(2) p

n ( )pn (2) n ( )vga ( )P
pavpn

We substitute Eq. (4.12) into Eqs. (4.13) to get

(M )(i)(i)=(N 2)H + R

(N —2)(N —3)H—
(M )(2)(2):(N 2)H

(4.13b)

(4.14)
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M~2]~2] is independent of the motion of the defect and is
always tachyonic. Both wave equations depend only on
the intrinsic geometry of the world sheet.

Let us now specialize to spherically symmetric defects
of codimension two. In four dimensions these are circu-
lar strings. A circular string can follow two qualitatively
different trajectories a =a (r) in de Sitter space [1].One
of these consists of trajectories which begin with a =0
grow to a maximum value before recollapsing to a =0.
The other is the bounce which consists of a trajectory
originating on the equator contracting to a minimum
value and then bouncing back to the equator. The
description in terms of a(r) is qualitatively identical to
that for spherical domain walls.

In particular, there is a bounce which does not reaHy
bounce at all representing a circular string which spans
the equator. This solution can be interpreted as a string
which tunnels from nothing due to quantum mechanical
processes [1]. These are the strings about which pertur-
bation theory was examined in Ref. [2].

The world sheet is now an embedded (N —2)-
dimensional de Sitter space with

R =(N —2)(N —3)H (4.15)

We note that now, not only do Eqs. (4.5) hold, but in ad-
dition 2),n")=0. The normal directions n(" and n( ' are
now entirely equivalent. Our construction which did not
exploit the extra symmetry of a defect which spans the
equator degenerates. Geometrically, K,'b'=0 for all i. In
mathematical parlance, the world sheet is totally geodesic
[5].

It should not be surprising that perturbation theory
simplifies dramatically in this case. The two effective
mass eigenvalues now coincide and are tachyonic. The
equations of motion for N' "and N' ' are therefore identi-
cal,

Q@(1),(2)+(N 2)H2@(1),(2) 0 (4.16)

V. CONCLUSIONS

reproducing the expression obtained in Ref. [2]. The
wave equation for each component mimics the equation
for an equatorial domain wall in an (N —1)-dimensional
de Sitter spacetime. We note that the technique used in
Ref. [2] to derive Eq. (4.14) depended sensitively on the
fact that the embedded domain wall spanned the equator.
Now, however, we possess a general framework which
not only has permitted us to predict that decoupling
would occur but also explains why the effective masses
coincide in this geometry.

the codimension of the world sheet is r, there will be r
scalar fields describing the perturbation. There is a cou-

pling through an eff'ective mass matrix involving quadra-
tics in the extrinsic curvature as well as appropriate pro-
jections of the spacetime Riemann curvature. In addi-

tion, however, on a lower-dimensional defect there will be
a coupling between the scalar fields mediated by the tor-
sion of the embedding. We have examined the geometri-
cal role played by torsion in the formalism. It is this cou-
pling which ensures that the equations of motion trans-
form covariantly under local normal frame rotations. As
such, it plays the role of a vector potential coupling to
the scalar Geld. The only invariant measure of the tor-
sion is its curvature. If the curvature vanishes the torsion
can be gauged away by an appropriate local rotation of
the normal vectors.

If the geometry under consideration possesses a sym-
metry some simplification is always likely. We focused
on the identification of a sufficient set of simplifying con-
ditions without any attempt to be rigorous. We showed,
however, that these conditions are realized under geome-
trical conditions which are sufficiently general to be use-
ful. When, in particular, the background is de Sitter
space and the defect is oriented along any number of
Axed azimuthal angles, the scalar fields completely decou-
ple.

A challenge is to formulate a consistent quantum field
theory of perturbations. The renormalization of the
theory will require the addition of counterterms involving
extrinsic geometry.

The formalism should also prove usefu1 for the exam-
ination of fluctuations about instantons in the semiclassi-
cal approximation to tunneling. Now the signature of
both the background spacetime and the world sheet is
Euclidean. One is then interested in the eigenmodes of
the corresponding Euclidean operator

($4)"—(M ) O'J'=A&9"
(~')( j)

in particular those which correspond to negative or zero
eigen values.

The weak point in our analysis is that it fails to treat
the topological defect as a source for gravity. We are
currently addressing this problem in the context of
domain walls. The treatment of the perturbation is, how-
ever, likely to be problematical for codimensions higher
than one. As such, it would probably be more rewarding
to examine perturbation in the context of a field theoreti-
cal model for the topological defect.
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