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A procedure is developed for the recovery of the inflationary potential over the interval that affects as-

trophysical scales (=1 Mpc to 10 Mpc). The amplitudes of the scalar and tensor metric perturbations
and their power-spectrum indices, which in principle can be inferred from large-angle CBR anisotropy
and other cosmological data, determine the value of the inflationary potential and its first two deriva-
tives. From these, the inflationary potential can be reconstructed in a Taylor series and the consistency
of the inflationary hypothesis tested. Examples are presented, and the effect of observational uncertain-
ties is discussed.

PACS number(s): 98.70.Vc, 95.30.Cq, 98.80.Cq, 98.80.Es

I. INTRODUCTION

The detection of anisotropy in the cosmic background
radiation (CBR) by the Differential Microwave Radiome-
ter (DMR) on the Cosmic Background Explorer (COBE)
satellite [1] has provided the first evidence for the ex-
istence of the primeval density perturbations that seeded
all the structure seen in the Universe today. Another ex-
periment has now confirmed the COBE detection [2], and
numerous experiments are underway to probe anisotropy
on angular scales from arcminutes to tens of degrees.
[CBR anisotropy on angular scale 0 arises primarily due
to metric perturbations on length-scale 100 Mpc (8/deg),
so that CBR anisotropy can probe metric Auctuations on
scales from about 10 Mpc to 10 Mpc. ]

The COBE DMR detection has opened the door for
the study of the primeval density perturbations and,
thereby, the microphysics that produced them. At the
moment, there are three viable models of structure for-
mation: the cold dark matter models, wherein the pertur-
bations arise from quantum Auctuations excited during
inAation and expanded to astrophysical length scales
(t —10 sec); the models wherein the seed perturbations
are topological defects [3], such as textures, cosmic
strings, and global monopoles produced in a very early
phase transition (t —10 sec); and the PIB model [4],
wherein the perturbations are local Auctuations in the
baryon number of unknown origin. The PIB model dis-
tinguishes itself from the others in requiring no non-
baryonic dark matter (Qo=Qii -0.2).

The cold dark matter models motivated by inAation
have been relatively successful, though not without
shortcomings [5]. In these models there are, in addition
to density (scalar metric) perturbations, gravity wave
(tensor metric) perturbations that also give rise to CBR
temperature anisotropy. This is a curse and a blessing:
CBR anisotropy cannot be assumed to reAect the under-
lying density perturbations alone; on the other hand, if
the tensor and scalar contributions can be separated,
much can be learned about the underlying inAationary
potential.

The separation of the contribution of scalar and tensor

perturbations to CBR anisotropy involves exploiting
their diferent dependencies upon angular scale and, pos-
sibly, their contributions to the polarization of the CBR
anisotropy [8,9]. In addition, since the scalar perturba-
tions alone seed the formation of structure, measure-
ments of the distribution of matter in the Universe de-
rived from redshift surveys, peculiar-velocity measure-
ments, and so on can be used to determine their spectrum
independently.

The concern of this paper is what can be learned about
the inAationary potential from the spectral indices and
amplitudes of the scalar and tensor metric perturbations.
Aspects of this question have also been addressed else-
where. The authors of Ref. [6a] discussed what can be
learned from the scalar perturbations alone. The rela-
tionship of the steepness of the potential to the ratio of
the amplitudes of the tensor and scalar perturbations was
pointed out in Refs. [6b]. The importance of measuring
the spectra of both tensor and scalar perturbations to the
reconstruction of the potential was emphasized in Refs.
[6c]. Our approach follows the perturbative formalism
set up in Ref. [7], which is applicable to infiationary po-
tentials that are relatively smooth over the interval that
determines metric perturbations on astrophysical scales.
It is not applicable to potentials with "specially en-
gineered features" [10].

II. THE METHOD

We use four observables to characterize the scalar and
tensor metric perturbations: their contributions to the
variance of the CBR quadrupole anisotropy, S for scalar
and T for tensor, and the power-law indices of their Auc-
tuation spectra, n for scalar and n T for tensor. (For
scale-invariant perturbations n = 1 and n T

=0. The
horizon-crossing amplitudes of density perturbations
vary with scale as A,

" "' and of the gravity-wave per-—nT/2
turbations as A, .)

In Ref. [7] it was shown that these quantities can be re-
lated to the value of the inAationary potential, its steep-
ness, and the change in its steepness evaluated around the
epoch that the scales of astrophysical interest crossed
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outside the horizon during inflation (about 50 e-folds be-
fore the end of inflation):

Vso =—V(%so»

In Ref. [7] detailed formulas for the tensor and scalar
contributions to the higher multipoles are given, very
rough, for I && 200 and standard recombination,

m pi V'( /so )
Xsp =

Vso

mplV' (/so) xso
xso=x (Wso)=

Vso

I(I+1)& a,' I') —S(I!2)"
4~

I(1+1)& Iai' I'& —T(I /2)
4m

(5)

/so is the value of the scalar field that drives inflation 50
e-folds before the end of inflation (or however many e-

folds before the end of inAation the astrophysic ally
relevant scales crossed outside the horizon),
fPl p)

= 1.22 X 10' GeV is the Planck mass, and a prime in-
dicates a derivative with respect to P.

The formulas relating the observables 5, T, n, and nT
and the properties of the inflationary potential are

5& la,S=
4~

Vso 7=2.22 1+1.1(n —1)+—[nT —(n —1)]
mp) X sp 6

T= =0.606 (I+1.2nT),
mp,

4

2 I
X sp fnp)X spn=1 — +
8w 4~

2X so

(2)

I Vso I
=5.01V' —nT(Vso/mp, )=8.3+ nTTmp, ,

—

Vso=4m[(n —1)—3nT](Vso/mpi )

=21[(n —1)—3nT]Tmpi .

(3)

At present, the COBE DMR detection serves mainly to
determine the sum of the scalar and tensor contributions
to the quadrupole anisotropy

2

8m

where S ( T) is the contribution of scalar (tensor) pertur-
bations to the variance of the CBR quadrupole tempera-
ture anisotropy and angular brackets indicate the ensem-
ble average [13]. Since the four observables can be ex-
pressed in terms of three properties of the potential, a
consistency check exists: T/S = 7nT-

These formulas have been computed to lowest order in
the deviation from scale invariance, i.e. , O(nT, n —1),
and only apply to smooth potentials. Note too, that nT
must be less than zero (more power on large scales),
though the scalar power-law index n can be greater than
1. From Eq. (2) one can solve, for the potential and its
first two derivatives; to the appropriate order,

Vso = 1.65T( 1 1.2nT )m pi

Thus, in principle, a separation of the tensor and scalar
contributions to the individual multipole amplitudes
determines n, T and n —1. Since n.T is directly related to
the ratio of the tensor to scalar contributions of the quad-
rupole anisotropy, measurements of S and T also deter-
mines n T.

The recovery of the inAationary potential proceeds by
constructing its Taylor series:

V(0) = Vso+(4 Iso) Vso+(0 %so) Vso/2 + ' ' '

as before, /so is the value of the scalar field 50 e-folds be-
fore the end of inAation. Measurements of T, S, n, and
nT only determine the square of Vsp, so the sign of Vso
cannot be determined; as a matter of convention we al-
ways take it to be negative. The sign of V' is not physical
since it can be changed by the field redefinition: P —+ —P.

Scalar and tensor metric perturbations on the astro-
physically interesting scales, say, from the scale of galax-
ies, about 1 Mpc, to the present horizon scale, Ho

' —10
Mpc, were created during a small portion of the
inAationary epoch corresponding to an interval of rough-
ly 8 e-folds around 50 e-folds before the end of inflation (a
precise formula relating the epoch when a scale went out-
side the horizon during inAation and the parameters of
inflation is given in Ref. [7]). This means that astrophysi-
cal and cosmological data can only reveal information
about the inAationary potential over this narrow interval,
a fact which motivated the formalism developed in Ref.
[7]. As a matter of principle, we will only reconstruct the
potential over the interval that corresponds to these 8 e-
foldings of the scale factor.

The equation of motion for P in the slow rollover ap-
proximation [11],P= —V'/3H, can be recast as

m pi x

dX 8~
(7)

/so= [exp[(X 50)mpix so/8~] 1]
X so

where N is the number of e-folds before the end of
inflation. By expanding the steepness x around
x (P)=xso+(P —/so)xso, one obtained P as a function of
N:

16+4pK
2.726K

=3.4X 10 (4) m p, Q nT/2rr-
n 1 nT

~The value for the variance of the CBR quadrupole anisotropy
derived from the COBE DMR data depends slightly upon the
spectral indices of the metric pertnrbations; aQ/an = —5.4@K
and BQ/Bnr ———6. 1p,K where Q2=S+T.

X [ exp[(X —50)( n —1 —n T ) /2] —1 I . (8)

The change in the value of the scalar field over the 8
important e-folds of inflation (=b,P) depends upon n and
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nT: If the difference between n —1 and nT is very small,
then bP —Q —nTmz&', on the other hand, if Q —nT is

very small or the difference between n —1 and nT is large,
then b,p is much less than mpI.

This equation, together with the Taylor expansion for
the potential cf. Eq. (6), and the equations relating V~o,

V5O, and V~0 to the observables S, T, n, and nT, cf. Eqs.
(3), are all we need to recover the inflationary potential.
To begin, we will recover some familiar inflationary po-
tentials. For these potentials, we do not worry about the
scale of inflation V&o, which is set measurements of S and
T (see below); we will only be interested in the shape of
the potential. Specifying nT and n is sufhcient to recover
the shape, though we also give T/S as it may be easier to
measure than nT (and, of course, is equivalent to nT).

I I I I I I I

I I I I I

~ 0
4 —CM (uruts of znpy)

.5

III. SOME EXAMPLES

A. Familiar potentials
I I

[
I I I I

(b&

First, consider potentials of the form V(P) =a/, often
used in models of chaotic inflation [12]. For these models
[7]

T/S=0. 07b, nT= —0.01b, n =0.98—0.01b .

Note the deviations from scale-invariance increase with
b; since our recovery process involves an expansion in the
deviation from scale-invariance, one expects the recovery
of the potential to be less accurate for larger values of b.
In Fig. 1, we show the original potential and the
recovered potential for b =2,4, 16; even for b = 16 the
recovery is quite accurate.

Next, consider exponential potentials,
V(P)= Vo exp( —Pglmp, ), which arise in models of ex-
tended inflation [14]. For these models [7],

0 I I I I I I I

—1 —5
@ —@eo

0 .5 i
(units of mp, )

T/S=0. 28P, nT= —,n —1 =nz. .
8~

In Fig. 2, we show the reconstruction for p=1.23, 1.94,
6.03, corresponding to nT= —0.06, —0. 15, —0.24. Only
for nz-= —0.24 is the recovery of the potential less than
excellent; however, this much deviation from scale invari-
ance is probably inconsistent with models of structure
formation [15].

Now, consider a cosine potential, V(P) =A [1
+cos(P/f )], the type of potential employed in the "natu-
ral inflation" models [16]. It is not possible to provide a
general formula for nT, n, and T/S; however, there are
two limiting regions: f ~ mp& and f 5 mpI. In the first

regime, the cosine potential reduces to the case of chaotic
inflation with b =2. In the second regime [7],

r 2 2 2

0so 1 mPI—=0.07 «1, n =1-
S f f '

ger f

0

4

0—1

aI I I I I I I
i

I

\

t

\

\

I I I 1 I I I I I I

0
CI C'ao (uIlit. s

1 I I 1 1

Of mp)

c)

where $5&If =m e p( —x50mpI /16' ). In Fig. 3, we
show the recovered potential for f=m p& /2, where
n =0.84. Again, the recovery process works very well.

FICx. l. Recovery of chaotic potentials, Vlf)=a/", over the
8 e-folds relevant for astrophysical scales and for comparison,
the original potential (broken curves): (a) b =2; (b) b =4; and (c)
b =16.
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FIG. 3. Recovery of the cosine potential, V(it )

=A [I+cos(P/f)] and f=mp, /2, and for comparison, the
original potential (broken curve).

Finally, consider the Coleman-Weinberg potentials,
V((tI)=Bo /2+BE"[1n(rtJ /cr )

—0.5], often used in mod-
els of new inAation; for these models

4—=3X10T 5

S mp)
n =0.94 .

These potentials are extremely Aat and easily recovered
as shown in Fig. 4.

B. Unknown potentials

I I l I I I

0
(units

I I I I I

of rnp)

Now we turn to the recovery of an unknown potential
from cosmological data. The recovery process requires
knowledge of three of the quantities T, S, n, and nT,' we
will use T+S, T/S, and n, which are probably the easiest

4
t
\
\

\
l
\

\
l

\
\

\
l

I I I I I I I

—160
I I I I I I I I I

I

I I I I I I

I I I I I I I

0
(units

I I I I

Of rIlpt)
yo I I I I I I I I I I I I I I I

0
Cso (units of 10 rnpJ)

FIG. 2. Recovery of exponential potentials, V(P)
= Vo exp( —PJI)/mpI ), and for comparison, the original potential
(broken curves): (a) P=1.23; (b) P=1.94; and (c) P=6.03.

FIG. 4. Recovery of a Coleman-Weinberg potential with
o.=1X10' GeV and for comparison, the original potential
(broken curve).
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to measure. The quadrupole temperature anisotropy
determines S+T; supposing that its value is 16pK, the
COBE DMR determination, we can immediately infer
Vso:

Vqo:(3 3X10 GeV)

1 —1.1(n —1)+—,'(n —1 n—r )

1+S/T

(We remind the reader that nr = —0. 14T/S. ) From this
equation, we see that the value of V5o is most sensitive to
T/S, varying inversely with it. That is, the scale of
inAation rises with the amplitude of tensor perturbations,
asymptotically approaching an energy scale of about
3 X 10' GeV.

Once V5o is fixed, n and T/S determine the shape of
the potential. Generically, there are four qualitatively
different outcomes for the measured quantities which
lead to four generic inflationary potentials: (1) n =1 and

T/S very small, corresponding to scale-invariant scale
and tensor perturbations, (2) n significantly less than 1

and T/S very small, corresponding to tilted scalar Auc-
tuations and scale-invariant, small amplitude gravity
waves, (3) n = 1 and T/S of order unity, corresponding to
scale-invariant scalar perturbations and tilted, large-
amplitude gravity waves, and (4) n significantly less than
1 and T/S of order unity, corresponding to tilted scalar
and tensor perturbations and large amplitude gravity
waves.

The four generic potentials are illustrated in Fig. 5.
For large T/S, cases (3) and (4), the potential is steep, the
scale of inflation is relatively large, and the variation of P
over the relevant 8-folds is of the order of the Planck
mass. For small T/S, cases (1) and (2), the potential is
very Aat, the scale of inflation is relatively low, and the
variation of P over the relevant 8-folds is much less than
the Planck mass. Coleman-Weinberg potentials provide
an example of case (1); cosine potentials and the potential
V(P)= —m P +A/ [11] provide examples of case (2);

1.00 i
I I I I I I I I

(b)

I

C)

I I I I I I I I l t I l I I I

—1 0
45p (unit s of 1 0 rIlp))

.999
—1 0

4«(units of 10 rni, )

(c)

I I I I I

0
C C 5p (units of m~, )

0
I' I sp (units of mp&)

FIG. 5. The four generic inAationary potentials: (a) n —1=—2X 10 and T/S=1.4X 10 ', with the COBE DMR normalization
Vsp =2.0X10' GeV; (b) n =0.85 and T/S=1.4X10, V5p =3.6X10' GeV; (c) n =1 and T/S=1, V5p =2.9X10' GeV; and
(d) n =0.85 and T/S = 1, V~p" =2.9X 10' GeV. (a)—(d) correspond to cases (1)—(4) in the text.
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recently, an example of a potential corresponding to case
(3) has been presented [17]; and exponential potentials
provide an example of case (4). Finally, n can be larger
than unity, however, the two new cases, n significantly
greater than one and T/S small or of order unity, are
qualitatively similar to cases (2) and (4).

IV. DISCUSSIQN

The scalar and tensor contributions to the CBR quad-
rupole anisotropy, S and T, and the power-law indices of
the spectra of scalar and tensor perturbations, n and n, &-,

serve to determine, indeed overdetermine, the value of
the inflationary potential and its first two derivatives. In
principle, measurements of these four quantities can be
used both to test the consistency of the inflationary hy-
pothesis and to recover the inflationary potential through
the first three terms in its Taylor expansion. We have
shown the recovery of several familiar potentials, cf. Figs.
1 —4, and the four generic types of inflationary potentials
that arise, cf. Fig. 5.

In order to recover the inflationary potential measure-
ments of at least three of the quantities n, T, S, and nT
are required. In all likelihood, the first three will be the
easiest to determine; CBR anisotropy, as well as deter-
minations of the distribution of matter and large-scale
structure, should serve to measure n, and large-angle
CBR anisotropy should determine 5 and T (in the case of
T, at least an upper limit). An independent measurement
of nT seems much more difficult, but provides the con-
sistency check: T/5 = 7n T. —

In any case, determinations of n, S, and T are likely to
have significant uncertainties, so that the recovery of the
underlying inflationary potential will not be as easy or as
precise as our examples would indicate. In Fig. 6, we
show the effect of these uncertainties on the recovery of
the shape of the inflationary potential for the following
data: n =0.9+0.2 and T/S=0. 3+0.25. Even worse is
the effect of uncertainties on determining the scale of the
potential. Recall, when S + T is normalized to the COBE
result, V~o varies as the inverse of T/S, which for the

—.3 —.2 —.1 0 .1 .2 .3
4 —Cse (units of m»)

FIG. 6. An illustration of the e6'ect of observational uncer-
tainties on the shape of the recovered potential; here
n =0.9+0.2 and T/S=0. 3+0.25. The four curves correspond
to n =0.7 and T/S =0.05 (solid), n =0.7 and T/S=0. 55 (dot-
ted), n = 1 1 and T/S =0 05 (dashed), and n = 1 1 and
T/S =0.55 (long-dashed).

above "data" leads to an order of magnitude range in the
value of V5O.

An accurate recovery of the inflationary potential is
still a long way from reality, and, of course, it may be
that inflation never even occurred. However, with the
COBE DMR anisotropy measurements the first step has
been taken. Moreover, the potential payoff, probing
physics at unification energy scales, is worth the effort, if
not the wait.
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