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Dilatonic black holes in theories with moduli fields
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We discuss the low-energy effective string theory when moduli of the compactified manifold are
present. Assuming a nontrivial coupling of the moduli to the Maxwell tensor, we find a class of regular
black-hole solutions. Both the thermodynamical and the geometrical structure of these solutions are dis-

cussed.
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I. INTRODUCTION

Electrically and magnetically charged black-hole solu-
tions arising in the context of effective low-energy string
theories exhibit properties which make them drastically
different from the usual Reissner-Nordstrom black holes
[1,2]. When expressed in terms of the "string" metric,
these solutions are characterized by a geometry which in
the extremal limit is singularity-free. Furthermore, the
rather unusual thermodynamical properties seem to indi-
cate that black holes behave much more like elementary
particles [3]. This situation is therefore very promising
for trying to understand long-standing puzzles of black-
hole physics such as the loss of quantum coherence in
black-hole evaporation.

Most of the models considered until now work with the
Einstein action modified with the introduction of the di-
laton field. This is, from the point of view of the low-
energy string action, just a first approximation. For large
mass holes (M))Mp&) this may be a good one. Howev-
er, if string theory has to solve the puzzles of quantum
gravity one needs to go beyond this approximation. Vari-
ous directions can be followed. First, the low-energy
string action has the form of an expansion in the inverse
string tension a'. One should be able to take into account
terms of the action proportional to higher powers in the
curvature tensors. Progress in this direction has been
made in Ref. [4]. Second, even though one considers only
the massless sector of the string spectrum, there are other
fields, such as the moduli of the compactified manifold,
which should come into play. Third, a correction to the
effective low-energy action may appear at the one-loop
string level. Moreover nonperturbative effects should be
considered.

The important question is as follows: Are the above-
mentioned properties of dilatonic black holes shared by
more general situations? Are they an artifact of the ap-
proximation or are they related to general features of
string theory? In this paper we will move a step further
in this direction. We will derive and study black-hole
solutions of the low-energy string action coming from di-
mensional reduction from ten to four dimensions, retain-
ing one single modulus which describes the radius of the
compactified space. By invoking one-loop string effects

we will couple this field to the Maxwell tensor in order to
get new black-hole solutions.

The structure of this paper is as follows. In Sec. II we
present the low-energy effective string action we want to
discuss. In Sec. III we derive the corresponding black-
hole solutions. A generalized version, together with its
black-hole solutions, of our action is studied. Both the
thermodynamical and geometrical features of the solu-
tions are discussed. In Sec. IV we consider the duality
symmetries of our theory and show how dual dyonic
solutions can be generated.

II. THE ACTION

The corresponding field equations have regular black-
hole solutions only for o =const [these are the
Cxarfinkle-Horowitz-Strominger (GHS) solutions]. In
fact, performing the redefinitions

C =P —
—,
'o. , X= —

—,'o —3P, (2)

one can easily see that the action (1) becomes the one of
Ref. [1] plus a kinetic term for the field X. In particular,
there is no coupling of X to F . This prevents the appear-
ance of new black-hole solutions. Note that @ and X
rather than P and o. are the physical dilaton and "com-
pacton" fields of the four-dimensional supergravity
theory.

At this stage one can ask himself if a coupling of the
field X to F could be justified. It is well-known that at
the string tree level such coupling does not exist. Howev-
er, it can be generated at the one-loop level. A correction

We start from the four-dimensional low-energy action
of heterotic superstring theory derived by Witten in Ref.
[5]. The effective action was obtained through dimen-
sional reduction of ten-dimensional supergravity using a
suitable truncation of the spectrum. In the following we
set to zero all the fields but the graviton, the electromag-
netic field, the dilaton P and the scalar o. arising from the
ansatz glJ =e 5IJ for the metric of the extra six dimen-
sions. The action reads

A = J d x&—g [J7 —6(Vo. ) —8(VQ) e~+—F ] .
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to the action (1) of the form
—2X/3F2 (3)

where go and g& are integration constants.
The solution assumes a neater form by defining a new

variable r such that r =q+ q„
was considered some time ago by Ibanez and Nilles, using
arguments based upon the supersymmetrization of anom-
aly canceling terms [6]. More generally, terms of the
type b.(e )F are expected to arise from integrating
out heavy modes of the string spectrum [7,8]. Further-
more, the appearance of such terms in the effective super-
gravity Lagrangian seems to be crucial in order to get
dynamical supersymmetry breaking [8].

For the moment we consider the "minimal" coupling
defined by (3). Later, we will study a more general situa-
tion. The form of the action we are lead to study is then

A = f d4xv'g [W —2(V@)2——'(VX)2 —e 2@F2

r —r+ =q+go, r —r =q —
qo .

ds =—ddt +g dr (10)

with

r+1—

2/5

3/5
r

(1 la)

As we shall see, the constants r+ and r are simply relat-
ed to the physical mass M and charge Q of the black hole.
Qne now has

—
2X/3F2 ] (4)

r
g 2=r2

III. THE BLACK-HOLE SOLUTIONS

The field equations coming from the action (4) are

%„,=2V„&bV,C +—', V„XV.X

q2q) l —2+~2
2 7

re'~= 1—
2/5

(1 lb)

The action (4) corresponds to the "minimal" coupling
(3). However, one can also consider more general cou-
plings:

p2y i —2X/3y 2
2

5Ã=exp — X, q ER .2g
3

(12)

A spherically symmetric solution of the Geld equations
can be found by an ansatz which reduces the system to a
Toda-lattice form [2]:

These terms may be viewed as the building blocks of a
series expansion of the general term b.(e / )F . The
action is now

ds2 —e2 ( dr2+e4pdg2)+ 2pdf)2

Fmn =&&mn
(6) A = f d xi/ —g [A —2(VC&) ——', (VX) —e F

—2q X/3F 2
] (13)

where v and p are functions of g and Q is the magnetic
charge.

Defining g=v+p, the field equations are given by
('=did/):

Proceeding as before, one readily obtains a regular
black-hole solution for X'= 3q 'N'. The solutions are

3/(2q +3)

2g
A2= 1— (14a)

g 2 —2(C& —v)

g 2 —2(X/3 —v)
7

I I + (g) I I +Q I I 0

with the constraint

r
R =r 1—

r—2N 1

2q /(2q +3)

2q /(2q +3)

(14b)

(14c)

gi2 i2 @i2 i yi2+ g2 —2(C& —v)
3

+g2e 2(x/3 v) 2/=0 (8)

An exact solution can be found if X'=3&'. By intro-
ducing a new variable, such that e ~=g —go, the only
asymptotically Hat solution with a regular horizon can be
written as

=(2)—rj ) (g+2) )(2)+r), )

e"=(& no)'"(n+ni )'"—
e =(rI —g ) (2)+2) )

The metric functions of our solution coincide, after the
redefinition a =q (q +3) ', with that found in Ref. [1]
in the context of a generalized model for dilaton gravity.
The expression (14c) for the dilaton, however, is not the
same, . As we shall see 1ater, this has important conse-
quences for the form of the "string" metric.

The physical mass and charge of the hole are given by

2M=r+ + r3

2q +3
2

r r
2q +3
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1T-
4mr+ r+

2q /(2q +3j
(17)

Using well-known formulas one can easily calculate the
temperature and the entropy of the black hole. We have

3/(2q +3)

the action can be written as

3 = J d x&—g %—G,„-B„Z'8+"g"

+(i /4)[(S + T)F+ —(S+T)F ]

(20)

2d~ string
=

We see that for extremal black holes (r+ +r ) —both T
and S approach monotonically to zero. This behavior is
diFerent from that of GHS-dilatonic black holes for
which the temperature approaches a constant value in
the extremal limit. Thus the interpretation of the final
state of the black holes described by (14) is straightfor-
ward: zero entropy at zero temperature indicate a nonde-
generate ground state, which naturally does not radiate.
In the extremal limit the spacetime still displays a naked
singularity. However, thc metric appearing in thc string
o. model is not g„but rather e g . This is the metric
to which strings couple. The charged extremal black-
hole metric (10) now becomes

6/(2q +3)r+
dt

~here G,.k is the Kahler metric of

SL(2,R)/U(1) XSL(2,R)/U(1)

corresponding to the Kahler potential

G = —lni(S —S)—31ni(T —T),

Z; =
I S, T I, i = 1,2, and F+ =F+iF.

The o.-model kinetic terms of the action (20) are invari-
ant under the nonlinearly realized SL(2,R)XSL(2,R)
group. The last two terms of the action however break
this symmetry. Nevertheless, one can easily verify, by
writing down the field equations, that along the orbit of
solutions verifying T=3S, the field equations are invari-
ant under the SL(2,R) transformations

—2

dr +r dA
S~, F+ ~—(cS+d)F+,aS+b

cS+d '

ad —bc =1 .
(21)

The geometry of the t =const surfaces is identical to that
of the extremal GHS-dilatonic black hole. There is a
semi-infinite throat attached to an asymptotic flat region.
The only diFerence resides in the form of the g«com-
ponent of the metric. Whereas in the GHS case
g«=const in Eq. (18) g«~0 as r~r+. This indicates
that the horizon though infinitely far away along a space-
like geodesic is not such for a timelike one.

IV. DUAL SQLUTIQNS
It is well known that in the case of GHS-dilatonic

black holes one can exploit the invariance of the field
equation under SL(2,R) to generate dual dilaton dyons
[9,10]. This invariance holds, though in a restricted
sense, also for the equation of motion coming from an im-
proved form of the action (4). To show this let us intro-
duce in the action (4) the two axion fields a and D coming
from the ten-dimensional axion BIJ, together with the
couplings of these fields to FF (see Ref. [5]). Defining the
complex scalar fields

S=3&2D+ie
(19)

T =&2 +aie

Using the invariance of the field equations under the
former transformations, one can generate from the solu-
tions (11) dual dyon solutions. These are similar to the
ones obtained in Ref. [10]. One needs just to use there
the expression (lib) for the dilaton and N'=3K' to get
the corresponding expression for X.

V. CQNCLUSIQNS

In this paper we have found and analyzed black-hole
solutions of dilaton gravity when a nontrivially coupled
modulus of the compactified manifold is present. Our
solutions share common properties with the GHS-
dilatonic black holes. In particular, the spatial geometry
associated with the "string" metric in the extremal limit
is the same. The full spacetime geometry and the ther-
modynamical properties are, however, diFerent. A
deeper insight into the whole subject could be achieved
by studying the corresponding two-dimensional gravity
theory. We plan to discuss this topic in a forthcoming
paper.
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