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We present the results of detailed nuclear shell model calculations of the spin-dependent elastic cross
section for neutralinos scattering from Si and Ge. The calculations were performed in large model

spaces which adequately describe the configuration mixing in these two nuclei. As tests of the computed
nuclear wave functions we have calculated several nuclear observables and compared them with the
measured values and found good agreement. In the limit of zero momentum transfer we find scattering
matrix elements in agreement with previous estimates for Si but significantly different than previous
work for Ge. A modest quenching, in accord with shell model studies of other heavy nuclei, has been
included to bring agreement between the measured and calculated values of the magnetic moment for

Ge. Even with this quenching, the calculated scattering rate is roughly a factor of 2 higher than the
best previous estimates; without quenching, the rate is a factor of 4 higher. This implies a higher sensi-

tivity for germanium dark matter detectors. We also investigate the role of finite momentum transfer
upon the scattering response for both nuclei and find that this can significantly change the expected
rates. We close with a brief discussion of the effects of some of the non-nuclear uncertainties upon the
matrix elements.

PACS number(s): 95.30.Cq, 14.80.Ly, 21.60.Cs, 98.62.Gq

I. INTRODUCTION

A host of astronomical evidence points to the existence
of large amounts of dark matter in the Universe [1].
Despite the overwhelming amount of evidence for this
dark matter's existence, its exact nature remains a mys-
tery. Numerous candidates have been proposed. These
include both ordinary baryonic and nonbaryonic matter
[2]. Among the best motivated, and hence highly
favored, of the nonbaryonic candidates is the lightest su-
persymmetric particle (LSP). Experimental and theoreti-
cal considerations suggest that the LSP is a neutralino y
made up of a linear combination of the photino, Z-ino,
and 2 Higgsinos (or equivalently, the B-ino, neutral 8'-
ino, and 2 Higgsinos):

y =Z)B+Z2 8'3+Z3H] +Z4H2

The neutralino is an ideal dark matter candidate. The
motivation for its existence arises naturally in modern
theories of particle physics [3], not as an ad hoc solution
to the dark matter problem. For a very large region of
supersymmetric parameter space, neutralinos provide
densities sufficient to account for the mass-energy density
of the Universe [4]. The f also possesses the virtue of po-
tential detectability. Its detection may be possible in at
least two ways: indirectly, through the products of yg
annihilation from capture in the Sun or Earth [5], or
directly, via elastic neutralino-nucleus gX scattering in a
detector [6,7]. In either case, the fX elastic scattering
cross section is an essential ingredient. In this paper we

discuss detailed nuclear structure calculations relevant to
gX scattering for two important elements: silicon and
germanium.

Neutralino-nucleus scattering is governed by physics at
several energy scales. The mass and the mixing of the y,
and hence its interactions with quarks, are fixed near the
electroweak scale. The spin-dependent interactions of
the g with protons and neutrons are determined by the
distribution of quark spin within the nucleon, which de-
pends upon physics at the QCD scale. There are also
spin-independent contributions which depend upon the
quark content of the nucleons. At the modest momen-
tum transfers available to dark matter particles ( —1

MeV) the f interacts with the entire nucleus, not indivi-
dual nucleons within it. Thus, nuclear structure plays an
important role in determining the strength of the gN
cross section. The uncertainties inherent in the elec-
troweak and QCD-scale physics can be parametrized in
di8'erent ways. The electroweak parametrization entails
choosing the exact composition and mass of the y which,
in turn, is determined by parameters in a Lagrangian of a
supersymmetric model. At the QCD level there are
currently two competing possibilities for the coupling of
protons and neutrons to the g. The currently favored pa-
rametrization depends upon the measured quark spin
content of the proton determined by the European Muon
Collaboration (EMC) [8]. In contrast with these values of
the spin content are those derived from the naive quark
model (NQM). Experiments are being carried out which
will hopefully clarify this issue. In this paper we will in-
vestigate the effects of both the EMC and the NQM esti-
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mates, as well as the uncertainties in their determination.
At the nuclear level, several attempts have been made

to improve the cross-section calculations. Initial investi-
gations into spin-dependent gX scattering made use of
the independent single particle shell model (ISPSM) in
which the character of the nucleus is completely deter-
mined by a single unpaired valence nucleon [6,9,10].
Subsequent studies [11—15] have revealed a number of
inadequacies of the ISPSM and improved upon its esti-
mates of the scattering matrix element. Engel and Vogel
[11]used the odd group model (OGM) and mirror pair 13

decays, in an extended odd group model (EOGM), to
show that the ISPSM can be off by a large factor when
nuclei are far from closed shells (see also Ref. [12]).
Pacheco and Strottman [13] reached the same conclusion
by performing detailed nuclear shell model calculations
for several light nuclei. The odd group and shell model
treatments obtain good agreement for light nuclei but, as
the atomic mass increases, nuclear configuration mixing
produces cancellations not considered in the OGM. This
is most clearly evident in Cl (the largest nucleus con-
sidered in Ref. [13])where the OGM and shell model esti-
mates of the matrix elements differ by roughly a factor of
3 (see Table I). For comparison, in Table I we have also
included our calculation of the spin in Cl using the
same interaction and model space as discussed for Si in
Sec. II A. It is reassuring to note that the two shell mod-
el calculations are in close agreement despite the use of
different interactions. This effect has also been seen in

Nb [14] revealing the need for full shell model calcula-
tions of heavier nuclei.

The need for more detailed calculations of the spin
content of heavier nuclei is exacerbated by the fact that
at least two of the most promising detector programs
currently under way are based upon Ge and Si [15].
Both of these nuclei are likely to have large amounts of
configuration mixing, making OGM estimates suspect.
Furthermore, both Ge and Si require very large model
spaces. This is why the calculations were not carried out
in Ref. [13]. In fact, in a recent review [7] the statement
was made that, ".. .until a reliable calculation in Ge
has been carried out, the description of the nuclear phys-
ics of dark matter detection will be incomplete. "

With these last comments as motivation we have used
the nuclear shell model code cRUNcHER [16] to perform
large basis calculations of Ge and Si with the aim of
providing accurate cross sections for determining event
rates for spin-dependent scattering in the Ge and Si
detectors currently under development.

All of the work discussed above has been in the zero
momentum transfer limit. As the experimental lower

TABLE I. Summary of the calculated spin of "Cl.

II. THE ZERO MOMENTUM TRANSFER LIMIT

Neutralinos in the halo of our Galaxy can be charac-
terized by a mean virial velocity of, v = ( v ) =300
km/sec=10 c. The maximum characteristic momen-
tum transfer in yX scattering will be q,„=2M„U where
M, is the reduced mass of the gX system. If the product
q,„R is small ( ((1), where R is the nuclear size, the
matrix element for spin-dependent gN scattering reduces
to a very simple form [7,11]

%=A(N~a S +a„S„~N) s-, (2)

where

S;=g s;(k), i =p, n
k

(3)

is the total nuclear spin operator, k is a sum over all nu-
cleons, and a, a„, are y-nucleon coupling constants
which depend upon the quark spin-distribution within
the nucleons and on the composition of the y, see, e.g.,
Eqs. (12) and (13) for the specific cases of the B and y.
Much of the uncertainties arising from electroweak and
QCD scale physics are encompassed by a and a„. The
normalization A involves the coupling constants, masses
of the exchanged bosons and various LSP mixing param-
eters that have no effect upon the nuclear matrix element.
To maintain contact with the previous literature
[4,6,10,11,13], we note that Eq. (23) has often been writ-
ten as

(4a)

with

(N ~a, S, +a„S„tN )
(Nl JIN )

(Nl(a~S~+a„S„).JIN )
J(J+1) (4b)

limit to the g mass continues to increase, finite momen-
tum transfer needs to be considered. This is especially
true for heavier nuclei, such as Ge [7]. Unfortunately,
phenomenological models, such as the OGM and the in-
teracting boson fermion model (IBFM) [17] which have
been used in the q =0 limit cannot be easily extended to
finite momentum transfer. Furthermore, the ISPSM has
been shown to be a poor approximation at finite q
[7,14,18]. Fortunately, incorporating finite momentum
transfer into a full nuclear shell model calculation is
straightforward. The formalism is presented in [7]. It is
a simple extension of that used in semileptonic weak and
electromagnetic interactions with nuclei [19]. In Sec. IV,
we show that finite momentum transfer is important for
both Si and Ge.

ISPSM
OCxM [7,1 1]

EORM [7,11]
Shell model [13]

This work

(s„)
0
0
0.014

—0.011
—0.0088

&S, )
—0.3
—0.15
—0.094
—0.059
—0.051

Examples of the full yN cross section can be found in the
Appendix and in Refs. [4,7, 10,11]. Calculations of the
matrix element in Eq. (2) are straightforward, although
computationally intensive, in the nuclear shell model.

Our approach to modeling the nuclei Si and Ge is
quite straightforward in principle. Using a reasonable
two-body interaction Hamiltonian we calculate the nu-
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clear wave functions in an appropriate model space. As
checks on these wave functions we compute the excited
state energy level spectrum, the magnetic moments, and
the single particle spectroscopic factors for each nucleus
and compare them with experimentally measured quanti-
ties. Once reasonable agreement between the calculations
and measurements is obtained the ground-state wave
functions are used to calculate the yN nuclear matrix ele-
ment, (N~a~S~+a„S„~N ) of Eq. (2). (We present our re-
sults using the convention that all angular momentum
operators are evaluated in their z projection in
the maximal MJ state, e g., (S) =(N~S~N) =(,J,MJ
=J~S, ~J,MJ=J). ) These wave functions are also used
to compute the more complicated finite momentum
transfer matrix elements. In practice these steps may be
quite time consuming. In the following two subsections
we detail the steps entailed in calculating the nuclear ma-
trix elements for spin-dependent yN scattering with Si
and Ge. 0—

5/2'

7/2'

5/2

3/2'

S/2'

3/2'

&/2

S/2

7/2

7/2

S/2

3/2'

S/2

3/2+

1/2

A. 29Si

For the nucleus Si, the calculation of the nuclear
wave functions and matrix elements is almost as straight-
forward as presented above, because a well defined and
tested interaction in a well-defined model space exists
[20]. This greatly facilitates the calculation. In fact,
after the completion of these calculations, it was brought
to our attention that the calculation of Si's spin had al-
ready been done, using the same interaction and model
space, but in a different context [21]. In spite of this, we
will detail our calculation for two reasons. First, the cal-
culation of the Si matrix element will serve as a useful
comparison for the accuracy of the calculation of Ge's
matrix element. The Si computation will help to estab-
lish just how reliably one can use the shell model to deter-
mine the relevant observables. Second, we will show in a
subsequent section that finite momentum transfers are
important for Si and this calculation does not exist in the
literature.

For our calculation of the wave functions for Si we
have used the universal sd shell interaction of Wildenthal
[20) in a full sd shell model space. This interaction has
been meticulously developed and tested over many years
and is known to accurately reproduce numerous nuclear
observables for sd shell nuclei. Our computations were
performed using the Lanczos method m-scheme nuclear
shell model code cRUNcHER [16] and its auxiliary codes.
The I-scheme basis for Si in this model space has a di-
mension of 80115 Slater determinants. The calculation of
the wave functions takes roughly a day and a half of time
on a dedicated SPARC station.

In Fig. 1 we present the calculated vs the measured en-
ergy spectrum [22] for the 10 lowest eigenstates of Si.
It is clear that good overall agreement is achieved.

A test of more relevance to the yN scattering cross sec-
tion is the comparison between the predicted and mea-
sured ground-state magnetic moment for Si. This is be-
cause of the similarity of the relevant operators. The
magnetic moment, p, is given by

p= (N~g„'S„+g„'L„+g~S~+g~L~ ~N ), (5)

FIG. 1. The calculated (left) and measured [22] (right ) excit-
ed state energy spectrum of Si. The ground state has J = —'+.
The dashed lines connect states with the same J . The J
values for most of the states have been included for reference.

where the S,. are the total spin operators (in their z pro-
jection) from Eq. (3), and the L; are the analogous orbital
angular momentum operators The fre.e particle g factors
are given by g„'= —3.826, g„' =0, g'=5. 586, and g'=1
(in nuclear magnetons). There is ample evidence in shell
model calculations for many nuclei that these g factors
are quenched. In Si this quenching is not necessary and
is, in this context, counterproductive. We will address
this issue again in a later section (quenching seems to be
necessary to get p, "right" in Ge). Using our wave func-
tions we find p„&,= —0.50, in agreement with the previ-
ous calculation [21]. This is to be compared with the
measured value of p„,= —0.555, which is good agree-
ment by shell model standards. We also note that the
ISPSM g' e's a val e' f pispsM 1 91, in strong
disagreement with experiment.

As a final check on the accuracy of our wave functions,
we have calculated the spectroscopic factors for a num-
ber of one nucleon transfer reactions and compared them
to the experimentally determined values. Spectroscopic
factors S (J;jJc ) are defined in [23] as

where %(j,J&,J,M) is the state obtained by coupling an
odd nucleon with angular momentum j to the core with
angular momentum Jo to obtain total angular momentum
J. g(J,M) is the true nuclear wave function. As an ex-
ample, we compute S for the reaction Si+d~ Si+p
going from the ground state of Si, J=0, to the total
ground state of Si, J =—,', in the ISPSM. Since the in-
coming neutron has spin —,

' the only amplitude which can
contribute (in the ISPSM) is that in which the neutron is
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in a I. =0 state. Thus, we have S(—,'; —,',0)=1. [Note, ex-

perimental data is generally presented as
(2J + 1)S(J;j,Jo ) and we will adhere to that conven-
tion. ] In a full shell model calculation (and real nuclei),
configuration mixing complicates this simple picture.

To calculate the S(J;j,Jo) for Si, we have computed
the ground state wave function for Si using the same
Hamiltonian and model space. As detailed in Ref. [16]we
then act on this wave function with a neutron creation
operator and take the scalar product of the result with
the relevant Si wave function. The most important cal-
culation is, of course, the ground state to ground state
transition since it most directly probes the nuclear
configurations which can interact with the y. As an addi-
tional check, we have calculated the spectroscopic factors
to the first two excited states as well. The results of these
calculations are presented in Table II along with an un-
weighted average of the comparable experimental data
from Endt [24]. We also present the ISPSM results.
Table I reveals the good agreement between the full shell
model calculation and experiment as well as the inade-
quacy of the ISPSM. This provides confidence in our
wave functions and our calculations of the yX matrix ele-
ments.

Once we have suitable wave functions, the nuclear ma-
trix element in Eq. (2) ((N ~a~S~+ a„S„~N) ) is easily cal-
culated for any set of a and a„. Here we compute the
spins in Eq. (2), and then multiply them by the desired a,
to find the total matrix element. In Table III we present
the results of this exercise using our wave functions. Our
results agree with those found in Ref. [21]. In Table III
we also present the results found in the ISPSM, the
OGM, and the extended OGM approach. It is immedi-
ately apparent that the ISPSM is a very poor approxima-
tion to the actual nuclear configuration. Configuration
mixing causes the total angular momentum to be shared
between the nuclear spin and orbital angular momentum,
contrary to the assumptions of the ISPSM (the total an-
gular momentum resides in the spin of the 2s, &2 neutron).
It is also apparent that the OGM treatments and the shell
model calculations are in fair agreement as to the proper-
ties of Si. The important point here is that the protons
contribute negligibly to the relevant nuclear properties,
the key assumption of the OGM. We will find, however,
that this assumption is violated for Ge.

B. Ge

The availability of a well-developed and tested interac-
tion in the sd shell made the calculation of the Si

ground-state wave function relatively simple. For our
calculation of the ground state of Ge we did not have
the luxury of a good (in the sense that it has been phe-
nomenologically determined and extensively tested)
Hamiltonian and there is not a well-defined model space.
Hence there is more uncertainty in determining a good
nuclear state which accurately reproduces the measured
observables. There is some evidence that Ge may be de-
formed [7] meaning that a large model space may be re-

quired. The extent to which our wave functions can be
trusted will be revealed by how well they reproduce ob-
servable phenomena. Our approach has been to choose
fairly large model spaces which should include most of
the relevant excitations and apply a fairly simple but
well-motivated interaction to the nucleons within this
space. We then examine the ordering and spacing of the
excited state energy levels. The single particle energies
(SPE's) of the interaction are then modified and the pro-
cedure is repeated. Thus, by a process of iteration, we
have been able to reproduce the low-lying energy levels in

Ge. This procedure has been previously used with some
success in this mass region [25]. As before, once a suit-
able fit to the energy spectrum is obtained, the magnetic
moment and spectroscopic factors are calculated as addi-
tional checks on the wave function. When -we are con-
vinced that we have reasonable wave functions, we then
calculate the spin distribution. We now present this pro-
cedure in some detail.

In our study of Ge, we have chosen to use the
Petrovich-McManus-Madsen-Atkinson (PMMA) interac-
tion [26]. This interaction is an analytic approximation
to the Kallio and Kolltveit [27] interaction, which is a
reasonable approximation to a full 6-matrix calculation.
This interaction has proven to be both adequate and
tractable in shell model calculations. As discussed above,
the SPE's were varied in order to match the energy spec-
trum of low-lying excited states. Using this interaction
we have investigated two diferent model spaces. The
first, which we will refer to as the small space, has an m-
scheme basis dimension of 24731 Slater determinants.
The other, creatively named the large space, allows many
more excitations with an I-scheme basis dimension of
117137 Slater determinants. Despite the fairly large size
of the bases, rather severe truncations in the space have
been enacted. The small space is the smallest in which
we could obtain agreement with the spectrum. The large
basis dimension was determined by computer time and
memory constraints. Each iteration (of which there were
many) consumed roughly 4 days of SPARC time and
several hundred Mbytes of memory.

TABLE II. Summary of the spectroscopic factors S(J;jJO) for Si. The experimental values are an

unweighted average of the data followed by (in parentheses) the spread in the data, as represented by

the low and high measurements, from Ref. [24].

Orbital

2s

1d3/2

1d5y2

I +
2
3 +
2
5 +
2

(2J + 1 )Sexpt

1.02(0.74 —1.5 )

3.62(2. 1 —5.2)
1.14(0.53—1.8)

(2J + 1)S„i,
0.90
2.65

0.85

(2J + 1)SIsPsM
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TABLE III. The value of the (z projection) of the nuclear spin and orbital angular momentum matrix elements and the predicted
magnetic moments p (using free particle g factors) for Si and Ge. The last row contains our values of the large space shell model
calculation with an isovector quenching factor of 0.833 applied to the spin matrix elements of the row above. If the magnetic mo-
ment has been used as input it is necessarily the measured value and has been enclosed in parentheses.

Si

ISPSM
OGM

EOGM
Shell model

0.5
0.15
0.204
0.13

0
0
0.054

—0.002

0
0.35

?
0.37

?
0.019

—1.91
( —0.555)
( —0.555)
—0.50

'Ge

ISPSM
OGM
IBFM

IBFM (quenched)
Shell model (small)
Shell model (large)

Shell model (large, quenched)

0.5
0.23
0.469
0.245
0.496
0.468
0.372

0
0

—0.009
—0.005

0.005
0.011
0.009

4
4.27
3.981

?
3.596
3.529
3.529

0
0
0.060

?
0.40
0.491
0.491

—1.91
(
—0.879)
—1.785

(
—0.879)
—1.468
—1.239

(
—0.879)

Each of these model spaces is "customized" to Ge
and requires some explanation. In standard notation the
small space may be described by
[(1f5/2, 2p3/2, 2p, /2

)' ( lg9/2 ) '(2d5/2, lg7/2 )

+(lfs/2, 2p3/2, 2p»2)' (lg9/2) (2ds/2~1g7/2)
+( lf 5/2& 2p3/2& 2p1/2 ) ( g9/2 ) (2ds/2& g7/2 )

words, the 16 particles in the lfs/2, 2p3/2 and 2p, /2
shells may "move" freely about in these shells, there is
also 1 particle (a neutron) in the lg9/2, additionally, exci-
tations of the 1g9/2 neutron into the 2d5/2 or 1g7/2 shells
is allowed, or 1 particle from the lf5/2, 2p3/2 and 2p, /2
shells may be excited into the lg9/2 orbital (there it can
pair with the already present neutron). In the same nota-
tion, the large model space allows configurations given by
((lfs/2, 2p3/2)' (2p, /2, 1g9/2) (2d5/2) lg7/2)
+(lfs/2, 2p3/2)' (2p, /2, 1g9/2) (2ds/2, 1g7/2)'
+(lfs/2, 2p3/2)' (2pl/2, 1g9/2) (2d5/2, 1g7/2) ). The ma-
jor difference here is that it is now possible to have up to
4 particles in the 1g9/2 orbital. In Table IV we list the
SPE's used in the small and large space calculations.
Comparing these values with the energy level spacings
shown in Fig. 2 clearly reveals the efFects of the residual
PMMA two-body interaction. To further illustrate the
rapid increase in the size of the model space, we note that
if we extended the large space to include excitations of
the type (lfs/2, 2p3/2)' (2p1/2, 1g9/2) (2d5/2 lg7/2) the

Orbital

2P j./2

2p 3/2

lfs/2

2d5/2

1g 9/2

SPE (MeV) (small)

—1.542
—1.448
—3.472

1.601
—0.718

0.0

SPE (MeV) (large)

—1.44
—1.43
—3.17

1.57
—1.36

0.0

TABLE IV. The relative spacing of the single particle ener-
gies (SPE) for the small and large model space calculations of
the Ge wave functions. The SPE of the 1g9/2 orbital has been
chosen as the zero point for the calculations.

dimension of the space would be 168597 Slater deter-
minants. A calculation of this size could be done but
each iteration to match the energy levels would take an
excessive amount of time. Additionally, such
configurations are unlikely to play much of a role in the
ground-state wave function. The addition to any more
excitations would rapidly expand the model space beyond
our present capability to calculate the wave functions.

It is seen from the above, that the calculation of Ge's
wave functions, g, involves active particles in both the fp
and the gd shells. This allows for the possibility that our
wave functions may contain spurious contributions due
to center of mass motion of the nucleus. (There are no
cross shell excitations in Si, so center of mass excita-
tions are not present. ) In a truncated model space such as
one is forced to employ in the calculation of Ge, there is
no accepted way of dealing with these spurious com-
ponents. In general, they are thought to be small and we
now present several lines of reasoning which lead us to
believe that the efFect of spurious states is small in our
calculation. We will discuss only the large space since, as
we will show, it provides a more realistic description of
the Ge wave function. Examining the allowed excita-
tions in g discussed above, we see that there are no
particle-hole excitations involving the fp and gd shells
that involve AJ (2. This implies that any spurious com-
ponents will be at least "second order" (i.e., they are at
least 21r1co excitations) and highly suppressed. (Possible
AJ =2 transitions that might involve spurious states are
between the lfs/2 and lg9/2 and between the 2p»2 and
2d &/2 shells; all other transitions are more highly
suppressed. )

The effects of spurious components of g are almost cer-
tainly negligible in the calculation of iA. ~, Eq. (2). This is
because the spin operator S~o., does not mix states in
different oscillator shells. Therefore, in calculating i'~
the spurious parts will not mix with the nonspurious
parts of At (i.e., if 10% of g is spurious, it will only make
a l%%uo contribution to ~Jkti ). Furthermore, since we are
calculating elastic scattering, there is no parity change in
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1.5

CP

b04
Q

41
V

/y
/

/
/

5/2

0—

I/2-, V/2
5/a
9/a'

FICx. 2. The calculated small space (left), measured [22]
(center), and calculated large space (right) energy spectra of

Ge. The ground state has J = —+. Where we have felt com-
fortable with the identifications, we have connected states with
identical J 's by dashed lines. The J 's for some of the lower-
lying states have been noted on the plot.

the final state and any spurious components are once
again of "second order" and expected to be suppressed.
Finally, we note that it is possible to examine the make-
up of the wave functions by hand and look for contribu-
tions from states that could mix with center of mass exci-
tations. While this is impractical for the entire wave
function (117137Slater determinants), we have looked at
the most important 100 Slater determinants for the first
few eigenstates. For the ground state, these 100 pieces
comprise the majority of the wave function
~g~. =0.92~ 1, and contain no excitations that can mix
with spurious states. Thus, our expectations that spuri-
ous states are unimportant are confirmed.

In Fig. 2 we show the excited state energy spectrum of
the first 10 calculated states compared to the measured
spectrum in the same energy range for both the large and
the small spaces. In the small space we were able to
iterate until essentially perfect agreement between theory
and experiment was obtained for the lowest lying five ex-
cited states. There is then a large region where there are
many observed states but no calculated states. This is be-
cause our limited model space is not large enough to con-
tain all of the 2-particle 1-hole excitations necessary to
describe such states. The omission of these seniority 3
configurations, from the ground state, is probably not too
serious. At excitation energies 1 MeV there are again
several calculated states which seem to have analogs in
the measured spectrum of states.

With the greater number of available excitations in the
large space one would expect to start describing states in
the spectrum between 0.5 MeV and 1 MeV, and this is
observed for the 10 lowest-lying states, as demonstrated
in the right side of Fig. 2. In the large space it was im-

practical and unnecessary to iterate until "perfect*' agree-
ment was obtained for the lowest energy states (compare
the scales of Figs. 1 and 2 and the relative errors). We
did iterate until the small changes in the SPE's needed to
move the states no longer affected the spin matrix ele-
ments significantly. Figure 2 reveals reasonable agree-
ment between our low-lying calculated states and the ob-
served distribution of states giving us reasonable as-
surance that we have obtained a good description of the

Ge ground state. We now apply our other tests in the
hope of confirming this statement.

As previously noted, the most relevant test for the spin
matrix elements is the comparison of the magnetic mo-
ments. Here our calculations do an acceptable job but
some quenching of the g factors is required to obtain
complete agreement with experiment. All other attempts
to calculate the matrix elements have relied heavily upon
quenching as well: the IBFM [17] and the OGM [7,11]
(which can be viewed as a well motivated prescription for
quenching the ISPSM value of p). In fact, the quenching
required by our wave functions is significantly less than in
either of the above methods. We will discuss the issue of
quenching in a subsequent section. The measured mag-
netic moment of Ge is p,„,= —0.879 which is
significantly different from the ISPSM value of
p, spsM

= —1.91. The values we calculate (without
quenching) are p,„=—1.468 for the small space and

p&,
= —1.239 for the large space, a major improvement

over the ISPSM, especially for the large space. The main
reason for the decrease in p can be seen in Table III. Be-
cause of the configuration mixing, the protons
significantly contribute to the total angular momentum,
especially through their orbital part Refe.rring to Eq. (5)
it is obvious that a large value of (L ) can have a
significant effect on p. This large value for L is one of
the major results of the present work and the primary
reason that our answers will differ from those of previous
analyses. While one might wish for better agreement be-
tween the measured and calculated magnetic moments,
by typical shell model standards [28,29], reasonable

agreement has been achieved. Thus we continue to have
confidence in our results.

The final test we have performed for Ge is to com-
pare the calculated and measured spectroscopic factors,
Eq. (6), for the reaction Ge+d~ Ge+p [30]. As with
the magnetic moment comparison, we find quite reason-
able results, albeit not without some level of ambiguity.
We present our results, the experimental data, and the
ISPSM values for the three lowest-lying states in Table V.
For the ground state to ground-state reaction, labeled
1g9/2 in Table V, good agreement is obtained between the
computed and experimental value for both model spaces.
Since this is the reaction which directly tests the state we
are interested in, this is quite encouraging. The small
space obviously does not allow enough excitations to
correctly describe the excited state transitions. The large
space does a much better job on the excited states but if
one were interested in their properties, a better descrip-
tion might be desirable. Fortunately, we are only in-
terested in the ground state of Ge which seem to be ade-
quately described in these model spaces.
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TABLE V. Summary of the spectroscopic factors S(J;jJo) for 'Ge. The experimental values are an
unweighted average of the data followed by (in parentheses) the spread in the data, as represented by
the low and high measurements, from Ref. [30].

Orbital
Large space

1g 9/2

2d5/2

2p &/2

Small space

1g9/2

2d 5/2

2p

9+
2
5+
21—
2

9+
2
5+
21—
2

(2J + 1)S,„,
6.16(5.04—7.35)
0.29(0.28 —0.30)
0.67(0.52 —0.78)

6.16(5.04—7.35)
0.29(0.28—0.30)
0.67(0.52—0.78)

(2J+ 1)S„i,
3.96
0.74

3.3X 10

5.91
3.55

(2J+ 1 )SrspsM

10
6

2

10
6
2

After examining the comparisons of the experimental
and calculated values of the excited state spectra, mag-
netic moments, and spectroscopic factors we believe that
we have obtained a reasonable description of the Ge
ground state. The case for this is not unassailable but our
wave functions do include pieces of physics which other
analyses have neglected and they do reproduce a number
of observables with good accuracy. Having established
the viability of our calculation of the ground-state wave
function of Ge, we now discuss Ge-g scattering.

The primary results of this section have already been
presented in Table III, which shows our results for the
spin and orbital pieces of total angular momentum (in
their z projection). We compare our results to those
found in the ISPSM, the OGM, and the IBFM. We will
confine our comments henceforth to the large space cal-
culation since it seems to be a better representation of the
ground state. The small space serves primarily to illus-
trate the sensitivity to configuration mixing. The fact
that an increase in the size of the model space leads to an
improvement in the magnetic moment is especially hear-
tening. Table III shows that these effects are small but
finite. As a final comment regarding Table III before we
discuss its contents, we point out that: there are two
rows for the IBFM, in the first row the required quench-
ing should be applied to a and a„ in the matrix elements
(this corresponds to quenching the g factors for p}, in the
second the same quenching has, instead, been applied to
the spins [7] (here the free particle g factors would be
used for the magnetic moment}. These two approaches
are equivalent but help to highlight the different results
obtained in the IBFM and shell model approaches.

The most interesting feature of Table III is the large
contribution of the proton's orbital angular momentum
found in our calculations. This large value of (L~ ) re-
sults in significant difference in the spin matrix elements
found in this investigation vs those found in the OGM
and IBFM approaches. The proton's orbital angular
momentum makes a major contribution to the magnetic
moment which is completely neglected in the OGM and
not adequately represented in the IBFM. Surprisingly
(and coincidentally), our results for the spin tend to agree
with those found in the ISPSM. A large contribution to
the angular momentum by the protons violates the as-

sumptions of the OGM. This explains the factor of 2
difference in (S„)between the OGM and our approach.
In a shell model treatment of Nb, a similar result was
found [14], except there the neutrons carry a large
amount of orbital angular momentum. In both of these
cases the seemingly large violation of the OGM assump-
tions arises because of the large ground state angular mo-
menta of the nuclei. Both Ge and Nb are (J)=9/2
nuclei, which implies an angular orbital momentum value
of (L)=4. Thus even a small violation of the OGM's as-
sumption that the even group carries no angular momen-
tum can lead to a significant value of (L„,„). To make
this more concrete consider our results for Ge. Here,
(L ) /( J) = 10% so the protons carry only a small
amount of the total angular momentum. However, be-
cause of the large value of (J), we find that (L ) and
(S„) are roughly equal in magnitude; leading to the
discrepancy between the shell model results and those of
the OGM. The IBFM wave functions do not possess a
large proton contribution to the angular momentum of
the nucleus and hence produce an unquenched magnetic
moment of p»„M= —1.785, similar to the single particle
model. This is to be contrasted with the shell model
value of p= —1.239. Thus, in the IBFM a very large
quenching factor of 0.523 must be applied to the spin ma-
trix elements (i.e., either a; or (S; ) as is shown in Table
III} in order to match the measured magnetic moment of
p,„,= —0.879. If the same procedure is applied to the
shell model matrix elements (a procedure we do not
recommend, see the next section) a quenching factor of
only 0.792 is required. This is considerably less quenching
of the spin than in the IBFM. If we apply this quenching
factor to the large space spins in Table III (in the same
manner as was done to create the second IBFM row}, we
find (S„)=0.371 and (S ) =0.009, still quite different
from the OGM and the IBFM (and now the ISPSM} re-
sults. Thus, we find that a full shell model calculation us-
ing realistic wave functions obtains significantly different
values for the spin matrix elements than previous analy-
ses. In fact, our results could result in up to a fourfold in-
crease in the yN scattering rate over the estimates in pre-
vious work. This implies a much greater sensitivity for
germanium dark matter detectors. We are now ready to
investigate the scattering response at finite momentum
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transfer but first we address the issue of quenching in
more detail.

III. QUENCHING OF THE SPIN MATRIX ELEMENTS

The concept of quenching of the magnetic moment g
factors and Gamow- Teller strength function in shell
model calculations has a long history. What is clear is
that quenching is almost universally required once nuclei
are filled beyond the p shell. To quote from a thorough
investigation of the Ml (magnetic moment) operator in
the sd model space [28], "There are several reasons why
even 'perfect' shell-model calculations of electromagnetic
matrix elements based on the free-nucleon characteristics
of the neutron and proton should difFer from the corre-
sponding experimental values. In reality, the nuclear
wave functions must be more complicated than those of
the theoretical model we use. Real nuclear states must
involve nucleonic degress of freedom beyond the sd-shell
space. In addition, non-nucleonic degrees of freedom
which involve 6 isobars and mesons may be important in
the observed phenomena. " This "excluded" physics also
plays a role in weak interaction calculations [31]. The
preferred method for dealing with these inadequacies of
the shell model is to quench the relevant g factors and so
construct an effective magnetic moment operator. In the
sd [28] and fp [29] shells, systematic studies have been
made to determine the values of modified g-factors which
give the best fit to the magnetic moment for a large num-
ber of nuclei in each shell. In the sd shell study, the
operator (P' 's)"' was shown to make a significant
contribution to the efFective magnetic moment operator
making comparisons between p and yX matrix element
somewhat more ambiguous. We can use these optimized
g factors to estimate the amount of quenching we expect
for our calculations of ply scattering on Si and Ge.

As mentioned above, quenching in the sd shell with the
USD interaction has been thoroughly investigated and an
optimum set of quenched g factors has been found [28].
Following Table III of [28] the optimized g factors for

Si should be g'= —3.24, g'=4. 75, g„'= —0.091, and
g'=1. 129. We note that these spin g values are con-
sistent with an overall spin quenching factor of -0.85.
However, we see that it is not only the spin g factors
which are modified. Using these values of the g factors in
Eq. (5) leads to the following magnetic moment
p(quenched)= —0.45, slightly worse than obtained with
no quenching. This is not surprising, since the above
values of the q's were obtained as a global fit to many sd-
shell nuclei other than Si. Since the wave function for

Si already matches the measured magnetic moment it is
not surprising that quenching damages the agreement. In
view of this we do not advocate any quenching for the

Si matrix elements.
As with all other aspects of this investigation, things

become considerably more complicated when we consider
Ge. Because of the complexity of the nuclei in this

mass region, no systematic studies of quenching have
been done. The nearest relevant study of which we are
aware involves nuclei in the lower fp shell with
41( A (49 [29]. In this work, three difterent interac-

TABLE VI. The sets of quenched g factors used in Ref. [29]
and their effect upon the magnetic moment of Ge using the
large space wave functions.

Interaction

Free
FPD6

FPMI3
KB1

Experiment

S
gn

—3.826
—3.41
—2.53
—3.19

5.586
6.75
5.87
4.87

I
gn

0
0.05

—0.11
0

I
gp

1

0.71
0.87
1

—1.239
—0.995
—1.079
—0.948
—0.879

tions are compared and three very difFerent results
emerge for the quenched g factors. Additionally, all
three estimates of the optimized g factors result in im-
proved agreement between the measured and calculated
magnetic moment of Ge. For purposes of comparison,
in Table VI we show the free particle g factors, the 3 sets
of quenched g factors from Ref. [29], and the resultant
magnetic moment of Ge obtained using the large space
wave function. The key point of Table VI is that changes
in one of the g's can be compensated for by changes in
another and the choice of the best set is dependent upon
the interaction chosen. Table VI reveals that the effective
g factors from the Kuo-Brown 1 (KB1) [29] interaction
produce the best fit to p„„,for Ge. These g factors re-
sult from an almost exclusive quenching of the isovector
part of the spin (isovector quenching factor =0.86).

There is one additional piece of information which may
be used to investigate the required quenching, namely,
Gamow-Teller (GT) /3 decays. As with the magnetic mo-
ment operator, the GT operator ( 0- g„r+S) requires
quenching when comparing shell model GT strengths to
the measured values [31]. Since the GT operator is
directly related to the isovector part of the spin, it is a
further probe of the quenching of the isovector spin.
Several studies have shown that the free nucleon value of
g~ =1.25 is on average reduced to a value of g~ =1 in
heavy nuclei. This corresponds to an isovector spin
quenching factor of 0.8. This is in reasonable accord
with the isovector quenching of the KB1 interaction dis-
cussed above and the similar quenching factor found in
the sd shell near A =28, (4.00/4. 76=0.84) [28]. Finally,
we note that this GT quenching plays a role in the mirror
pair analysis of Engel and Vogel (through their ratio R)
[11]. The issue of quenching is thus quite general and
quite troublesome when dealing with spin matrix ele-
ments of heavy nuclei.

The calculated magnetic moment for Ge with free
particle g factors already shows significant improvement
in agreement with measured values over previous treat-
ments due simply to the inclusion of configuration mix-
ing. If exact agreement is desired, an effective operator,
with quenched g factors must be invoked. If quenching is
invoked, we advocate quenching only the isovector spin
part. Following this prescription a quenching of the iso-
vector spin g factor by a factor of 0.833 produces a calcu-
lated magnetic moment (large space) of p= —0.879, in
perfect agreement with experiment. This quenching fac-
tor is in agreement with the expectations of GT decay in
heavy nuclei. In addition, it is consistent with the isovec-
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tor quenching found in the sd [28] and fp [29] shells
when fitting to magnetic moment data. By following this
prescription we follow the path with greatest motivation
and obtain agreement with experiment by quenching only
one number, the isovector component of the spin. Using
this quenching factor we find effective spin g factors
of g„'(eff) = —3.04=0.795g„'(free) and g~ (eff) =4.80
=0.859g'(free). In the zero momentum transfer limit
this quenching is equivalent to the large space matrix ele-
ments becoming (S„)=0.372 and (S~ ) =0.009 (when
combined with the free particle g-factors). These values
should be viewed as lower limits to the spin-matrix ele-
ments. These values remain quite different from any of
the previous estimates performed in the ISPSM, OGM,
or IBFM.

We have discussed the quenching of both the GT and
the p operators to illustrate how ubiquitous this phenom-
ena is in shell model calculations. It is, however, worth
noting that the quenching of these two operators arises in
slightly different manners. Both the GT and the isovec-
tor spin part of p have a similar structure, o- o.~, and are
equally quenched by core polarization effects and the ex-
citation of the b, isobar [28]. Because the operator p,
derives from a vector current, meson exchange currents
(MEC's) can also play an important role in quenching the
magnetic moment. The GT operator results from axial-
vector currents (in particular, the multipoles VL and

discussed in the next section) and the effects of
MEC's are highly suppressed for this operator. Similarly,
since the fX scattering operator, Eq. (2), comes from an
axial-vector current, we expect that MEC's will not play
a role in the quenching of a„and a . Core polarization,
6 excitation, and MEC's also play a role in quenching the
other isovector magnetic moment g factors. MEC effects
are dominated by the isovector pions and therefore do
not play a significant role in the quenching of the isoscal-
ar pieces of p.

Because there are a number of different effects which
combine to produce the quenching for a specific operator
in a specific nucleus, it is extremely dificult to determine
what the correct scheme ought to be for gN scattering.
This is why we have opted for the simplest scheme which
is consistent with previous empirical studies and theoreti-
cal expectations [28]. By quenching only the isovector
spin part of the operator by an amount consistent with
previous studies of the GT and p operators, we find a
simple and reasonable prescription for quenching the yX
scattering matrix element. It does bear remembering that
the various competing effects could shift the correct
quenching factor around, at about the 10% level, but al-
most certainly not enough to bring consistency with the
OGM predictions.

In this section we have shown that a simple quenching
of the isovector-spin matrix element by a factor of 0.833
produces agreement with the measured magnetic moment
data for Ge. A quenching factor of this type, and
roughly this magnitude, could have been predicted based
upon previous shell model studies [28,29,31]. Given the
amount of evidence which supports this quenching, we
feel that the quenched values for the spin matrix elements
are the ones most likely to be correct. Hence in calculat-

ing the Ge-y scattering cross section, one should use
the values in the last row of Table III (labeled "large,
quenched") and the normal a„and a or use the values in
the row above that with a quenching factor of 0.833 ap-
plied to the isovector combination of a„and a while the
isoscalar combination remains unchanged. [To be more
explicit, calculate a

&
=a —a„and ao =a +a„where

nothing has yet been quenched. Using these values of ao
and a, recalculate a and a„but now quench the isovec-
tor piece, a~ =

—,'(ao+0. 833a, ) and a„=—,'(ao —0.833a, ).
These quenched values of the a s may now be combined
with the values of the spin in second to last line of Table
III to calculate the total matrix element. ] Having ad-
dressed the issue of quenching, we may now consider g
scattering with Si and Ge at finite momentum
transfer. For simplicity, at finite momentum transfer,
any quenching will be applied to a„and a, as described
in the square brackets above or in the appendix, and not
to the spin matrix elements. We say a bit more about this
in the next section.

IV. FINITE MOMENTUM TRANSFERS

When the LSP was first proposed as a viable dark
matter candidate, its preferred mass was between 5 and
10 GeV [32]. With a mass of this order and a typical
galactic halo velocity (u =10 c), the neutralino's total
momentum (q-M„u —10 MeV) was small compared to
the inverse of the nuclear size (I/8 —1/1 fm-200 MeV)
and the zero momentum transfer limit was appropriate
for studies of yX scattering. Since then, experiments at
accelerators have pushed the allowed y mass, m, to
larger values (there are ways around this if some of the
theoretical assumptions are relaxed [33]), and it has been
shown that heavy g's are just as viable as a dark matter
candidate as the lighter ones [4,34]. As m- becomes

larger than a few 10's of GeV the product qR starts to be-
come non-negligible and finite momentum transfer must
be considered for heavier nuclei. (The maximum allowed
momentum transfer is q,„=2M„u.) In Ref. [7] a simple
set of rules is given for when finite momentum transfers
are not important: i.e. , the product q,„R (1 if (a)
2 (28 or (b) m ([1/(1.2A ~ +100)] GeV. Thus, we

see that finite momentum transfers may be important in
Si and are quite likely to be important for Ge. In this

section we will show that these effects are important for
both Si and Ge. For spin-independent scattering these
effects have been considered in Refs. [9,4]. For spin-
dependent scattering a simple approximation for finite
momentum transfer was applied in [12].

The formalism for elastic yX scattering at all rnomen-
tum transfers has been developed in Refs. [7,18]. It is a
straightforward extension of the formalism developed for
the study of weak and electromagnetic sernileptonic in-
teractions in nuclei [19]. The difFerential fX cross sec-
tion is given by

d~ 8'GF'
s(q),

dq (2J + 1)u

where S(q) is the spin structure function
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FIG. 4. The calculated functions SOD, S», and So& from Eq.
(10) for Ge (large space) as a function of y. The solid line
=Soo, the short dashed line =S», and the long dashed line

So, .

S(q) for the great majority of g cases. Quenching is im-
plemented in Eqs. (11) by making the substitution
a) —+0.833a).

In Figs. 5 and 6 we display S(q) for a pure B (Z, = 1,
Z2=Z3 Z4 0). Theoretical arguments lead one to be-
lieve that an almost pure B (purity )99%) is the most
favored y composition once I becomes large enoughx
that finite momentum effects become important [34,35].
(The symmetric or antisymmetric linear combinations of
H, and H2 are also favored configurations. ) For a pure B
the f-nucleon couplings are determined by [4]

the fraction of the nucleon's spin carried by each Aavor of
quark (see the Appendix). The sum is over the up, down,
and strange quarks in the nucleon. The term in the curly
brackets has often been referred to as a („) in much of the
previous literature [10,11,13]. Following Ref. [36] the
EMC values for the proton b q's are hu =0.78,
Ad= —0.50, and As= —0. 16, all with an uncertainty of
+0.08. Inserting these values into Eq. (12) gives

ap =0. 179/~ and a„=—0.097$, or equivalently,
ao=0. 082$ and a, =0.276( . The NQM values of the
spin content are [37] b, u =0.93, b.d = —0.33, and
As=0. 0 resulting in ap=0. 254(~ and a„=—0.017/~
(ao=0.237(, a& =0.271$ ).

In Fig. 5 we show S(q) for Si using the shell model
calculations discussed in Sec. II A. The solid line is com-
puted using the EMC values of ap( ) and the dashed line
results from using the NQM values. For Si, the
response is dominated by the contribution from neutrons.
Hence, the small value of a„ in the NQM leads to a
severe depression in the calculated matrix element. In
Fig. 6(a) we plot S(q) for Ge using the same set of a' s.
Here we see similar behavior but with a much larger am-
plitude due to the larger amount of spin carried by the
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where Ow is the weak angle, T31 is the third component
of weak isospin, e is the charge of the quark, and Aq is
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FIG. 5. The spin structure function S(q) for a pure 8 scatter-
ing with Si. The solid line is derived using the EMC values for
0 (p) the dashed line uses the NQM estimates of these cou-

plings.

FIG. 6. (a) The spin structure function S(q) for a pure B
scattering with 'Ge (large space). The solid line is derived us-

ing the EMC values for a„Ip~, the dashed line uses the NQM esti-
mates for these couplings. (b) The same as (a) but with an iso-
vector quenching factor of 0.833 applied to enforce agreement
with the measured magnetic moment at q =0 (a

&
~0.833a

& ).
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0 47/0 13neutrons in Ge I[(S„)o,/(S„)s; = 0.47/0. 13
=13I. Clearly Ge is a better choice as a detector for
the pure B case. Next, in Fig. 6(b) we present S(q) or

G h we have quenched the isovector coup ing
S . IIIconstant in accordance with the discussion of Sec.

a i =0.833a =0.230$ for the EMC result. The quench-ai —.
q

ing results in an overall decrease in the amplitude of S(q)
for the EMC cross section and a slight increase in the
NQM counterpart.

For completeness, we mention one last caveat regard-
ing the above prescription for quenching a„and a for all
values of y. It is possible [18], that only the lowest
(l. =1) multipole components in Eq. (8) are quenched,
while the higher multipoles may be unquenched (or
quenched to a lesser degree). For Si this is irrelevant
since quenching is not required for this nucleus and only
the L =1 multipoles contribute. For Ge this alternate
prescription would change the shape of S (q) very slight-
ly. At small values of y (or equivalently q), S(q) will be
completely dominated by the L =1 multipoles and the
quenc e curvh d curve for S(q) will be that presented, e.g. , in
Fig. 6(b) for a pure B. At larger values of y (y 1) t e
I. ) 1 multipoles will begin to dominate S(q) and the
curves in Fig. 6(a) would become more appropriate for a
pure . y =B. At =0.5, the L =1 multipole is still dominant
but the higher multipoles are starting to become impor-
tant. Hence, for a pure B, the curve would lie somewhere
between the two curves in Figs. 6(a) and 6(b). Simi ar
statements hold for more general y states. Given the
rather small effect that this alternate quenching scheme
has, as well as the fact that it may be no better motivated
th th simpler method, we maintain that the simple
quenching of a„and a (ai), for all multipoles equa y,all
described here remains a reasonable prescnpt~on.

Finally, in Fig. 7 we present S(q) for a photino scatter-
in with Ge. A photino massive enough to make finite
momentum effects relevant is highly un i e y

has often been considered in the literature, and because it
'll strates the eQ'ects upon S(q) of changing a„and a~.

0.02

For a pure photino, the nucleon couplings are

2a („)= g bqe
Q, d, s

(13)

0.005—

ISPSM

resulting in a =0.273( and a„=—0. 153$ for the EMC
values of the spin content and a =0.376/ and
a = —0.043$ for the NQM estimates. Now that we
have presented our results, we may compare them to ooth-

29 heIn Fig. 8 we compare S(q) for our Si result with t e
shell model (solid line), the single particle model (dashed
line), and the single particle model quenched so that S(0)
agrees with the OGM prediction (dash-dotted line). This
last is not self-consistent but it is the only way to extend
the OGM to finite momentum transfers [12]. Two things
are immediately apparent from Fig. 8. First the un-
quenched ISPSM grossly overpredicts the value of S(q)
for all q. Second, the ISPSM with OGM quenching
seems o o at do a very good job of predicting S (q). We

=0.3.quench by reducing a„by the factor 0. 15/0. 50=
There is a slight difference in their q =0 normalization
that is maintained throughout (see Table I). T is
mismatch would be exacerbated by using the value of
(S„)=0.2 of the EOGM [7,11]. There is also a very
slight difference between the shapes of the ISPSM and the

' l.shell model results but this appears rather trivia .
Figure 9 is the Ge counterpart to Fig. 8. Here, S(q)

is plotted for the large space shell model results with no
quenching (solid line); the large space shell model result
with an isovector quenching factor of 0.833 (long das e
line); the ISPSM with and without a similar isovector
quenching (dotted and short dashed lines, respective y);
and the ISPSM quenched to agree with the OGM at q =0
(dot-dashed line). The most relevant comparison is e-
tween the shell model results, quenched or unquenched,
and the ISPSM results quenched to agree with the OGM
at q =0 [a ~(0.23/0. 5)a„]. We see that there is a very~n~
large discrepancy of either a factor -2 or -4 for the B

0.004— OGM + ISPSM

0.015

0.003—

Shell Model

0.01
tf)

0.002—

0.005
0.001—

00
—I- —r —I——————

0.1 0.2 0.3
y = (bq/2)'

0.4 0.5

FIG. 7. The spin structure function S(q) for a pure y scatter-
ing with Ge (large space calculation). The solid line uses the
EMC values for a„(p) the long dashed line uses these values but
with the isovector piece quenched by a factor of 0.f 0.833 and the
short dashed line uses the NQM estimates for a„~~).

00 I

0.05 0.1 0.15
y = (bq/2)

0.2 0.25

FIG. 8. The spin structure function S(q) for a pu (ure B (EMC
couplings) scattering with Si for three different models. The
solid line is the shell model result and corresponds to the so i

line in Fig. 5. The dashed line is the ISPSM result. The dot-
dashed line is the ISPSM structure function with a„quenched
so that S(0) agrees with the OGM result.
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0.01

I-

0.008 —&

0.008

I
I I I 1 I

lSPSM
Shell Model

ISPSM (quenched)
Shell Model (quenched)
OGM + ISPSM

0.01

0.008—

0.006

du
0.70
0.86
0.78
0 70

86

hd
—0.58
-0.58
-0.50
-0,42
-0.42

hs
-0.24
-0.24
-0.16
-0.08
—0.08

0.004 0.004

0.002 0.002

00 0.1
I

0.2 0.3 0.4 0.5
(bq/2)'

00 0. 1
I

''"'"' "' 1"''".''''';"''
0.3 0.4 0.5

y = (bq/2)'

FIG. 9. Several different models of S(q) for a pure B scatter-
ing with 'Ge: solid line=large space shell model result with no

hin [=solid line in Fig. 6(a)], long-dashed line=large
space shell model result with isovector quenching &~=so i
in i . 6(b)], short-dashed line= ISPSM result, dotted
1 =ISPSM result with isovector quenc. ,ing, an
dashed line =ISPSM result quenched to agree with the 0
q =0.

IG. 10. S( ) for a pure B, with EMC couplings, scattering
with Ge (large space calculation). Here we have varie
4u, Ad, an sod 5 of the EMC result within the allowed errors
(+0.08) in deriving a„(p) The uncertainty due to the hq's is
currently much larger than the nuclear uncertainty; compare
with Fig. 9.

V. DISCUSSION AND CONCLUSIONS

case. Configuration mixing has made a major difference
in this case because it has allowed for a large contribution

when combined with a ISPSM response function, is in ac-
cord with the OGM+ISPSM result.

A final issue which bears mentioning, in both the zero
and finite momentum transfer regimes, is the uncertain-
ties in the nucleon coupling constants, a„a d
we have concentrated upon our attempts to improve the
estimates of the cross section by generating more realistic
nuclear wave unc ions.f t' s We have already demonstrated,
in Figs. 5 and 6, the large differences in the matrix ele-

of the proton's spin content. Here we wish to point out
th' the context of the EMC result, large

var in the EMCdifferences in the rate are allowed. By varying t e
values of the b,q's within the error bars we can vary S(q)
as shown in Fig. 10. Here the solid line is the same as the
solid line in Fig. 9 and the other lines are obtained by

Ad and As within the allowed EMC errors.varying u, , an
In fact, theA huge range of values is allowed for S(q). n ac, e

uncertainty ue od t the bq's is far larger than that arising
due to nuclear processes. Hopefully, new experiments wi
eventually determine the hq's with better precision.
These new values, when coupled with the new picture o
the nuclear structure presented here, will ai allow for a
more accurate and complete description of yX scattering
for any neutralino.

In this section we have demonstrated that finite
momentum transfers can have rather sizable effects on
the yN scattering cross section and hence on the scatter-
ing rate. In most cases, heavier g's will have suppressed
cross sections. is, coupTh' coupled with the fact that it takes
fewer heavy y s anh ' th light ones to account for the dark
matter, implies that it will be more difficult to detect neu-
tralinos via the direct detection technique if they are very
heavy.

In this paper we have presented detailed nuclear shell
model calculations of spin-dependent elastic gN scatter-
ing from i an e.f S' d Ge Major g dark matter detection
programs ase upb d pon these two nuclei are well under way
[15]. Our results reveal both the strengths and the wea-

s of revious, more phenomenological, analyses [7].
In both nuclei the ISPSM is found to be a poor appr a roxi-

i at zeromation to the true nuclear configuration. In i at
momentum transfer, the OGM finds results which are in
accord with those of our calculations. This shows that,
for this nucleus, the OGM adequately represents the
configuration mixing. This is not the case in Ge. n
this nucleus, the shell model result is in severe disagree-
ment with the OGM and quenched IBFM results. The
main difference comes from the large amount of orbita
angu arular momentum carried by the protons. This large

GMvalue for (L ) violates a key assumption of the OG
and is not found in the IBFM. The larger value of (L~ )
in our calculation leads to a large improvement in the
calculated vs measured magnetic moment of Ge but sti
does not lead to complete agreement using free partic e g
factors. Thus we have discussed the difficult issue o
quenching as it applies to Ge. Even with quenching in-
cluded our results still differ from those of the OGM an
IBFM.

Unlike the OGM or the IBFM, it is straightforward to
extend the shell model results to finite momentum

n that finitetransfer in a consistent manner. e n a
momentum transfer will play an important role in deter-
mining eth ~X scattering rate for very heavy neutralinos.

itsHere again, we avehave compared the shell model resu s
h OGM combined with the ISPSM form factor.

This latter approach seems to work well for i u
significant disagreement is found for Ge.

The major concern regarding our results is the validity
of the round-state wave functions we have generated.o egr
To help allay that concern, we have used our wave
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tions to calculate a number of nuclear observables and
compared the results to the measured values. In Si ex-
cellent agreement was found for the magnetic moment,
the excited state energy spectrum, and the first 3 spectro-
scopic factors. This was not surprising since we were
able to use a well tested interaction in a well-defined mod-
el space. These calculations in Si serve another useful
purpose. The disagreement between the calculations and
measurements in Si serve to calibrate how accurately
one can calculate nuclear properties in the shell model.
Thus, the magnitude of the "errors" in the good calcula-
tion of silicon will help to establish how believable our
calculation of Ge is.

In Ge the picture is more complicated. No phenome-
nological interaction has been developed for this region
of the periodic table and fairly severe truncations to the
model space have to be imposed to obtain manageable di-
mensions. Despite these obstacles, our best calculated
ground state wave function for Ge seems to be a good
match when compared to experiment. We have obtained
good agreement with the low-lying excited state energy
spectrum. The ground state to ground state spectroscop-
ic factor is also in fair agreement with experiment. The
spectroscopic factors for transitions to excited states re-
veal that our model space does not contain enough
configurations to completely describe the excited states,
although the agreement between theory and experiment
is not unreasonable. We reiterate that our model space
was designed to describe the ground state and for that it
does an acceptable job.

The final comparison is between magnetic moments.
Using the large space wave function a significant im-
provement over the ISPSM or IBFM estimates of p is
found. Unfortunately, perfect agreement with experi-
ment is not obtained but this is not expected or particu-
larly damaging. Some sort of quenching of both p and
the GT spin matrix elements is almost universally re-
quired in shell model calculations of heavy nuclei. We
find that an isovector spin quenching factor of 0.833 re-
sults in agreement with the measured value of the mag-
netic moment. This method and amount of quenching
are consistent with previous studies of both GT and p
quenching and is therefore well motivated and simple. It
is not manifestly obvious that quenching is needed in

Ge-y scattering but, if so, we are confident that the
correct answer lies in the range between the quenched
and unquenched values of our calculation. In light of the
above comparisons we feel that we have obtained an ade-
quate description of the ground state structure of Ge
and that any calculation in a larger model space or with a
di6'erent interaction will confirm our results. The
disagreement between calculation and measurement in
each case is somewhat larger than for Si but is not so
large as to cause us to doubt the result. The case is not
airtight but 3 difterent lines of argument all indicate that
the large space wave function is a better representation of
the real nucleus than has previously been available.

As a summary and "users guide" we have collected the
formulas, references, and suggested quenching methods
in the appendix. Formulas for the spin-dependent neu-
tralino cross section and the event detection rate in a

bolometric detector are also given there.
In Sec. IV we describe the formalism for yÃ scattering

at finite momentum transfer. The cross section is given
by Eq. (7) and all of the nuclear physics is contained in
the spin structure function, S(q), given by Eqs. (8)—(10).
S(q) may be decomposed into a pure isovector piece S„,
a pure isoscalar piece Soo, and an interference term So„
see Eq. (10) (we will refer to these as S, where i,j =0, 1).
By taking suitable linear combinations of a„and a, the
isoscalar and isovector nucleon-g coupling constants, ao
and a „can be found for any composition neutralino. In
Figs. 3 and 4 we presented the S; for Si and Ge, re-
spectively. Along with ao and a& these plots can be used
to compute the terms a, a S," which go into Eq. (10) to
find S(q) for any given g. As an alternative to this we
have provided convenient fits to S(q) for both nuclei in
Eq. (11). These fits are quite accurate, for most g compo-
sitions, in the regime y 0. 15. As noted in Sec. IV, there
are certain combinations of ao and ai for which Eq. (11)
is a poor approximation. With these words as a guide
and using the formulas in the appendix, it should be
straightforward to incorporate this work into calcula-
tions of the yX scattering rate.

To help place this work in a larger context, we close by
briefiy discussing one final issue. This is a brief compar-
ison of the spin dependent vs the spin-independent
scattering. In addition to the spin-dependent scattering
discussed at length in this paper, there is spin indepen-
dent scattering which may produce competitive or larger
scattering rates [4,7]. The spin independent piece is
coherent, and thus, the cross section scales as (atomic
number) . So, for heavy nuclei or light Higgs bosons this
piece may dominate depending upon the mass and com-
position of the neutralino. Engel [7,18] has shown that
the spin-independent form factor, corresponding to S(q),
falls off much faster at large q than does S(q) itself.
Thus, for very large m spin dependent scattering is like-

ly to dominate. Furthermore, for the pure g states (e.g. , a
pure 8), the coherent piece is suppressed (note, however,
that recent work by Nojiri and Drees [38] may change
this conclusion). Therefore spin-dependent scattering
will probably dominate for these pure states. Outside of
these two regimes it is not clear which piece, spin depen-
dent or independent, will dominate the cross section and
hence the rate.
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APPENDIX: USERS GUIDE

In this appendix we collect the formulas necessary to
convert our results for the nuclear matrix elements into
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usable cross sections and interaction rates for dark
matter detectors. We give only the spin-dependent cross
section. To get the total cross section the spin-
independent cross section [4,5,39,38] must be added to
the cross sections below. We follow the notation and
conventions of Refs. [4,5] with only slight modifications.
In the limit of zero momentum transfer the cross section
for spin-dependent elastic gX scattering is

24m m&G+ 4
osD= —A J(J+1),

m(m-+m)v )x
(A 1)

where m& is the nuclear mass, m is the neutrino mass, J

is the total nuclear spin, GF is the Fermi constant, and

a (S & a„(S„&
J + J (A2)

The spin averages (S & and (S„& are given in Table III
(but see below concerning quenching before using them),
while a and a„contain the details of the supersymmetric
model, as well as the quark spin content of the proton
and neutron:

(A3)

2 2d2
T)L(Z—3

—Z4) —x +[T)1Z2 —tanO)i(T)L —e )Zi] +tan 6))i,e Zi . , (A4)

and

2m~
X 2 2

x
(A5)

The various quantities used in the definition of 2' in-
volve the neutralino couplings and mass matrix, and can
be found in Ref. [4]. For the special cases of photinos
and B-inos, the a („) are given in Eqs. (12) and (13). The
values hq of the spin content of the nucleons are not well
known. Some commonly used values are given in the text
just after Eq. (12). The hq for the neutron can be found
from the b,q for the proton by switching b, u and b,d. (We
note, for completeness, that new data on the deuteron's
spin structure function has very recently become avail-
able. A new analysis incorporating this data along with
the EMC results yields values of Au =0.80, hd = —0.46,
and b,s = —0. 13; all with an uncertainty of +0.04 [40].)

For Si, we suggest using the values of (S„& and (S
from the "shell model" row of Table III with no quench-
ing. For Ge we advocate quenching the isovector piece
of the nucleon-g coupling constants a and a„. Hence
one should not use Eq. (2). To quench the isovector piece
of a and a„one first computes a~ and a„ from Eq. (A3)
and then constructs the isovector and isoscalar coupling
constants: a& =a —a„and ao=a +a„. The isovector
piece is then multiplied by the quenching factor,
a

&
=0.833a&. In the zero momentum transfer limit, the

a and a„are then recalculated using the quenched value
a', . These values are then used in Eq. (A2) in place of
those calculated directly from Eq. (A3). In other words
to quench by a factor Q =(0.833) in Eq. A(2) make the
replacement

I

In this scheme one uses the values of (S„& and (S~ &

from the "shell model (large)" row of Table III (not the
"quenched" row).

To make contact with previous work, we note that the
ISPSM (single particle shell model) can be obtained from
Eq. (Al) by the simple substitution

A --a ()k (A7)

where in the ISPSM only one of either a„or a contrib-
utes and

s („)(s („)+1)—l („)(l („)+1)1+
2 J(J+1)
p(n)

J (AS)

where J is the total nuclear angular momentum
(J =s ~„)+l ~„)), sz~„) and l ~„) are the unpaired proton or
neutron spin and orbital angular momentum, respective-
ly. For example, in the ISPSM, Ge is modeled as a neu-
tron with l„=4 and J=—'„while Si is modeled as a neu-

tron with l„=0,and J=—,'.
When the neutralino mass is over a few tens of GeV, it

becomes important to include the effect of finite momen-
tum transfer. Eqs. (7)—(11) in the text show how to in-

clude this effect. To implement the suggested quenching
scheme for Ge simply make the replacement Eq. (A6)
(or equivalent ai ~a i =0.833ai ) in Eqs. (7)—(11). Note
in particular that Eq. (9c) can be written

a:.a„' = —,[a (1+Q)+a„(1—Q) ]
S(0)= A J(J+1) . (A9)

=0.917a +0.0835a„,

-'a„' =
~ [a„(l—Q)+a„(1+Q)]

=0.0835ap +0.917a„.

(A6)
Since we work in the z projection of the maximally
stretched state, the function f (K) introduced in Eq. (9c)
has the form f (N) =f (J)= (2J + 1)(J+ 1)/J.

The rate per unit detector mass with which neutralinos
interact with a detector is given by [9,4,7]
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4M„vR= Jvdv f(v) j dq 2Pl -m~ 0 dq
(A 10)

where m& is the mass of the nucleus,
M„=m~mx/(mtv+m~), der/dtl is given in Eq. (7),
p=0. 4 GeV/cm is the halo density (assumed to consist
entirely of neutralino's), f (v) is the velocity distribution
of the halo, and v0 ——220 km s is the circular velocity in
the halo, which sets the scale for the halo gravitational
potential. For simplicity one can choose a Maxwellian
distribution of velocities f (v)=4v exp( —v /vo)/
(v o &~), or one can follow [9,4,41] and include the effects
of the Sun and Earth motion, as well as the effect of a
detector threshold.

Integrating Eq. (A10) one gets

where the A; and 8; are given in Eq. (11), and

y =(bq/2) . For Ge, b=2.04 fm, and for Si, b=1.75
fm. Note now g A; =S"'(0). Then

gA, 2

a; —,'+p +
~ erfp

g A;, (A12)

In order to evaluate g, one may use the fits to S(q)
given in Eq. (11). This will give an approximation which
should be good for most neutralinos (but see the cautions
in the text). We rewrite Eq. (11)as

3

S"'(y)= g A;e

P
IC lu U0&sDV' ~ fPl -m~

(A 1 1)
where

where [9] g, = 1.3 gives a correction for the speed of the
Sun through the halo, and the effect of integrating over

q is summarized by

2 dc'
gc 0 sD dq

dq

In the limit of zero momentum transfer, the q integral in
Eq. (Al) becomes o.sD and g, ~l. Note again that to
find the total event rate one must include the spin-
independent piece of the cross section which is not con-
sidered in this paper.

p cx.
exp erfI+a;

+1+ et;erf(p)

p =vsUN/vo= 1, and a;=B;b voM„. In the limit p =0
(the limit of a stationary Sun or isotropic velocity distri-
bution),

tl, —+g A;a '[I —I/(I+et, )] gA, .
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