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Analytical model of a resonant gravitational wave antenna

Pietro Tricarico
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(Received 30 July 1993)

We report on the development of a model for a resonant gravitational wave antenna. This model con-
siders a resonant bar coupled with a resonant capacitive transducer connected to a dc SQUID amplifier,
i.e., a system with three coupled oscillators. The model is used to derive an analytical expression of the
apparatus sensitivity in terms of an effective temperature for "burst" signals. This leads to new and
more general mechanical and electrical matching conditions for improving the sensitivity: when they
are satisfied the Giffard limit is obtained.

PACS number(s): 04.80.+z

I. INTRODUCTION

where L is the length of the cylindrical bar with mass M,
and U =5400 m/s represents the sound velocity in the
bar. The minimum measurable energy eo, with S/N=1,
is usually expressed in terms of effective temperature T,~:

co= kT, ff (2)

(k is the Boltzmann constant). The value of the eff'ective
temperature depends on the detector features [3] and on
the algorithms used for filtering the data.

The analysis of a two-mode detector shows that the
minimum value of T,~ is obtained only if certain match-
ing conditions are satisfied [3,4]. However, when a detec-
tor using a resonant capacitive transducer is coupled to a
dc superconducting quantum interference device
(SQUID) amplifier, there is an additional mode due to the
electrical circuit [5],and the results derived for a two-
mode detector are no longer valid [6].

We propose here a three-mode model for a gravitation-
al wave detector, similar to that used in Ref. [5], to ana-
lyze a number of issues related to detector sensitivity.
From this we derive, using a modal approach, the expres-
sions both of the effective noise temperature for short
burst detection and of the matching conditions required
for obtaining T,ff=2T„, where T„ is the noise tempera-
ture of the amplifier [7]. This analytical approach, that
complements the numerical analysis of the detectors

The fundamental problem of gravitational wave
research is to measure the metric tensor variations with a
magnitude of less than 10 ' m; this is, in fact, the sensi-
tivity necessary to detect gravitational waves coming
from the Virgo cluster, where we expect a rate of several
tens of star collapses per year [1].

It is possible, classically, to relate the energy e deposit-
ed into a resonant bar detector by a gravitational wave
burst to the component of the Fourier transform of the
metric tensor perturbation at the resonance frequency vo
of the bar [2]

1/2

H(2vrvo) = L e
M

[8—10], has the advantage of providing a better insight as

regards the inAuence of the various parameters of a
detector on its performance.

For simplicity, in our analysis we shall consider signals
due to a gravitational wave burst, ignoring its shape, and
we shall assume only that the duration of the burst be
smaller than the smallest time constant of the detector
[6].

II. THE MODEL

The operation of the cryogenic gravitational wave an-
tennas, equipped with a capacitive transducer and
SQUID amplifier, such as the detectors of the Rome
group [11—14], is based on the interaction of three oscil-
lators.

The first resonator is the cylindrical bar whose mass
determines the energy cross section for an incoming grav-
itational wave. Taking into account its distributed na-
ture, the bar is described by a partial differential equa-
tion, but near its fundamental longitudinal vibration
mode it can be represented as an equivalent harmonic os-
cillator, with angular resonance frequency cvb=rrv/I. ,
merit factor Qb, and equivalent mass m& =M/2.

The displacement x(t) of the bar face is sensed by
means of a resonant capacitive transducer [15] that here
we consider ideal, i.e., without electrical losses and with
parallel displacement y(t ) of the vibrating plate [16] (Fig.
1). The resonant capacitive transducer is the second
mechanical oscillator, with angular resonance frequency
co, (usually close to rob for improving the energy transfer
from the first oscillator), merit factor Q, and equivalent
mass m, .

The transducer is connected to a superconducting
transformer that provides the required impedance match-
ing, whose secondary is connected to the input circuit of
the d.c. SQUID amplifier [5], as shown in Fig. 1. The
resonant electrical circuit, i.e., the third oscillator, arises
from the inductance of the transformer and the capacity
of the transducer.

From the fundamental equations of motion (see later),
using the Maxwell analogy, it is possible to obtain an
electrical model of the apparatus [3] where the mechani-
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e„=voltage noise generator of the amplifier,

i„=current noise generator of the amplifier,

X=displacement velocity of the bar,
Y=displacement velocity of the transducer,

I=electrical circuit current .

The fundamental equations of motion of the system are

FIG. 1. Scheme of the experimental apparatus.

cal oscillators (bar and transducer) are represented by
two electrical loops as reported on the left side of the
scheme of Fig. 2. The bias electrical field Eo (V/m) of the
transducer is the parameter that converts the mechanical
signal into the electrical signal. The decoupling capacity
Cd, the superconducting transformer and the input net-
work of the d.c. SQUID in Fig. 1 are reported in Fig. 2.
In the scheme we have also represented the noise sources
of the d.c. SQUID [17,18]: the voltage noise generator
e„and the current noise generator i„, which we assume
uncorrelated; with the gravitational signal source F~.

We list below the frequently used symbols:

mb =equivalent mass of the bar,

pb =dissipation coefficient of the bar,

cob =angular resonance frequency of the bar,

C, =capacity of the transducer,

m, =equivalent mass of the transducer,

P, =dissipation coefficient of the transducer,

cu, =angular resonance frequency of the transducer,

Cd =decoupling capacity,

Rd =resistance of electrical circuit,

L p =primary inductance of the transformer,

M=mutual inductance of the transformer,

L; =secondary inductance of the transformer,

Ep
=bias electrical field of the transducer

L;„=i p ntiunductance of the d. c. SQUID amplifier,

F~ =force acting on the bar,

F„—+Z, X—Z7(X —Y)=0,
—Z7X+Z~(X —Y)—ZsI =0,
—Zs (X—Y ) +Z3I +Z4I Z9I,—=0,

Z9I +—(Z5 +Z6 )I, +e„=0,
~„+I,=I, ,

where the expressions of the parameters Z are given by

2
Mb

Zi =2Pbmb+smb 1+p+
s

(3)

6)t
Z2 =2P, m, +sm, 1+

s

1 1 1
3 Z4 =Rd +sLp,

Z5 =sL, , Z6 =sL;„,
Z7 =sm„Z8 =Ep/s,

Z, =sm, p=m, /mb .

(4)

—ZiX+Z2(X —Y)—ZsI =0, (6)

Z9—Z (X—Y)+ Z +Z8 4 z+z5 6

I=O .

The basic dynamic properties of the detector can be de-
rived from the determinant of the system matrix. If we
assume e„=i„=O,as when we are interested only in the
signal, by substituting the fourth in the third one of Eqs.
(3) we get

Z9

5 6

and the equations of motion result:

ZiX —Z7(X —Y)=Fq,

1
2 I

b b b c, c,
RI
~l

We observe that Eqs. (3) and (6) contain the same infor-
mation on the detector response to the gravitational wave
signal.

From Eqs. (6) we derive the system matrix M:

g) x

A
A E

E I E (f&Q)
S

FICr. 2. Electrical model of the detector.

Z]
—Z 7

0

—Z 7 0

Z2 Z8

Z8 Z3 +Z4
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where III. MQDES, TRANSFER FUNCTIGN,
AND ENERGY COUPLING FACTORS

with

=Rd+sgLp=Rd+sLp,

We compute in what follows the modes of the detector
neglecting the losses of the oscillators.

We derive the analytical expression both of the reso-
nance frequencies of modes and of the energy coupling
factors. The determinant of the system matrix M (7) is

L,;g= 1+@ Lo=(Lo .
i in

By neglecting the terms with the dissipation coe%cients
in the parameter expressions (4) we have

E2
[(1+p)s'+c,ob] (s'+co', )(s'+co', )—

s
—s p(s +co, )

/
where ~, = 1/~ L,pC, is the angular electrical resonance
frequency (we neglect the term with Cd since, in the cases
of interest, Cd ))C, ). We notice that the expression of
the system matrix determinant can be rewritten as

mbmgLpP(s )
M =

S3
(10)

where

P(s)=s + As +Bs +C
=(s +co )(s +co+)(s +cop)

The expressions of the angular resonance frequencies of
the modes as a function of the coefficients (11) can be de-
rived from the determinant of matrix M: i.e.,

co +Ado —Bco +C —0.

and ~, m+, and mp are the angular resonance frequen-
cies of the modes: minus, plus, and zero mode, respec-
tively. They will be indicated as co; using the symbolic in-

dex i = [+,—,0]. From (10) results

A =co, +coi, +( I+p)co, ,

(1+p, )Eo
B=co,co, (1+@)+cob(co,+co, )—

m, z.o

cobEP2 2

C co co co
mtI p

In Eq. (13) for the angular resonance frequencies of
modes we have used the numerical index k instead of the
symbolic index i, so it is possible to write their analytical
expressions in a much closer form.

Unlike the case of two mechanical oscillators, here
there is an important difference concerning the role of the
electrical field Eo [Eq. (11)]. While with two resonators
and with the transducer connected to a field effect transis-
tor (FET) amplifier, the electrical field Ep modifies only
the uncoupled resonance frequency of the transducer (in
accordance with the relation co', =co, EpC, /m—, ) [3,16],

We consider now a specific example with the numerical
values of the parameters given in Table I.

In Fig. 3 we report the frequencies of modes
v; =co;/2', i =

I +, —,0], versus the ratio v, /vb, and in

Fig. 4 the frequencies of the modes as a function of the
electrical field Ep in the case of "tuning, " i.e., for
v, =vb =vt =915 Hz.

Let us analyze now the detector response when a gravi-
tational wave pulse f(t ) =fo5(t ) [5(t ) is the Dirac li

function], i.e., Fg =fp impinges onto the bar. Accord-
ing to Eqs. (6), neglecting the losses of the oscillators, we
derive the transfer function W(s ) between the gravita-
tional wave force Fz, and the input current I, of the d.c.
SQUID:

W(s)=I, /F„.
If we take into account Eq. (5) we have

The roots of this polynomial are obtained as follows:

with

3B —A 2A +27C —9AB
0 =

9 ' 54
T

cosO=
0 3

cok =2i/ —cT cos +, k =0, 1,2, (13)2 0+2k' A
TABLE I. Numerical values for parameters used in Figs. 3 and 4.

rnb =1160 kg
vb=915 Hz
m, =0.35 kg
v, =915 Hz
Cr =4 nF
L;„=1.5 pH
L; =1.5 AH
k =0.7
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[Hz] v =v;E =510 V/I
3000 I I I I
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where

D —COp(CO+ CO )+CO+(CO COp)+CO (COp CO+ ) (16)

2500

2000

1500

+
+

We notice that a gravitational wave pulse excites the
modes whose current intensity are given by

Eofo M coi (coj

mb(Lp L;+L;„D
1000

v
0 i,j,k = {+,—,0], (17)

500

0.5

v

1.5
v / v

where' j=suc(i) and k=suc(j).
We introduce now the energy coupling factors /31 of

l

the modes, with i = {+, —,0], which are defined as the
ratios of the energy at the input of the d.c. SQUID
amplifier for the ith mode EL to the total energy E, :

FIG. 3. Resonance frequencies of modes versus v, /vb. f3L =EL /E, .

I, = Z9 I= I
Z, +Z, L, +L,„

and the expression of the current I results:

FqZ7Z8I=

The energy released to the bar by a gravitational radia-
tion pulse is

E, =fo/2mb

where fo is the pulse magnitude. The energy EL stored
t

in the input inductance L;„ofthe d.c. SQUID at the ith
mode, is given by

By using the expression of the system matrix determinant
(10) we have

JY(s ) = I,
I Fw

Eo M s

mbLp L;+L;„P(s) (14)

By performing the inverse Laplace transform we obtain

EL —
—,
' L;„I,

l 1

Substituting the expression (17) of I, , we get
l

E2 k2 CO4(CO2 CO2 )2

mbLp [L;„+L;(1—k )] D

(19)

(20)

1000
r

950

v =v =v =915 Hz
[) t. e

v
+

v
0

900

Eofo M 2 2 2
( r ): [ pC(O+COCO ) COS( COpt )~,L,D L;+L;„

+co+(co coo)cos(co+i )

+CO (COo
—

CO+ )COS(CO t )],

where we have used the relation M =kv/LoL, and where
k is the transformer coupling factor.

In Fig. 5 we plot the Pl factors versus the ratio v, /vb
1

in the "tuning" case (see Table I for the parameter values
used). The figure shows that for values of the electrical
resonance frequency greater than the mechanical fre-
quency of the bar vb, the plus mode is heavily attenuated
(about all the energy is available at the minus and zero
modes), whereas for values of v, smaller than vb is the
minus mode to be attenuated. We notice that the central
mode is always privileged with respect to the other ones,
independently by the ratio value v, /vb. In Fig. 6 we re-
port the PL factors versus the electrical field Eo in the

l

tuning case. The plot shows that, for the values of the
parameters we have used (see Table I), the maximum en-
ergy transfer for all the modes is obtained with EO =10
(V/m).

850

1 0 1 0
E [v/I]

1 0

~We de6ne the function i =suc( j) as follows: let i and j be two
symbolic indices with n elements [a„.. . ,a„], if j=a„(the kth
symbol) then

ak+) for k (n,
al for k=n .

FIG. 4. Resonance frequencies of modes versus E0. For example, if i =j= {+, —,0], then suc( + ) = —,suc(0) = +.
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10
v =v =915Hz;E =510 V/m

b t 0

Lo
10

v =v =v =915Hz
b t e

1 0
10

LO ~O~

1 0

L-I

1 0

l3„.%

L-

10
0.5 1 ' 5

v lv
2.5

10
10 10

E [V/m]
1 0

FIG. 5. Energy coupling factors of modes versus v, /v& ~ FIG. 6. Energy coupling factors of modes versus Eo.

IV. QUALITY FACTORS OF MODES

In this section we shall derive the merit factor Q; ex-
pressions of the modes using their usual definition,

Q; =co;/b, co;, where co, is the angular resonance frequen-
cy of the mode and Ace; is the —3 dB bandwidth. The

analytical expression of Q; will be derived by expanding
in series the transfer function W(s ), that was introduced
in the previous paragraph, around the angular resonance
frequency of ith mode [19].

Introducing the losses of the oscillators and using Eqs.
(4), the expression of the system matrix results:

2
COb

lMl = 2Pbmb+smb I+p+
$2

COt

2P, m, +sm, 1+
$

R + +sL
C o

Eo
$2

—$ m, Rd+ +$Lo2 2 P

$C,

aq =4PbP, + bc+o(col+p)+ , co

+4P,P, (1+P)+4P,Pb,
mbm, EOP(s )

lMI= (21) a5 =2P, (1+@)+2Pb+2P, ,

where we have neglected the resistor Ro, since in the
cases of interest Ro »co,-Lo. From this expression we get

where P(s ) is the polynomial

6
P(s)= g a;s'=ao+a, s+ +a&sb,

i=0
(22)

a, ——l,
and where the electrical dissipation coefficient P,=co, /2Q, Rd /2LO has been introduced.

Setting s =jco, P(s ) can be written as

the coefficients a; are
2 2

2 2 2 b
ao —co co&cob

mtLO

E2
a) =2P co cob +2Pbco co —2Pb +2P co cob

mi 0

P(j co) = A (co)+j coB(co),

where A (co) and B(co) are given by

A (co)= —(co' —co' )(co' —co+ )(co' —coo),

B(co)=aq(co —co[)(co —co~)

(24)

(25)

+2P, cob+2P, co,(1+p),
(23)

a2 =cob co, +4PbP, co, +co, cob +co, co, (1+@)—2 2 2 2 2 2 2

m, E,
+4p, p, cob+4p, pbco, ,

a, =2P,cob+2Pbco, +2P, co, (1+@)+2Pbco,+ SP,P,Pb

with

a3 "y a3 —4a&a52

CO( 2—
2a5

(26)

The angular resonance frequencies of the modes cu; in
presence of dissipations are now given by the roots of
A(co)=0. By comparing ao with C, a2 with B, and az
with 2, i.e., with the lossless case, we deduce that these
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coefficients are identical except for the f3 terms. Thus we
neglect the dift'er ence under the condition that
4p,„cd,„((cd;„,where p,„is the largest among pb, p„
p„and co,„(co;„)the largest (smallest) among cob, co„
and co, . Usually the above condition is satisfied, since

Q, ) 10", thus we can evaluate the angular resonance fre-
quencies of the modes using the expressions (13) found in
absence of dissipations.

Now let us calculate the expressions of the merit fac-
tors Q;: from Eq. (14),

W(s)=
mba L, +L;„P(s)

In such a case the functions (29) become

W~ (co)= 1

1+6 (co)
(32)

W~ (co)= 1

1+ki (co —co;)
(33)

with

It can be shown I6] that on the condition that Q; be much
greater than the square root of the smallest among the
uncoupled merit factors (Q;))QQ;„), with good ap-
proximation, it is possible to expand G(co) around co;, so
that (32) becomes

by substituting s =jco, we get

I W(jco)I =
2Eo M CO

rnbLO L;+L;„A (co)+co B (co)

(27)

Eo M

mbLO L, +Lin

At the angular resonance frequency of ith mode
twhere A (co; ) =0], expression (27) becomes

2 4

I
W(jcd)I (28)

B (co;)

dG(co)
1. de

From Eqs. (30) and (34) we obtain

(~z ~z )(~z ~2)

a (
z 2)(~z ~2)

(co cd+ )(co coo

a5 (cd —cdf )(cd —cdz)

(34)

(35)

From the above, we obtain the squared modulus of the
normalized transfer function as

2QO

COp

(cdo co+ )(coo cd )

as (cdo —cdi)(cdo —coz)

z I W( jcd)
I

I w(j~)I„=
8 (co)

co, A (co)+co 8 (co)

&(cd; )

&(cd) 1+6 (co)

where 6(co) is given by

6(cd) = A (co) (~z ~z )(~z z )( z ~2)

coa ~ (co —co i )(co —
coz )

(29)

(30)

or, in a much closer form, we rewrite
I 19]

(~z ~z)( z z
)

( ~z~ ~2 )( ~z~ ~2 )

i,j,k = t+, —,0]

in which i is the symbolic index of the mode, j=sue(i),
and k =suc( j ).

We recall that such a procedure for calculating the
merit factors is valid only if

(37)

&(cd; )

&(cd)

6, +52=1+4
1 2

(31)

In the bandwidth hco; by co;, Eqs. (31) will be considered
with good approximation equal to unity.

If, for example, ~, =~,„=2~ 1800 rad/s, co;„=mb=2~
i3 „=p,=cd, /2Q„ then we must have

Q, » (cd, /cob ) —4.

8(cd; ) (co; —co, )(co; —coz)

(co —coi)(co —coz)

By assuming cd&=cd,.(1+Bi),cd&=cd;(1+5z), and expand-
ing in series at the first order around co;, we obtain

4

TABLE II. Typical parameter values of a resonant gravita-
tional wave detector.

mb —1160 kg
vb=915 Hz
vr =915 Hz
C, =4 nF
L; =1.5 pH
Q, =104

Qb =10'
m, =0.35 kg
Q, = 10
L;„=1.5 pH
k =0.77
E =SX10 (V/m)

where Q;„ is the smallest among the uncoupled merit
factors. We notice also that Eq. (36) depends on the fre-
quencies of the modes co;, on co& and co2 and, finally, on
the coe%cient a5.

The merit factors of the three modes are reported in
Fig. 7 versus the ratio v, /vb, using the values of the pa-
rameters given in Table II. For v, greater than vb, Q+
becomes equal to Q„whereas Q and Qo tend to the
same limit value. We notice that for v, & 2vb or
v, (vb/2 (see also Figs. 3 and 5) the electrical oscillator
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10

0

. —-e
(~J l

D2 [(~2 ~2)(~2 ~2 )]2
(39)

10

1 0

1 0
0.4 0.92 1.44

v /v

1.96

I & l I I

2.48

and substituting Eq. (39) in the expression of PL, we have
l

E L;L;„k CO).

mbLO [L,„+L,(1—k. )] [(co;—co )(co; —cuk)]

(40)

From Eq. (36) and from the expression of B(co) in (26),
we get

2 2 2 5 &

'
2

CO&. CO& CO&
—Q) k

FIG. 7. Merit factors of modes versus v, /vb.

is practically uncoupled and the system behavior is the
same as the simpler case of two coupled mechanical oscil-
lators. The merit factors of modes as a function of the
electrical field Ep are shown in Fig. 8, using the same pa-
rameters of Fig. 7.

By using the above results we derive now a relation be-
tween the factors Pz and Q; that we shall use in the next

t

paragraph for computing the equivalent temperature of
the modes. To this aim we observe that in the expression
(20) of PL there is the quantity

t

(~2 ~2 )2j k

D 2 (38)

or

D=(co' — o)( + — '
)( + — 0) .

In such a case (38) becomes

10
v =v =v =915Hz

4 t e

10

This can be properly transformed if we take account that
[Eq. (16)]

D =coo(co+ co )+co+(co coo)+co (coo co+ )

mI Lo [L +L (1—k )] B g
(42)

V. KQUIVAI. KNT TEMPERATURE,
BACK ACTION AND MODE BANDWIDTHS

The noise sources of the d.c. SQUID e„and i„e exit e
the bar through the transducer as shown in Fig. 2. This
effect of back action is taken into account in the definition
of the equivalent temperature of the modes: we imagine
replacing the "true" system, the bar at temperature T,
and the noise sources of the d.c. SQUID, with a "virtual"
system made up by the bar alone at the equivalent tem-
perature T, without the noise sources.

If we suppose the detector be at thermodynamical
equilibrium, i.e., at constant temperature in all the exper-
imental space, then the thermal noise of both the resistor
Rd and of the transducer do not give any back action
contribution [20,21], because they cannot exchange ener-
gy with the bar, as established by the thermodynamics'
laws.

We can prove that the mean square displacement ve-
locity at the ith mode of the resonant bar face at tempera-
ture T, when it is loaded with a resonant capacitive trans-
ducer and with an electrical circuit, can be written as

(41)

where we have indicated B;=B(~;).
Finally, substituting Eq. (41) in Eq. (40), we obtain the

desired relation

k
XT m b

(43)

10

1 0

1 0 10
K [V/m]

FIG. 8. Merit factors of modes versus E0.

10

where the factor y, , i =
t +, —,0], takes into account the

features at the ith mode both of the resonant transducer
and of the electrical circuit (see later). In the case of the
bar alone, we have only its longitudinal vibration mode at
the frequency vp, and the factor y; is, naturally, yp I.

The equivalent temperature T, is defined so that the
equivalent resultant mean-square displacement velocity
( (x,q ) ) of the bar is equal to that obtained adding the
thermodynamical and back action effects.
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According to Eq. (43) we write

2 k
c7, — g; Teq

eq mb
(44)

2mbo .
' =T+Teg T+

7l

mbS. B~

ky;
(53)

For this reason T, is always greater or equal to T, and is
equal only in the ideal case. The back action spectrum of
the d.c. SQUID amplifier is due only to e„and is given by
[22]

where T is the thermodynamical temperature of the bar
and

2Pb co

y, = [[(co;—bi )(co; bz—)]'+ [co;b3(co; b~—)]'I,
l

E2 L;k
S„.= e„

mbLo [L;„+L,(1—k )] A (co)+co B (co)

(45)

where all spectrums are considered single sided.
The mean-square value of x due to back action [22] is

with

b2
1,2

2+ 2+ ( 2+ 2)2 4 2~2

p, co, +p, co,
b3 =4p, p„b4 =

e

E2 1/2
0

m, r.o

o'. = f S.(co)dco . (46)

Introducing a summation on the modes in the expression
of S„., we get

S.(co)= QS„.(co;)W;(co), (47)

o„.= f QS„. W;(co)dco
l

l

where the functions W;(co), with W~(co,. )=1, are such to
approximate S. around the resonance of the ith mode
and to vanish far from the mode. From Eq. (46), substi-
tuting Eq. (47), we obtain

Bz = f W;(co)dco .2' 0
(54)

The analytical relation between the displacement velocity
back action noise and its value at the ith mode is

S„.(co) i
„=Wbj (co)S„.(co; ),

where the functions Wz (co) were introduced in the previ-
l

ous paragraph. Thus we deduce

W;(co)i = W~ (co)i

In order to relate T, with the parameters pI and Q;, we

calculate the equivalent noise bandwidth of the mode:

=gS. B~ = go.X ~ X ~

in which S„. =S,. (co; ), with

(48)
The detector response, for frequencies around the ith

mode, is that of a resonant second-order system with an-

gular resonance frequency co, and merit factor Q, ; thus,

BN = f W (co)dco (49)
CO]

N; 4Q
(55)

and

a. =S.B~ . (50)

By using Eq. (45) the displacement velocity back action
spectrum calculated at the ith mode is given by

To understand the effective significance of B&, we con-

sider the case of one mode alone.
Equation (47) becomes S„.(co) =S„.(coo) Wo(co); thus

+„S„.(co)
B& = f Wo(co)dco= f "

dco .
2m 0 2~ o S„coo

(51)

Q 0 +CJ.
xeq xT xl

From Eqs. (43) and (44) we get

(52)

From the last expression we deduce that B~ is the
0

equivalent noise bandwidth. It is natural to consider 8&
as the equivalent noise bandwidth of the ith mode.

The equivalent mean-square value of x at the mode is
obtained by summing two contributions: the back action
noise at the mode, o . , and the thermodynamical noise

2o. , i.e.,XT

E2 L, k 4

S. =
2 2 2kTygRn

mb2Lo [L;„+L;(1—k )]' B;
(56)

where R„=e„/i„ is the noise resistance of the d.c.
SQUID amplifier and T„= 1/ e„i2/2k its equivalent
noise temperature.

From Eqs. (55) and (56), we have

Teq, PL, Qi T„.=1+
T p' T 2A0

(58)

where

Eo2 Ll k Tn mbRn co)=1+
mq~Lo [L;„+L;(1—k2)]2 T 2 QB2y;

(57)

and, using relation (42),



ANALYTICAL MODEL OF A RESONANT GRAVITATIONAL. . . 5493

p=co;L;„/R„ (59)

Teq, , PL, , Q;

2kp

2A, p T+
r; PLQ; T.

(60)

is the ratio of the input impedance of d.c. SQUID at the
ith mode to its noise resistance. We notice that A,p should
be indicated as A,p since it depends on the considered

mode, but that will be implicit.
By means of Eq. (58) we rewrite an expression that re-

lates Teq with Tn:
l

Sff 8kT,q mbPb (63)

In such a case, the narrow band current spectrum at
the input of the d.c. SQUID amplifier results:

S Sff I~(j. ni ) I

' =„. (64)

calculated using the following argument: the rnean-
square value of the displacement velocity at the ith mode
due to the thermodynamical noise and back action effect
is given by Eq. (52). The same noise can be thought to be
due to a wideband force noise generator (N /Hz) with
the value

VI. EFFECTIVE TEMPERATURE
AND MATCHING CONDITIONS

From Eq. (28), using expression (42) we have

8kT,q PL, Q, pb

~i Lln
(65)

Several algorithms to detect a gravitational wave pulse
signal in the presence of noise have been developed. An
algorithm widely used is based on the theory of Wiener
and Kolrnogorov and in this work we shall use it.

In the efFective temperature definition the parameter I
defined as [23,24]

To evaluate the wideband current noise Snn, we start
from the expression of S; (62) neglecting the resonant

S

Brownian noise term, since the thermodynamical noise of
the bar gives its contribution only as resonant noise.

Handling the expression (62) and evaluating the output
impedance Zp far enough from ~, , the wideband current
noise at the ith mode results:

r=s„„/s„„ (61)

n
Snn =2k 1+

n p
(66)

plays a fundamental role. Sn„represents the observed
wide band noise spectrum, while S„„is the narrow band
noise spectrum; S„n and S„„areboth output noise spec-
trums; therefore, I is dimensionless.

Indicating Zp as the impedance observed from the
secondary of the transformer, the d.c. SQUID electrical
network can be represented as in Fig. 9. In such a case
the input current noise spectrum of the amplifier results:

where A,o was defined in (59) and

L;+L;„
(67)

If the system has more independent resonance modes [24]
we can compute the effective temperature of the ap-
paratus from the effective temperature of each mode T,ff,

l

using the relation

2

S,. =&„'+ ",+8km, p„TI ~(i ru)l'
Zo(co)+Z6(co)

(62)

1

eff
(68)

The expression of the effective temperature of the ith
mode is [24,25]

where the square module of W( jro) is given by Eq. (27).
The spectrum S; includes the contributions both of the

S

narrow band and the wideband noise of the amplifier, and
of the resonant Brownian noise.

S„„,i.e., the total narrow band noise spectrum, can be

T„=4T„'Qr, ,
l I

I

(69)

where Teq is the equivalent temperature of the ith mode,
l

and I; is defined by (61)

, e„ L-,„

Snn, .
(70)

z
p I

I&
~ LP

n

FIG. 9. Output impedance and d.c. SQUID input network.

The quantity p, /PL takes account of a possible unequal

energy distribution at the modes, with

P, = +Pl, (71)

Using Eqs. (60), (65), and (66) we obtain from Eq. (69) the
general expression of the efFective temperature of the ith
mode:
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FIG. 10. Effective temperature of modes versus v, /vb.
FIG. 11. Effective temperature versus v, /vb for different

values of v, .

2QA
1+

0

1 2~o T+
r; PI., Q; T.

' 1/2

(72)

Teff' 2 Tn
L,

(73)

We have plotted the effective temperature of the modes
(Fig. 10) versus the ratio v, /v& (see Table II) with v&

=v, .
The parameter values of the d.c. SQUID used are T„=5
p K, R„=10 Q, and T=100 mK.

We notice that for values of the electrical resonance
frequency near the mechanical frequency ( v& =v, =915
Hz), the mode 0 has the best sensitivity with an effective
temperature of about 1 mK against 1 K of the other two
modes.

In Figs. 11 and 12 we have plotted the effective temper-
ature of the detector [Eq. (68)] versus the ratio v, /vb for
different values of the uncoupled resonance frequency of
the resonant capacitive transducer v, .

Inspecting the plots, we conclude that the best sensi-
tivity is obtained, generally, for vb=v„and that, if
v, ) 1.2vb-—1100 Hz, the sensitivity does not depend on
the electrical resonance frequency. This is true, obvious-
ly, for a detector with the parameter values listed in
Table II.

We de6ne the "matching conditions" as those that give

[K)

10
E = 5xlO V/I

= v, -100 Hz

v =v -50Hz
b

with the further condition co, /2Q, y,.p&=1 (the band-
width matching).

Most of the efforts of the experimental groups engaged
in the search of gravitational waves with resonant bars
are spent trying to satisfy the matching conditions for ob-
taining the best sensitivity of the detector. The mechani-
cal matching condition is more difficult to reach: high
values of Pl Q, are necessary. This requires electrical

and mechanical oscillators with large merit factors espe-
cially when the thermodynamical temperature of the
detector is much greater than the noise temperature of
d.c. SQUID. At present the most sensitive gravitational
wave detectors in the world make use of cryogenic tech-
niques in order to reach ultra low temperatures. With

or, from Eq. (68) using Eq. (70), the minimum value of
the effective temperature [7,26]

(T,s);„=2T„.

10
~-

v =v
b

(74)

The matching conditions are easily derived from Eqs. (72)
and (73) and are given by

2XQj « 1 (mechanical matching ),
I Q; T„

A
'
« 1 (electrical matching),

0

10
0.5 1.5 2

v /v
2 ' 5

FIG. 12. Effective temperature versus v, /vb for different
values of v, .
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the third generation antennas it will be possible to have a
working temperature of SO mK [27].

The second condition in (74) is referred as the electrical
matching condition: with the present experimental setup
this condition is more easily satisfied.

VII. CONCLUSIONS

e have developed a model of a resonant gravitational
wave antenna, based on the interaction of three harmonic
oscillators: the bar, the resonant transducer, and the d.c.
SQUID amplifier. Starting from the fundamental equa-
tions of motion of the system we have analyzed the detec-
tor response at the three normal modes when a gravita-
tional wave burst impinges onto the bar. We have corn-
puted the resonance frequencies, the energy coupling fac-
tors, and the quality factors of the modes.

Using these results we have analyzed both the e6'ect of
the Brownian noise of the bar and of the backaction noise
of the d.c. SQUID amplifier, deriving the expressions for
the narrow band noise and for the wide band noise at the
modes.

Finally, by using the Wiener theory, we have calculat-
ed the e6'ective temperature of the modes, establishing
new and more general matching conditions to be satisfied
for reaching the optimum sensitivity.
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