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Primordial black holes and generalized constraints on chaotic inflation
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It is argued that the main quantity of interest in chaotic inAation is the cosmological expansion rate H
expressed as a function of the inflaton field P. We derive a general prescription for realizing successful
inAation in terms of a set of constraints on this function. The formalism is valid for all chaotic
inflationary models based on a single scalar field which is minimally coupled to general relativity, so no
restrictions on the dynamics of the field are necessary. This technique is used to investigate the possibili-
ty that primordial black holes (PBH's) may arise due to adiabatic quantum Auctuations in the inAaton.
PBH formation can only be interesting if the amplitude of the Auctuations decreases with increasing
mass scale and this is only possible if the field is accelerating or decelerating sufficiently fast. In this
case, limits on the number of PBH s place very interesting constraints on the form of H(P) since, togeth-
er with the COBE measurement, they restrict the spectrum of Auctuations over 45 decades of mass. This
corresponds to 35 e-foldings of inAationary expansion. If the amplitude of the fluctuations decreases as a
power of mass, which is the most interesting situation, then H(P) must have a trigonometric form and
this allows the constraints to be expressed very simply.

PACS number(s): 98.80.Cq, 97.60.Lf, 98.70.Vc

I. INTRODUCTION

The inflationary scenario overcomes the problems of
the standard hot big bang model for the early Universe
by violating the strong energy condition of general rela-
tivity at early times [l]. This causes the scale factor of
the Universe to accelerate and generates reheating when
the false vacuum thermalizes, thereby violating the adia-
batic assumption which leads to the fatness and horizon
problems in the standard model. Inflation is an attractive
idea because it suggests that the present state of the ob-
servable Universe may not depend too strongly on any in-
itial conditions. In the majority of infIationary models, it
is assumed that the source of Einstein's field equations is
dominated by the potential energy V(P) of a minimally
coupled, self-interacting quantum scalar field P. This
field is often referred to as the "infIaton" due to the
current lack of a definite particle physics model and the
study of the dynamics of this field is crucial for under-
standing the physics of the early Universe. In the chaotic
scenario, which is the subject of this paper, the field is ini-
tially displaced from the global minimum of the potential
and proceeds to "slowly roll" toward it [2]. There are a
number of observational constraints that any successful
scenario must satisfy and these have been summarized as
limits on the potential in Ref. [3].

The purpose of the present investigation is to study
some of the consequences of dropping the slow-roll ap-
proximation. Exact cosmological solutions are few in
number and difficult to find when the assumption of slow
roll is relaxed, although some examples include the
power-law [4] and intermediate inflationary classes [5].
Consequently, if the paradigm is to be extended within
the context of a minimally coupled scalar field, a new
prescription must be developed which ensures that the

general inQationary scenario satisfies the existing con-
straints. One of the points of this paper is to emphasize
that this is best achieved by expressing the expansion rate
H during inflation as a function of the scalar field P. This
involves using the inQaton as an effective time coordinate
and allows the full dynamical behavior of the field to be
investigated in terms of the function H(P) without need-
ing to assume that friction terms in the field equations
dominate or that the field's kinetic energy is negligible.

In Sec. II the familiar constraints that any inflationary
scenario must satisfy are expressed as restrictions on the
function H(P). In particular, we derive the condition
that there be sufficient inflation and sufficient reheating
without exceeding the observed quadrupole anisotropy of
the cosmic microwave background radiation (CMBR) [6].
The analysis is valid for an arbitrary H(P) [and hence
V(P)] and applies to a general chaotic inflationary
scenario driven by a minimally coupled scalar field. One
is justified in keeping the form of H(P) unspecified at this
stage in the development of the inflationary scenario be-
cause there exist many different particle physics models
and the favored candidate for the unified field theory
changes regularly (e.g. , supersymmetry, supergravity,
superstrings, supermembranes).

In Sec. III we focus on two more constraints which are
associated with the form of the spectrum of perturbations
resulting from quantum scalar fluctuations. Firstly, we
summarize the constraints on the spectrum imposed by
recent anisotropy measurements of the Cosmic Back-
ground Explorer (COBE) satellite [6]. It is important to
note that all observations of large-scale galactic structure
correspond to mass scales in the range 10' Mo to
10 Mo and COBE, in particular, only probes scales
above 10' Mo. These observations only restrict the form
of the spectrum, and hence the form of the inQaton po-
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(D —2)H = — —P + V(P)
2x 1

D —1 2
(2.1)

tential, over 10 decades of mass. This is equivalent to
only ln(10' )=8 of the total number of expansion e-
folds during the inflationary epoch. Secondly, we focus
on the constraints associated with the possible overpro-
duction of primordial black holes (PBH's). In general,
PBH production is important if the spectrum of density
perturbations decreases with scale. The most important
PBH constraints occur at 10' g and 10' g and are due to
the photodissociation of deuterium by PBH photons
emitted after the nucleosynthesis era and measurements
of the y-ray background, respectively. The PBH and
COBE constraints together restrict the form of the spec-
trum over 45 decades of mass (viz. 10' g and 10 Mo).
They are therefore usefully incorporated into the
prescription of Sec. II.

In Sec. IV we discuss the conditions under which the
PBH constraints apply if such objects are produced by
adiabatic density perturbations arising from quantum
fluctuations in the inQaton. The alternative possibility of
PBH formation via bubble collisions during extended
infiation is not considered [7]. We will argue that PBH's
may only form if the relative acceleration or deceleration
of the field is large compared to its kinetic energy. When
rollover is not slow, this may only apply when the as-
sumption of friction-dominated dynamics is relaxed. In
Sec. V we focus on models in which the amplitude of the
fluctuations varies as a power of the mass. We show that
this is only possible if H(P) has a hyperbolic, tri-
gonometric or exponential form, corresponding to Auc-
tuations which, respectively, increase or decrease with
mass. We examine the latter case in some detail, since it
is the one relevant to PBH formation.

There are a number of drawbacks with this approach
and these are discussed in Sec. VI. Firstly, the inAaton is
treated entirely classically and we discuss the stochastic
method in which the field is split into a long-wavelength
(classical) part and a short-wavelength (quantum) part.
Secondly, our treatment is not suitable for discussing the
reheating phase or the process whereby inflation ends.

II. RECIPE FOR SUCCESSFUL
GENERALIZED INFLATION

The three main quantities of interest in the inflationary
scenario are the evolution of the scale factor a (t) with
respect to the cosmic time t, the physics of the model
determined by the scalar potential V(P), and the depen-
dence of the primordial Auctuation spectrum on comov-
ing wave number k. For a Rat D-dimensional Friedmann
Universe with a topology R 'S ' and a stress tensor
dominated by a single, spatially homogeneous scalar field
self-interacting through V(P), the energy, momentum,
and scalar field equations are

respect to cosmic time, units are chosen such that
A= c = 1, and we assume D + 3. When D =4 the primor-
dial density spectrum arising from scalar quantum fluc-
tuations is given by

bH
(2.4)

dH
dP

2
4

~ H (P)= — V(P),D —2 (D —2)'

(2.5a)

where the quantities on the right-hand side are evaluated
when the fluctuation first goes outside the horizon and
As(k) is the amplitude when it reenters the horizon at
tHC during the postinfiationary Friedmann phase [4,8].
The term "horizon" here just means the inverse Hubble
distance, so the scale at horizon crossings is determined
by the equation k (t)=a (t)H(t). The factor b reflects the
evolution of the fluctuations when they are larger than
the horizon. b =4 for tHc & r, and b =2/5 for tHC ) t, ,
where t, is the time the matter and radiation densities
are equal. This corresponds to a horizon mass of
M 10 Mo [3]

The validity of Eq. (2.4) requires discussion. Its deriva-
tion assumes that P can be neglected and that the scale
factor grows quasiexponentially. In this paper we wi11 as-
sume that a similar expression holds for the full scalar
field dynamics and a general inflationary solution. The
application of this problem to power-law inflation, o. ~ t"
with n & 1, was investigated in Ref. [4] and it was shown
that Eq. (2.4) is also correct for this solution. Since any
analytical solution can always be expanded as a power
series over the narrow range of e-folds relevant for large-
scale structure, this suggests that our assumption is valid
as a first approximation.

The standard approach in inflation is to specify the
physics by choosing an appropriate form for V(P) and as-
surning the friction-dominated and slow-roll conditions,

~ P~ &&H
~ P~ and P ((V(P), respectively. Equations

(2.1)—(2.3) are then solved to determine [P(t),a(t) I and it
is found that As(k) is scale invariant up to a logarithmic
term in k for the simplest models [1]. However, it has re-
cently been shown how one may start with any desired
form of a(t) or As(k) and work backward to derive the
form of the potential [9,10]. In such an analysis, the aim
is to determine the potential that gives the theoretical
model most closely related to observations rather than
identify V(P) with a known field theory. However, one
should obviously give some physical justification for the
form of the potential derived.

Further insight is gained by noting Eqs. (2.1)—(2.3)
may be combined into a set of first-order equations
[11,12]

(D —2)H = —xzP (2.2)
2 dH

~ P= —(D —2)
d

(2.5b)

$+(D —1)HQ+ =0,
d

(2 3)

where H =a /a, ~ =—8~mp, mp = 10' GeV is the
Planck mass, an overdot denotes differentiation with

The scalar field is then used as an effective time coordi-
nate and this implies that functions such as a(t) and
As(k) may be expressed as functions of P. From Eqs.
(2.4) and (2.5b) we find
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a (P)=a, exp
0

D —2 dP'
I. L

(2.6)

(2.7a)

k(P) =a(P)H(P), (2.7b)

dH (P')
dP'

D —2 (t t, —),
K

(2.8)

where a prime denotes differentiation with respect to P
and Eq. (2.6) follows from Eq. (2.5b) and the definition of
H(t). The solution (2.6) for D =4 was first derived in
Ref. [12].

It is apparent from Eqs. (2.5)—(2.7) that the quantities

I V((()),a (t), As(k) I may be determined directly once the
form of H(P) is known. For this reason, it has been sug-
gested that it is more efficient to begin by specifying the
form of H(P), rather than V(P), a (t), or As(k) [12]. Al-
though one might prefer to treat V(P) as the fundamental
quantity, this method has a number of advantages over
existing approaches for generating solutions, since the
potential and the dynamics of the scalar field are incor-
porated into the form of H(P) via Eqs. (2.5a) and (2.5b).
Indeed, the scalar field equation (2.3) is recovered by
difFerentiating Eq. (2.5a) with respect to P and substitut-
ing in Eq. (2.5b). The first advantage is that only two in-
tegrations [Eqs. (2.6} and (2.8)] are required to find a (t)
as opposed to three in existing methods. The second is
that the overdamping assumption ~((I~ &&H~((I~ need not
be made, thereby allowing more general results to be
found. Indeed this method has already been used to in-
vestigate whether inflationary Universes with Q0=0.2
are possible [13,14). The connection between V((()},a (t)
and As(k) is summarized in Fig. 1, which shows that

these quantities are linked by H (P }.
We now show that it is possible to express all the ob-

servational constraints on inflation in terms of limits on
H(P) by using Eqs. (2.5)-(2.7). Consequently, a recipe
can be presented for obtaining successful inAation from
the form of H(P) alone. A similar prescription in terms
of V(P) was given by Steinhardt and Turner [3] for the
case of new inflation but was restricted to the slow-roll
regime of the scalar dynamics. The procedure presented
here holds for any inflationary scenario driven by a sin-
gle, minimally coupled scalar field.

(a) H'(P) is monotonic: From Eq. (2.5b) the use of P as
an eff'ective time coordinate is only valid if P does not
pass through zero. This is because the transformation
that leads to Eq. (2.5b) is invalid when P changes sign.
Therefore this formalism is not suitable for discussing the
physics of reheating during the final stages of the
inflationary epoch because the field will be oscillating
about some global minimum in the potential. Conse-
quently, one must first ensure that the sign of H' remains
fixed for consistency.

(b) Violation of the strong energy condition: A necessary
and sufficient condition for inflation is that the strong en-
ergy condition be violated. This condition may be rewrit-
ten as

dlnH(P) a.

(D —2)'" (2.9)

Equation (2.9) can be used to specify the values of P at
the start of inflation (P;) or at the end (P&) depending on
the form of H(P). We note that inflation becomes more
difficult as the dimensionality of the space-time increases,
in the sense that the range of parameter space leading to
a violation of the strong energy condition decreases for a
given functional form for H(P). A similar observation
was made in Ref. [15] for the specific example of inflation
in a higher dimensional space-time driven by an exponen-
tial potential. In this case, it was shown that inflation
will not occur if D )6.

(c) Su/Scient inflation: Equation (2.6) implies that the
number of expansion e-folds since the field had a value P
to the end of in6ation is

a(y) y(i)

'i /

a(P)

N(P, P~) —=ln
a(Pg)
a(P}

K f fdyPH(yP )
dH(P )

D —2 d(()'

(2.10)

As(M):

FIG. 1. A triangle of approaches illustrating how the three
main quantities of interest in infiation, [a(t), As(M), V(P) I, are
related and can be obtained from each other once the functional
form of one of them has been specified. They are all linked by
the functional form of H(P). Hence it is natural to view the
functional form of H(P) as the fundamental quantity in the
analysis.

Scales corresponding to the present observable Universe
will first leave the "horizon" (i.e., the scale H '} when
the field has some value PU and then enter it again after
inQation has ended. The total number of expansion e-
folds between our observable Universe leaving the hor-
izon and the end of inflation is therefore N(PU, P&) and
the flatness, horizon, and smoothness problems are solved
if this is 60, although the exact figure depends on the
reheat temperature [3]. Smaller scales leave the horizon
later and reenter it earlier.
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2 H2
As(10 M~)= 3I,

i

5X10 fs,20~3~2 H' (2.1 1)

AT(10 MO)= H =SX 10 (1 fs) —.4~'" (2.12)

The function fs, satisfying 0 &fs & 1, determines the rel-
ative contribution of the scalar and tensor modes to the
anisotropy. Calculation of this quantity is complicated
and requires a detailed knowledge of the form of A& and
AT. In general, however,

(d) Quadrupole anisotropy of the cosmic microwave
background: Observations of the quadrupole anisotropy
of the CMBR place constraints on the amplitude of sca-
lar perturbations (As) and tensor perturbations (AT) on
the current horizon scale [6,16]. The observed tempera-
ture quadrupole is (hT/T)&=(0. 48+0. 15) X 10 ' and
assuming such an anisotropy is due to the Sachs-Wolfe
effect [17] implies

H'i &
D —2

(2.15)

exceeds 10 GeV [19]. This constraint is derived by as-
suming that the lifetime of the Higgs boson created when

P decays is longer than H '. We note that the maximum
reheat temperature becomes lower as D increases. When
D =4, T,b =0.2(H/m~)' and the constraint (2.12) aris-
ing from the gravitational wave spectrum can be used to
provide an upper limit on the reheat temperature. Since
Eq. (2.2) implies H & 0, we necessarily have
H(P/) & H(PU ), and so Eq. (2.12) may be substituted into
Eq. (2.14) to yield T,i, &1.4X10' e'I GeV. Thus T,i,
must be in the range 10 —10' GeV.

(f) Quantum gravity sects: A semiclassical description
of the Universe is only possible if V(P; ) & m~ and P; & m~
[20]. Equality corresponds to the Planck epoch which is
the earliest time when one can discuss classical fields on a
classical space-time. In terms of H(P) these constraints
become

As

AT

blr H fs
2 ~H~

(2.13) 24~
(D —1)(D —2)

1 /2

(2.16)

and the ratio [H'~ /H allows a rough estimate of fs to be
made in many examples. When M &M,„we must take
b =4 in Eq. (2.13). This implies As) AT ifJH'~/H &2~,
and since Eq. (2.9) implies ~H'~/H &~/&2, this condi-
tion is always satisfied. However, b =2/5 on the quadru-
pole scale, so As ) AT only if ~H'~/H & ~/5 in this case.
It is well known that Az » AT in the limit of slow roll
[4], but the H(P) method places an exact upper limit on
the ratio of the kinetic and potential energies of the field
for this condition to be satisfied. Equation (2.13) implies
that fs & 1/2 for l~/5 & ~[H'~ /H & v/v'2 and this is likely
to apply for any model in which there is significant devia-
tion from the slow-roll approximation. In this case the
tensor modes dominate the quadrupole measurement and
the possible consequences of this for the cold dark matter
model of galaxy formation have recently been discussed
in a series of papers [18]. It is interesting to note that the
scalar and tensor modes only have the same scale depen-
dence when the functional form of H(P) is exponential
and this is the case which leads to power-law inflation.

(e) Reheating and baryogenesis: At the end of infiation
the energy of the scalar field is converted into radiation.
Chaotic inflation is not specific enough for a detailed dis-
cussion of the reheating process to be given. However,
by relating the energy density of the scalar field,

p~= (D —2)(D —1)H//(2a ), to the energy density of the
radiation field, p„d=~ d(D)g(T)T ' "I l30, an upper
limit on the reheating temperature is obtained. Here
d(D) is a weak function of D such that d(4)=1, g(T)
represents the number of relativistic degrees of freedom,
and g ( T,i, ) —100 in the standard model. The efficiency of
the reheating process can be parametrized by the ratio
e=—p„d/p&. Baryogenesis can proceed via the decay of
supermassive Higgs bosons if the reheat temperature

3 I[4(D —1)
15(D —1)(D —2)e 3/[2(D —I)]

rh Hlm~
8m gd(D)

(2.14)

where Eqs. (2.5a) and (2.5b) have been used and equality
applies in both equations together. As D increases, these
conditions become more stringent.

By following the above prescription it is possible to
demonstrate that a period of successful inflation occurs
without assuming slow roll and without the need to solve
the field equations explicitly. Indeed, this code provides a
new way of obtaining successful inflation in models where
an analytical expression for a(t) cannot be found, i.e.,
when Eq. (2.8) is not invertible. Note that the conditions
for quasi —de Sitter expansion (slow-roll) and friction-
dominated scalar dynamics may be rewritten as

H H'«1~
H H

(2.17)

H" ( 2 D —1

H D —2
(2.18)

respectively. It should be emphasized that, for some
forms of H(P), it is possible to have ~H"(P)~ =~ H(P)
when ~H'(P)

~
&&aH(P), so one may have a quasi —de Sit-

ter solution without neglecting the P term. In other
words, friction-dominated dynamics is not identical to
the slow-roll approximation.

With the exception of the density perturbation con-
straints, we have derived the conditions for successful
inflation for arbitrary space-time dimension. We have
kept the analysis as general as possible in the hope that
some special features will arise in some theories when
D =4. In particular, if a given theory only violates the
strong energy condition when D =4, this would provide a
possible solution to the uniqueness problem of particle
physics. It would appear that successfuI inflation be-
comes more di%cult to achieve as the dimensionality is
increased which suggests that lower values of D are
favored.
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III. CONSTRAINTS FROM PBH's AND THE CMBR

An important feature of a11 inflationary scenarios is
that they predict the existence of adiabatic density Auc-
tuations, as indicated by Eq. (2.4). We have already seen
how observations of the quadrupole anisotropy of the mi-
crowave background constrain the inflationary model
[viz. Eqs. (2.11)—(2.13)]. However, there are also con-
straints on the amplitude of the fluctuations on much
smaller scales than the current horizon and, depending
on the form predicted for As(M), these may place more
or less interesting restrictions on the scenario. In this
section we discuss the various limits on As(M). The
most important upper limits on Az(M) are associated
with the CMBR anisotropies on large scales and primor-
dial black-hole (PBH) formation on small scales. There
are also limits associated with the absence of spectral dis-
tortions in the CMBR at intermediate scales. The wide
range of scales encompassed by these limits provide very
stringent constraints on infiationary models in which the
amplitude of fluctuations decreases significantly with
scale or exhibits peaks over a wide range of scales. The
constraints are summarized in Fig. 2 and we now justify
them.

Various upper limits can be placed on the CMBR an-
isotropies, b T/T, on angular scales above an arcminute.
All of them are in the range 2 —5 X 10 . These con-
straints came from satellite and balloons above a few de-
grees and ground-based radio telescopes on smaller
scales. Recently, COBE has claimed a positive detection
for scales between 10 and 90' and, in principle, this gives
direct information on the spectrum of density fluctua-
tions at decoupling. However, since the mass associated
with an angular scale 8 is M = 10' (8/degrees) M~,
COBE only probes the long-wavelength part of the spec-
trum and not the part associated with galaxies and clus-
ters themselves. Previous analyses of the COBE data
have assumed that a direct extrapolation to smaller scales
can be made unambiguously, but it is plausible that

strong features in As(M) occur below 10'. The precise
connection between As(M) and bT/T(8) depends on
the nature of the fluctuations (adiabatic, isothermal, or
isocurvature) and the nature of the dark matter (hot,
cold, or baryonic). Only observations above 10' are
unambiguous since reionization could modify anisotro-
pies below 10 . The COBE measurements would seem to
be consistent with the unbiased cold dark matter
scenario, in which the horizon-scale fluctuations As(M)
are scale invariant [6,21]. However, the large-scale struc-
ture data [in particular, evidence from the automatic
plate measuring system (APM) and Queen Mary, Dur-
ham, Oxford, and Toronto (QDOT) surveys and stream-
ing motions] would seem to require some modification
[22]. Spatially fiat CDM models with 0( 1 and a cosmo-
logical constant may also be consistent with all the data
[23]. In view of these uncertainties, the only secure,
model-independent constraint is associated with the
COBE quadrupole anisotropy as shown in Fig. 3.

The CMBR spectral distortion constraints are associat-
ed with the fact that the damping of adiabatic density
fluctuations at high redshifts (z ) 10 ) will inject energy
into the primordial plasma, thereby inducing a Bose-
Einstein spectrum with chemical potential p. Since
COBE observations require p &0. 1, this places the con-
straints on As(M) indicated in Fig. 2. The curves are
taken from Ref. [23] and correspond roughly to
As(M)(&(u, ; the relevant mass range corresponding to
the Auctuations which enter the horizon at z & 10 . Daly
has also examined this constraint [25].

We now examine the constraint on Az associated with
PBH's. The first one derives from the fact that any
PBH's which survive today must certainly have less than
the critical density. In the standard radiation-dominated

-2

1og (M/gm)

3 p o
O

3o
IOg (M/ g rn&

—15
I 0 gio

—20

—25 '-

10 20 40 50

FICy. 2. Showing the constraints on p(M), the fraction of the
Universe going into PBH s of mass M, which can be inferred
from measurements of the total density parameter (0), the y-ray
background (y), the primordial helium (He) and deuterium (D)
abundances, and the photon-to-baryon ration (S). p must be
tiny over most mass ranges.

FIG. 3. Showing the constraints on Az(M)=6H(M) which
can be inferred from the constraints on P(M) shown in Fig. 2,
limits on the spectral distortion in the microwave background
and COBE measurements of the microwave background aniso-
tropies. If the fluctuations have a power-law form, then COBE
allows the spectrum to lie anywhere in the region bounded by
the solid lines, which represent errors at the lo. level. This just
includes the dashed line, which corresponds to the maximum
slope compatible with the PBH constraints. The dot-dashed line
represents the 2o. upper limit on the spectral index derived by
combining the IRAS/QDOT and POTENT galaxy surveys with
COBE (see Liddle and Lyth in Ref. [8]}.The allowed region lies
below this line and the possibility of significant PBH production
is clearly ruled out if the spectral index is independent of mass
scale.
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model for the early Universe, this implies that the frac-
tion of the Universe going into PBH's at time t must be
less than 10 (t/s)' . Since PBH's must have an order
of the horizon mass, MH =10 (t/s)Mo, at their forma-
tion epoch [26,27], this implies that the fraction of the re-
gions of mass M collapsing at the horizon epoch must
satisfy

P(M) &10
1011 g

10" g &M & 10' g,

(3.5)

and cosmological nucleosynthesis constraints,

1/2

P(M) & lo-' = lo-"
o

M
10" g

1/2

(3.1)
lp

—15

10' g
' 1/2

10 g &M &10' g,

2

P(M) =5, ,(M) exp
25, ,(M)

(3.2)

Equation (3.1) thus places an upper limit on 5, , as a
function of M. For y= 1/3 (as expected in a radiation-
dominated early Universe), it is given implicitly by

1 M5 (M) & 0. 15 17 log io2 io

—1/2

+ ln5, ,(M)

M=0.2 31—
log&o 1015 g

—1/2

(3.3)

where in the second expression we have anticipated that
the ln5, , term is about —1.5. At 10' g this gives
6, , &0.04. The fluctuations can be larger at higher
masses but only by a logarithmic factor. For example,
~rms '06 at, 1MO and 5rms & 0 08 at 10 Mo.

In fact, the constraints are somewhat stronger just
below 10' g on account of quantum emission [30]. In
particular, the 100-MeV y-ray background measure-
ments imply that 10' g PBH's could have at most 10
times the critical density [31]. The factor 17 in Eq. (3.3)
then becomes 25, so the upper limit on 6, , at 10' g
drops to 0.03. For PBH's which have evaporated com-
pletely, there are also limits on p(M) associated with en-
tropy production [32],

P(M) &10
1011 g

M &10"g, (3A)

distortion of the microwave background [33],

where 10' g is the mass above which the PBH density
will have been unaff'ected by evaporations [28]. This con-
straint would be weakened by a factor of 10 if the early
Universe were "cold" with the microwave background
being generated at some late epoch, since the radiation
equation of state would then only pertain before 10 s.
However, this possibility now seems unlikely in view of
the success of the standard cosmological nucleosynthesis
scenario [29].

In order to interpret condition (3.1) as a constraint on
As(M), we will assume that the primordial fiuctuations
on a scale M have a Gaussian distribution with rms am-
plitude 5, ,(M). If the ffuctuations are spherically sym-
metric and the background equation of state is
p =yp(0 & y & 1), one then expects [26]

P(M) & . 10 "
1010 g

—1/2

M &10' g, (3.6)

1p
—16

10' g
10 g&M &10' g .

The last three limits are associated with the increase of
the background photon-to-baryon ratio by PBH photons
emitted after nucleosynthesis [34], photodissociation of
deuterium by such photons [35], and modification of the
neutron-to-proton ratio by PBH nucleons emitted before
nucleosynthesis [36]. The first limit in Eq. (3.6) is weaker
than limit (3.5). The other limits on P(M) are summa-
rized in Fig. 2, which is adapted from Ref. [37] and the
associated constraints on As(M) =—5, ,(M), derived from
Eq. (3.2), are shown in Fig. 3. Note that the deuterium
constraint on Az(M) at 10' g is about 0.03, comparable
to the y-ray constraint at 10' g. It is interesting that the
constraints in Figs. 2 and 3 would be modified if the equa-
tion of state in the early Universe was ever soft [38], be-
cause y would be very small in Eq. (3.2). In particular,
this might occur for a while when the scalar field is oscil-
lating in the minimum of the potential at the end of
inffation [39]. However, we neglect this complication
here.

When taken together, these constraints are very power-
ful because they restrict the spectrum over 45 decades of
mass. However, it is clear that the PBH constraints are
only interesting if the spectrum decreases with scale by a
sufficient factor. If the fluctuations can be described by a
single power law, Az ~M, then the combination of the
COBE quadrupole result (As=SX10 at 10 g) and the
PBH deuterium constraint (Az &3X10 at 10' g)
means that the factor must be 6000 over 45 decades of
mass. This requires n &0.08, as indicated by the dashed
line in Fig. 3. This is marginally consistent with the
COBE results since these require a to be in the range
0. 1&a& —0.07 at the 1' level. The PBH deuterium
constraint is therefore slightly stronger than the one de-
rived from the COBE detection alone.

However, in the standard cold dark matter model, Lid-
dle et al. have argued that a= —0.08 provides the best
fit to the APM data and this may well exclude any PBH
formation [40]. Liddle and Lyth [8] have also derived a
stronger constraint on a by combining results from the
Infrared Astronomy Satellite (IRAS)/QDOT galaxy sur-
vey [41], the POTENT peculiar velocity maps [42] and
the COBE experiment. They conclude n must be in the
range 0.05 & a & —0.05 at the 2 o. level. This limit is
shown as a dot-dash line in Fig. 3. In these cases one
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would require the index o. to vary with scale for PBH's to
be interesting, becoming positive in at least some mass
range above 10' g. It is important to note, however, that
these limits on the spectral index are derived from the as-
sumption that the spectrum is a featureless power law
and are not strictly valid in more general examples.
Indeed, for more general spectra any limits obtained from
galaxy surveys and the CMBR only strictly apply above
10 g. We next consider the circumstances under which
more complicated spectra may arise.

IV. CONDITIONS FOR THE PBH CONSTRAINT
TO APPLY

It is usually assumed that the spectrum of density per-
turbations in the inflationary scenario is nearly scale in-
variant. This is a direct consequence of the invariance of
de Sitter space under a time translation. Since the physi-
cal size of a Auctuation which crosses the horizon
(-H ') and the expansion rate of the Universe are con-
stant, each scale has a perturbation of the same ampli-
tude. In practice, the assumption of slow roll leads to a
small deviation from de Sitter space and a logarithmic
dependence of As(k) on k for power-law potentials. This
can be seen qualitatively by taking the logarithm of Eq.
(2.7b), differentiating with respect to P, and then using
Eq. (2.6) to obtain

H'
(ink )'=

H
H

2 H' (4.1)

For a quasi —de Sitter space [i.e., for ~H'~/H &&ii' from
Eq. (2.17)], the first term on the right-hand side is negligi-
ble, so Eq. (2.10) implies N(P) o-ink(P) and Eq. (2.7a)
gives As(k) ~HdN/dP. For example, in the power-law
inodel H ~ P", we get N ~ P and this implies
Aso-(ink)'"+"~ which is nearly, though not exactly,
scale invariant.

In fact, the definition of inffation given by (2.9) implies
that the second term of the right-hand side of Eq. (4.1) al-
ways dominates over the first. This suggests that a strong
scale dependence is difficult to achieve for a quasiex-
ponential expansion since dN/dP is nearly constant as a
function of k and there is no feature in the functional
form of N(P) [12]. However, scales of cosmological in-
terest correspond to only a narrow range of N(P) and de-
viations from a logarithmic dependence may be possible
if a feature occurs in the potential [or equivalently in
N(P)] [10,43]. Moreover the COBE and PBH constraints
together span ln(10' ) =35 e-foldings of infiationary ex-
pansion. If it is plausible for a feature to occur over
cosmological scales, it is certainly reasonable to suppose
that a deviation from scale invariance is possible over this
significantly wider range.

We now establish whether the spectrum increases or
decreases with scale in order to determine when the PBH
constraints are important. In the following discussion we
will assume for simplicity that the spectrum does not ex-
hibit any features. If the amplitude increases with scale
(dAs/dM & 0), the COBE constraint is the most interest-
ing, whereas the PBH constraint may be the most in-
teresting if the amplitude decreases with scale

(dAs/dM &0). The sign of dAs/dM is easily deter-
mined from the functional form of H(P ) and its first
derivative. The form of As(P) follows from Eq. (2.7a)
and H'(P) determines the sign of P(t) via Eq. (2.5b). This
allows us to determine whether P(t), and hence As(t), in-
creases or decreases with time during the first horizon
crossing. If d As /dt )0, then d As/dM & 0 and vice ver-
sa. This simple qualitative test should always be applied
when investigating constraints on inflation.

The argument can be made more quantitative in the
following way. Since Eq. (2.2) requires H(t) &0, the sca-
lar perturbation spectrum will only decrease with increas-
ing mass scale if ~H'~ also decreases as the inflaton
evolves. Since

dH'/dt =PH" = 2H'H—"/~ (4.2)

from Eq. (2.5b), this implies that a necessary, but not
sufficient, condition for the PBH constraint to apply is
that the curvature of H(P) be positive definite, i.e.,
H" &0. This in turn implies that the potential must be
convex. One can conclude, therefore, that PBH's are not
interesting if the field lies within the vicinity of a local
maximum of H(P), and therefore V(P), during the
relevant horizon crossing. Note that, depending on the
sign of H, P may be increasing or decreasing with time.
The second time derivative of the field is related to H" by
the expression ~ $=4H'H". Thus, if H') 0(H' &0), the
field must be accelerating (decelerating) for the spectrum
to decrease with scale.

In general, it follows by writing
d As/dM =(d As/dP)/(dgldM) and differentiating Eq.
(2.7a) that a necessary and sufficient condition for
d As /dM & 0 is

2H'
H

(4.3)

Since condition (2.9) for the violation of the strong energy
condition must also hold, we also infer that a sufficient,
but not necessary, condition for a spectrum which de-
creases with scale is

Hll ) a-
H

(4 4)

From Eq. (2.18) this necessarily entails violating the
friction-dominated assumption. Since the ratio of

~ P ~
to

3H ~P~ is specified by ~H"
~
/H, one must therefore consid-

er the full dynamics of the theory by including the contri-
bution from P in the scalar field equation if the amplitude
of perturbations is to decrease with scale. However, for
slow roll, ~H'~/H &&a. and the friction-dominated as-
sumption need not necessarily be violated in all cases. It
is important to note, though, that Eq. (4.3) necessarily re-
quires some contribution from

~ P ~.

This analysis suggests that PBH formation will be
difficult to achieve in many scenarios for which the
inAaton is minimally coupled to gravity, because the form
of the potential must be restricted. Consequently, an ob-
servation confirming the existence of PBH's would
significantly alter our understanding of the inAationary
scenario if one assumes that PBH's arise due to the power
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spectrum of quantum fluctuations in the inAaton. Indeed,
Eq. (4.3) suggests that it is generally rather difficult to ob-
tain any spectrum which decreases with mass scale. In
contrast, spectra from cosmic strings necessarily contain
extra power on smaller scales [44] and this suggests that a
determination of the sign of ddt/dM over cosmological
scales may provide strong support for one of these two
competing scenarios.

In conclusion, the extension of the prescription dis-
cussed in Sec. II is contained within Eqs. (4.2) —(4.4),
which indicate when the PBH constraint may be impor-
tant. Most chaotic models in the Hat Friedmann metric
lead to a perturbation amplitude that increases with scale
and the anisotropy of the CMBR, together with high red-
shift galaxy surveys, provides the strongest constraint. In
the next section we investigate which potentials lead to a
power-law spectrum which decreases with mass.

1

1 —P
'

1/[2(1 —P)]
pz

2(1—P)C
1/2

P(1—P)CO=
2

K .

For p (0 or p & 1, one gets the hyperbolic solution

H(P) =A. sech"(coP),

if C &0, where

1n= 1—
1/[2(1 —P) 3

(5.7)

V. CONSTRAINTS ON POTENTIALS LEADING
TO POWER-LAW FI UCTUATIONS

The aim of this section is to consider a toy model for
which the recipe of Sec. II and the PBH constraint can be
employed to place limits on the parameters of the theory
for successful inflation. We adopt a phenomenological
approach and begin by deriving the form of H(P) which
leads to the power-law spectrum

2(P—1)lcl
1/2

P(P —1)
2

(5.8)

H o- exp(+cog), to =— a (P & 0) (5.9)

In either case, H(P) contains two free parameters C and
p. Two other solutions of Eq. (5.4) are obtained when
C =0 or P=O. These correspond to

1/2

As ~M ~ k~, P=3a . (5.1)

This is an interesting case because the COBE result is
consistent with a power-law spectrum, but at present
does not deterniine the sign of P [21]. A second-order
di8'erential equation in H can be derived by equating Eq.
(2.7a) with Eq. (5.1), differentiating with respect to P, and
substituting in Eq. (4.1) to eliminate (ink ) . This gives

H'
(2—P) H" = p—H, —

H (5.2)

dH' H'—2(2 —P) =2pH . (5.3)

This equation has the exact integral

where p=—pv /2. This simplifies with the use of the iden-
tity 2H" =dH' /dH to a—first-order equation in K':

and

H= 1

v'cy ' (5.10)

respectively. The former solution is known to give
power-law inflation, but corresponds to fluctuations
which increase with mass scale. The latter is the only
form of H(P) which gives exactly scale-invariant fluctua-
tions. (The special case of p= 1 has recently been studied
in Ref. [45].)

The H(P) method therefore leads to the important
conclusion that only a hyperbolic, trigonometric, or ex-
ponential form for H(P) can lead to a power-law spec-
trum for the density fluctuations. Here we focus on the
trigonometric case because this is the only one which
could give rise to PBH formation since the fluctuations
decrease with mass. The potential is found from Eq.
(2.5a) to be

H' = H +CH ' ~' (P%1)—1
(5.4) V(P)= [(3+2n y )sec "coP 2n y sec—"+ coP],

(5.11)

H(P) =A, sec"(toP), (5.5)

where

where C is an integration constant. For 1 & p & 0 and
C & 0, Eq. (5.4) can be integrated exactly to yield the tri-
gonometric solution

where y =—co/~= 1/&8' if to= mal
'. Thus I /co

represents the width of the potential and k corresponds
to the height. This is a generalization of a previous result
found in Ref. [10], which was valid only in the slow-roll
regime. Such an approximation holds when (n —1) (&0,
i.e., lpl ((1. Note that n y is determined by the exponent
in the fluctuation spectrum since Eq. (5.6) implies
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2(1 —P)

' 1/2

(5.12)

As far as we are aware, there is no particle physics model
that predicts a potential exactly of this form, but (5.5)
leads to analytical results and may be viewed as an ap-
proximation to a more complete theory, at least over
some range of P.

Because of the periodic nature of the function (5.5), we
may assume

ugly

[O, n /2] without any loss of generality.
The PBH constraints of Sec. III imply that P [not to be
confused with the function P(M)] be less than 0.3. From
(5.12), this requires ny &0.5, and Eq. (5.8) implies that
y & 0.3 and n & 1.4. Hence H(P) has a minimum at / =0
and tends to + 00 at coP=m/2. The potential does not
vanish at /=0 and one ends up with a nonzero cosmolog-
ical constant. [This could be remedied by adding a con-
stant in Eq. (5.12) but then Az(M) and FI(P) would not
have the simple forms indicated by Eqs. (5.1) and (5.5).]
%'e can now use the analysis of Sec. II to determine when
inflation starts and ends. The strong energy condition is
violated when

tall cop &2 1

2'
(5.13)

and this implies that inflation may occur for all values of
P for which the trigonometric potential pertains
(1 &P & 0). At the Planck time the value of coP is specified
by Eq. (2.16) to be &4mcos"coPz =A, /rnp, so the Universe
will not be inflating initially if

n/22'
1+2n y

(5.14)

This condition is satisfied for the typical values
A, /mp =10, co=m~ ' and n =1. Thus the field

proceeds to roll down the potential but inflation does not
start until P reaches the value P; given by

1
siil COQ;—

1+2n y
(5.15)

For small P, coP; must be close to m /2, so inflation starts
near the Planck time.

It is now straightforward to deduce from Eq. (2.10)
that the horizon problem is solved providing

lnsincog/& ——ln(1+2n y ) 120n y— (5.16)

10
mz p'~~ GeV

(5.17)

Note that the factor of 120 in Eq. (5.16) itself depends on
T,z but this only gives a small correction. This expres-
sion can be used, along with constraint (2.12) arising from
the contribution of gravitational waves to the CMBR
quadrupole anisotropy, to place an upper limit

where the factor 120 corresponds to 60 inflation e-folds
for our Universe. Thus cog& «1 and H(P&)=A, , so Eq.
(2.14) implies that the reheat temperature is given in
terms of A, by

2

1,/m p
& 2 X 10 (5.18)

UI. CONCLUSIONS AND DISCUSSION

The main idea behind this work has been to treat the
function H(P) as the fundamental quantity when study-
ing the evolution of self-interacting scalar fields in the
early Universe. This allows the full dynamical behavior
of the field to be investigated and a recipe was presented
in Sec. II based on a number of constraints on H(P) that'
any inflationary model must satisfy. This analysis sug-
gests that successful inflation becomes more likely when
the dimensionality of the space-time is lower.

It was shown in Sec. III that additional constraints
arising from the formation of PBH's may become impor-
tant when the assumption of friction-dominated dynam-
ics is relaxed. In general, PBH s may be interesting if the
amplitude of density perturbations arising from quantum
scalar fluctuations is decreasing with mass scale. It was
argued that the relative acceleration or deceleration of
the field must be large compared to the kinetic energy for
this to occur. These constraints have not been discussed
in the literature because it was thought that the assump-
tion of slow ro11 would lead to a spectrum that increased
with scale or was very nearly scale invariant. These addi-
tional constraints are incorporated into the recipe of Sec.
II and a specific functional form for H(P) was investigat-
ed in Sec. V to illustrate these ideas.

However, there are a number of drawbacks with this
approach. It is necessary to assume that the scalar field is
a monotonically varying function of t. Consequently, this
approach is not suitable for discussing the physics of the
reheating phase. Secondly, the inflaton has been treated
as a classical quantity. An alternative derivation of Eq.
(2.5a) is found by multiplying the scalar field equation
(2.3) by P and substituting for the energy density of the
field p =P /2+ V(P) to obtain

p+3HQ =0 . (6.1)

Hence p'= —3HQ and this reduces to Eq. (2.5a) when
3H (P)=a. p [14]. However, in the stochastic treatment
of inflation, the full quantum field @ is split into long-
and short-wavelength components, as defined by the in-
verse Hubble scale, by writing @=P+q [46]. The field
equation for N reduces to an effective field equation for

It is interesting that this result is independent of the
ef6ciency of the reheating process and therefore the
direct couplings of the inflaton to the supermassive Higgs
bosons responsible for the baryogenesis.

In conclusion we have shown that a potential contain-
ing hvo arbitrary parameters wiu lead to a scalar pertur-
bation spectrum that exhibits a simple power law. Upper
limits on the parameters were obtained directly from the
PBH and COBE constraints. The "height" of the poten-
tial, as determined by k, is constrained by the effect of
primordial tensor modes on the CMBR. In contrast, the
"width" of the potential depends only on u and uniquely
specifies the spectral index of the scalar perturbation
spectrum. We are therefore able to constrain the form of
the potential (5.11) over approximately 35 e-foldings.
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the coarse-grained field given by

P+3HQ+ =f(x, t), (6.2)

where the quantity f(x, t) represents the continuous
infiow of short-wavelength modes onto P. In practice, P
is treated as a classical object that evolves randomly in
the presence of the quantum term f. Clearly, the ex-
istence off implies that Eq. (6.1) and hence Eq. (2.5a) are
not valid.

Finally, the exact process whereby inflation ends in the
example of Sec. V has not been discussed in detail. One
must argue that the complete potential only approxi-
mates to the form necessary for a sufficient period of
inAation. After this is achieved the field evolves to a
different part of the potential where there may be a stable
minimum and reheating can proceed.

Amplitudes which decrease with scale are also possible

in superinfiationary scenarios (H )0), which arise in
some higher-order gravity theories with Lagrangian f(R )

[4,47]. It is well known that these theories can be ex-
pressed as general relativity plus a scalar field by means
of a suitable conformal transformation g„,=Q g„[48].
The potential of the field, and hence H(P), are uniquely
specified by f (R). Furthermore, it is easy to express the
observational constraints in the g„ frame in terms of
quantities defined in the conformal picture g„[49].
Hence the constraints on H(P) presented here can be
used in principle to constrain these higher-order theories.
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