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We use the t-expansion method to calculate the baryonic spectrum of Hamiltonian lattice QCD with
two massless dynamical quarks within the Kogut-Susskind formulation. We find this two-Aavor model
to possess three baryonic irreducible representations. Restricting ourselves to zero-momentum lattice
states which are generated by an elementary cube, we calculate the masses of the 6 and the J =

2
nu-

cleon, and then study the scaling ratios of these particles with the lowest-lying hadrons which we have
previously calculated, i.e., the m meson, the 0++, and the nucleon. On the basis of an H expansion we
find the 5 and the —' nucleon to be 25 %%uo heavier than their observed values.

PACS number(s): 12.38.Gc, 11.15.Ha, 14.20.Gk

I. INTRODUCTION

In this paper we employ the t expansion to calculate
the baryon spectrum of lattice QCD within the Kogut-
Susskind formulation, using a Harniltonian of two mass-
less dynamical quarks. This work follows a recent publi-
cation [1] where we have calculated masses of the
lowest-lying hadrons.

Our lattice QCD calculation di8'ers from the
widespread Monte Carlo simulations in two features.
First, our calculations are analytical rather than numeri-
cal. Second, we work with two flavors, in contrast with
the standard Lagrangian approach that deals with four
fiavors. The four-fiavor model has an extra U(1) continu-
ous chiral symmetry which, when spontaneously broken,
yields a massless pion. In order to avoid finite-size effects
connected with the massless pion [2], one has to work
with nonzero quark masses. In contrast, the two-Aavor
formulation has only a discrete chiral symmetry, and
hence lacks a Goldstone boson. Nonetheless note that it
allows working with massless quarks in a confining
theory.

In a previous publication [1], we have calculated the
masses of the scalar state 0++, the nucleon, and the
lowest-lying mesons, i.e., p, co, and ~. On the basis of an
H expansion, we found the mesons to be completely de-
generate. The high mass of the pion was connected to
the lack of continuous chiral symmetry in our model.
The ratio of X to m turned out to be of the right magni-
tude, i.e., 1.2-1.5.

Any attempt at calculating masses of hadrons heavier
than the lowest-lying mesons or the nucleon necessitates
further understanding of the particle content of higher
lattice states. Such a group-theoretical analysis was car-
ried out by Crolterman and co-worker [3,4] for the case of
four flavors. We have repeated the analysis for the two-
Aavor zero-momentum case. The two-flavor model
possesses three baryonic irreducible representations (ir-
reps), designated as 4, 4', and 8. In the positive parity
sector, the irrep 4 corresponds to the continuum nucleon,

while the other two irreps yield the 6 state. In the
negative-parity sector, these irreps correspond to the —,

'

, and —,
' nucleon, respectively. Limiting ourselves to

zero-momentum lattice states which are generated by an
elementary cube, we are able to compute the lowest —,

'+6
and —,

' nucleon states.
The article is organized as follows. In Secs. II and III

we briefly review the Kogut-Susskind formulation and
the symmetry operations of the Hamiltonian. In Sec. IV
we analyze the structure of the two-flavor symmetry
group. In Sec. V we find the correspondence between the
baryonic representations of the lattice and continuum
QCD. In Sec. VI we build the lattice baryon states. In
Sec. VII we briefly describe the t-expansion method, and
in Sec. VIII we calculate the 6 and the excited nucleon.
Section IX contains a discussion of the results.

II. THE KOGUT-SUSSKIND HAMII. TONIAN

The SU(3) pure gauge theory as defined by the Kogut-
Susskind Hamiltonian is [5]

2

HG = Q Et +x g (6—tr U tr U )— (2.1)

where g is the coupling constant and x =2/g . The link
operators Et and Ut which appear in Eq. (2.1) are conju-
gate quantum variables satisfying the commutation rela-
tions

[Et', U, ]= U, 6». , (2.2)

where A,
' are the eight Gell-Mann matrices of SU(3). Et'

is the color electric Aux operator associated with the link
I, and trU is the color magnetic Aux operator associated
with the plaquette p.

For dynamical fermions we employ the Kogut-
Susskind scheme [6—9] in which the fermions are
represented by a single degree of freedom per site,
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Ix;(r),x, (r')] =&, , &;, , (2.3) A. Even translations

where i,j are color indices. The fermionic part of the
Hamiltonian is

For even translations, we have

X(r)~X(r+2ro), U(r, p)~ U(r+2ro, p), (3.1)

H~= —g q„(r)IX (r)U(r, p)X(r+p)
r, p

—X (r+p)U (r,p)X(r)],

where

g„(r)=(—1)', g (r)=( —1)", g, (r)=( —1)

(2.4)

(2.5)

E, Io&=o, (2.6)

we realize that it will lead to high degeneracy in lowest
order of strong coupling since HF will have vanishing ex-
pectation values irrespective of the choices made for the
fermion occupation number,

p(r)=IX (r),X(r)], (2.7)

on any lattice site. This degeneracy is lifted only in
second order in 1/g . Thus working with our Hamiltoni-
an H~, one finds that in the gluonic vacuum IO& it takes
the effective form

r varies over the lattice sites, and p over the three direc-
tions of space. HF describes QCD with two massless
quarks (u and d).

Starting with the strong-coupling vacuum Io &, which is
the state annihilated by the color electric field

where ro has integer components. This symmetry may be
interpreted as spatial translation invariance.

B. Odd shift invariance

For odd shift invariance, we have

X(r)~—
(
—1)'X(r+z), U(r, p) —& U(r+z, p, ),

(r)~ —( —1)vX(r+x) U(rp)~ U(r+x, p),
X(r)~—( —1)'X(r+y), U(r, p) ~U(r+ y, p) .

(3.2)

(3.3)

(3.4)

~pg7 3q

q ~y5~iq,

q ~'V5&2q

(3.5)

(3.6)

(3.7)

Combining three successive transformations, we obtain a
shift along a main diagonal of a cube,

X(r)—+ —
(
—1)" v+'X(r+x+y+z), (3.8)

These transformations are the discrete remnant of the
chiral SU(2)VXSU(2)„which the continuum theory of
two massless quarks possesses. In the naive continuum
limit they become, respectively,

2

g p(r)p(r+p)16,„
(2.8) which can be identified in the continuum limit as the

chiral transformation

I

—
&, I~&=x'; —

&, Ik&=-,'~;,kx';x,' —&,

I+ & =-,'~;,kx';x,'x'k
I

—
&

(2.9)

The first and the last are color singlets corresponding to p
eigenvalues of —3 and 3, respectively. The others are
color triplets and antitriplets with eigenvalues of —1 and
1.

The trial vacuum is chosen in a staggered form which
divides the lattice into two sublattices, that of even r (i.e.,
even x +y+ z) and that of odd r:

in second order of the strong-coupling perturbation
theory.

A color singlet state which is annihilated by g, is an
eigenstate of p with eigenvalue —3. It spans a set of eight
states on every lattice site:

q~iy5q . (3.9)

C. "Face"diagonal shifts

X(r )~—( —1) +'X(r+ x+y),
X(r)~ —( —1)'+ X(r+y+z),
x(r)~ —( —1)"+x(r+z+x) .

(3.10)

(3.11)

(3.12)

These shifts correspond, in the continuum limit, to iso-
spin rotation of m about the z, x,y axes, respectively:

Since the odd shift transformations take even (odd)
sites into odd (even) sites, they are spontaneously broken
by the strong coupling vacuum. However, if we apply
two such odd shifts successively, we obtain shifts along
"face" diagonals, which are not broken:

I
U &

=n.„,I+ & n„,„,I

—
& Io & . (2.10)

Thus we have chosen the x (x) to reside on even (odd)
sites. Since our discrete chiral transformations take even
(odd) sites into odd (even) sites, chiral symmetry is spon-
taneously broken.

q ~l 7 3q

q~E7 iq )

q ~l 72q

(3.13)

(3.14)

(3.15)

III. TWO-FLAVOR HAMILTOMAN
SYMMETRY GROUP

The two-Aavor fermionic Hamiltonian possesses the
following symmetries.

D. Cubic lattice rotations

These rotate the lattice by ~/2 about any axis keeping
the origin. Let r~r' be such a rotation; then X(r) trans-
forms as
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i "g(r )~i "R(x,y, z )y(r'), U(r, p)~U(r', p'),
where

U(r, p), p positive,
U(r, p)= '

U (r+p, —p), p negative,

(3.16)

(3.17)

F. Charge conjugation

In order to find the lattice version of the charge-
conjugation operation, we note that using our conven-
tions, one can easily verify the following correspondence
between lattice and continuum operations. The continu-
um operation

R(x,y, z) =
—,
' [(—1) +( —1) +( —1)'—( —1) ~+'],

(3.18)

and R (x,y, z ) satisfies R (x,y, z ) = 1. These transforma-
tions generate the group of rotational symmetry of a
cube, the octahedral group O. Let r' be obtained from r
by a vr/2 rotation around the z, x, and y axes, respective-
ly, then such a transformation corresponds, in the contin-
uum limit, to simultaneous rotation by m. /2 in both space
and isospace:

q —+(q )

corresponds to

y(r)~( —I)~y (r) .

Moreover, the operation

9' ~T29'

corresponds to

y(r)~( —l)~+'y(r+y) .

(3.27)

(3.28)

(3.29)

(3.30)

q(r) —+exp i (J3+—~3) q(r'), (3.19)
Combining these operations, we obtain the lattice charge
conjugation:

q(r)~exp i (J, +—~, ) q(r'), (3.20)

y(r)~( —I )'y (r+y) .

G. G parity

(3.31)

q(r)~exp i (Jz+—~2) q(r') . (3.21) G parity is obtained by supplementing our charge con-
jugation with an isospin rotation of m along the y axis:

Rotating by m in ordinary space can be compounded by
applying twice a cubic rotation and then undoing the iso-
spin rotation by a face diagonal shift. This amounts to
rotating a given cube about its geometrical center.

E. Parity

This is simply

y(r)~( —1) +~+'y( —r), U(r, p, )—+U (
—r, p, ) . (3.22)

This corresponds, in the continuum, to

(3.23)

y(r)~ —
(
—1) +~+'y (r+x+y+z) .

Note that this differs from the result of Ref. [8].

H. Baryon number conservation

This is a continuous U(1) invariance:

X(r) e' X(r) .

IV. TWO-FLAVOR GEOMETRICAL
REST-FRAME GROUP

(3.32)

g(r )—+( —1)~y (r+ x), U(r, p) ~U*(r+ x,p),
y(r)~( —I)'y (r+y), U(r, p)~U*(r+y, p),
y(r)~( —I)"y (r+z), U(r, p)~ U" (r+z, p) .

(3.24)

(3.25)

(3.26)

These transformations can yield, when squared, the face
diagonal even shifts. But, since these transformations in-
volve interchanging particles with antiparticles, we shall
not include them in our group analysis. However, they
are useful for finding an appropriate candidate for the
charge-conjugation operation. In fact, we shall now show
that Eq. (3.25) corresponds to the charge-conjugation
operation in the continuum limit.

These symmetry operations were given in Refs. [6—8].
In addition, one can think of odd shifts which will not be
broken by the vacuum, as was done for the two-flavor La-
grangian [10]. In the Hamiltonian approach, this corre-
sponds to odd shifts combined with an interchange of y
with y:

Since we are interested in zero-momentum states, we
concentrate on the rest-frame group having the sym-
metries described in Secs. IIIC—IIIH. We shall deal
with sectors with well-defined quark number, thus we can
ignore the U(l) symmetry. Moreover, parity and charge
conjugation can be easily added to our states. Thus, our
analysis reduces to the geometrical group of cubic rota-
tions and face diagonal shifts, the group G(S;J.,Rkt),
where S; is a shift along a face diagonal in the (ij ) plane,
and Rk& is a ~/2 rotation in the (kl ) plane.

The shifts anticommute in the defining representation.
Their squares commute and are interpreted as transla-
tions. The shifts modulo translations are interpreted as
fiavor transformations, as in Eqs. (3.13)—(3.15). They
form an eight-element group S(+I,+S;.), which is a sub-
group of the SU(2)s,„„group of the continuum.

The rotations R, - generate the octahedral group O.
The 24 elements of 0, enumerated in their five conjugacy
classes, are as follows [11],where reference is to Carte-
sian coordinates x, y, and z with the origin at the cube s
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TABLE I. Character table for the irreps of the geometrical rest-frame group with two flavors.

Irreps
type

Irreps
name 12

IV

12

VI

24

Conjugacy classes
VII VIII

No. of elements
6 32

IX X

32

XI XII XIII

24

Mesonic

Baryonic

1

I t

2
3
31

3I I

3III

3ttll

3 l till

6
4
4I

8

1

1

2
3
3

—1
—1
—1
—1
—2

0
0
0

1
—1

0
—1

1

1

1
—1
—1

0
2

—2
0

1

1

2
3
3
3
3
3
3
6

—4
—8

1
—1

0
—1

1

1

1
—1
—1

0
—2

2
0

1
—1

0

—1

1

1

1

1

2
—1
—1

3
—1
—1

3
—2

0
0
0

1

1
—1

0
0
0
0
0
0
0
1

1
—1

1

1

2
—1
—1
—1

3
3

—1
—2

0
0
0

1

1
—1

0
0
0
0
0
0
0

—1
—1

1

1

1

2
—1
—1
—1
—1
—1
—1

2
0
0
0

1
—1

0
1

—1

1
—1

1
—1

0
0
0
0

1
—1

0
1

—1
—1

1
—1

1

0
0
0
0

center and axes parallel to its edges: I denotes identity;
3Cz, ~ rotations about three coordinate axes; 8C3,
+(2m/3) rotations about four body diagonals, e.g. ,
x =y =z; 6C&, +(vr/2) rotations about three coordinate
axes; 6C2, m rotations about axes parallel to six face diag-
onals, e.g., x =y, z =0.

Multiplying the elements of S with those of 0, one ob-
tains the 192 elements of G, enumerated in 13 conjugacy
classes, as follows: class I contains the identity; class II
contains the subgroup S; classes III, V, and VI contain
S X 6C4, where 6C4 is contained in class III; class IV con-
tains the negative identity for +(Zm) rotations in iso-
space, classes VII, IX, and XI are made of SX3C2,
where 3Cz is contained in class VII; classes VIII and X
contain SX8C3, where 8C3 is contained in class VIII.
Finally, classes XII and XIII and S X6C2, where 6C2 is
contained in class XII. In Table I we display the charac-
ter table of G.

The group G has two types of irreducible representa-
tions (irreps}: mesonic, in which the shifts commute, and
baryonic, in which they anticommute. All meson repre-
sentations, where the shifts commute, are also representa-
tions of a smaller group. This smaller group as 96 ele-
ments in 10 conjugacy classes. We conclude, therefore,
that the group G has three baryonic irreps and ten
mesonic ones. In this paper we concentrate solely on the
baryonic irreps.

V. BARYONIC IRRKPS

where r, , r2, and r3 are even sites within the same elemen-
tary cube. Gauge fields will be added later to make the
operators locally invariant. Similarly we can build the lo-
cal antibaryons from the g fields. B should transform as
the totally symmetric part of the 4X4 X4 representation
of G, where we have the decomposition

[4X4X4],y „„.,=2X4+4'+8 . (5.2)

4~ A)+F(,
4' —+ A2+Fq,

S~E+F)+F~ .

(5.3)

In order to describe baryonic operators on the lattice,
we introduce in Table II the pictorial notation of the g's
by denoting a y by a cube with a dot at the corner corre-
sponding to this field. All possible baryon operators
which are included in an elementary cube are divided
into three geometrical classes. Clearly each of these
classes transforms within itself under the symmetry
operations of G. To make the operators gauge invariant,
we put gauge fields on the shortest paths connecting the
sites in the cube where the y fields reside. To maintain
covariance, the average has to be taken over all different
shortest paths. By applying rotations and shifts to the
operators in Table II, one can obtain all possible baryon
operators generated by the elementary cube.

Furthermore, upon reduction of G with respect to 0,
we obtain

The defining representation is the one according to
which the four fields y (y} sitting on even (odd) sites of
an elementary cube transform. The other two baryonic
irreps are of dimensions 4 and 8. We denote the three ir-
reps as 4, 4', and 8, respectively.

The general form of a baryonic operator of zero
momentum which is generated by an elementary cube is

B = g ElJkp; (rl)+J(r2)iYk(r3), (5.1)
I cubes)

We observe that the baryon irreps are characterized
uniquely by their 0 content, and hence we can find the 4,
4', and 8 irreps by looking for an A„A2, or E corn-
ponent, respectively. The other components of G irreps
can then be obtained by applying spatial rotations and
shifts to the O components.

Our aim is to establish the group-theoretical relation
between continuum and lattice baryon states. We consid-
er continuum zero-momentum states with quantum num-
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TABLE II. Pictorial notation for all possible baryon opera-
tors that are included in an elementary cube. A dot corresponds
to a y~ field. An arrow in the positive (negative) p direction
denotes U(r, p) [U (r, tz)]. SO(3) 0 irreps

TABLE III. Reduction of SO(3) irreps with respect to the
group O.

Class
Pictorial
notation

Gauge invariant
operator

0
1

2
3
4

A&

F
E+F2

A2+ FR+F2
Ai+ E+Fi+ F2

ly. They correspond to the N( 1535 ), N( 1675 ), and
N(1520) states.

VI. LATTICE BARYON STATES

bers (J,I): the first label denotes total angular momen-
tum J=—,', —,', —,', and parity, and I is the isospin I=

—,', —,'.
One can find the reduction from the continuum
SU(2),~;„XSU(2)„,„„directly to G, by using Table I, but
since the baryon irreps of G are uniquely characterized
by their O content, we can simplify our task by reducing
the (J,I) irreps with respect to the subgroup O. Since
the subgroup 0 is contained in the diagonal subgroup
SU(2)d;, ,„,& of SU(2),&,„XSU(2)s,„„, the reduction is
made through the chain

SU(2), ;„XSU(2)s,„„&SU(2)d;,s,„,) &Oh . (5.4)

Table III shows the reduction of some SO(3) irreps to O.
In Table IV we display the reduction of Eq. (5.4). Using
Table IV we can find the relation between the irreps of G
and the particles in the continuum. This is displayed in
Table V.

Under the assumption that the ground states of lattice
irreps go to the lightest state in the continuum limit, we
conclude that in the positive parity sector, the irrep 4
may be used to calculate the nucleon state, while the oth-
er two irreps, 4' and 8, correspond to the 6 particle. In
the negative parity sector, we have three distinct nucleon-
ic lightest states, namely, the —,', —,', and —,', respective-

Using the cubic lattice rotations of Eq. (3.16), one can
generate the 24 elements of the octahedral group O.
Starting with any baryon state + from Table II, one can
obtain the basis for the representation p of 0, 4',"', by ap-
plying the projection operator

(6 1)

—g e; ky;(2r)y (2r)yk(2r)~v ) .
r

(6.2)

This state was discussed and calculated in Ref. [1].
Another candidate for an A&+ state is the completely
symmetrized combination of class 3 operators:

where n„ is the dimension of the representation p, g is
the group size, Df '(R) the matrix element of R HO in
the representation p, and Oz is the operator correspond-
ing to R.

In the positive parity sector we find that the operators
of class 1 in Table II are pure A,+ states, while class 2
operators are pure A2+ states. The third class operators
can be projected both onto A&+ and E+. On the other
hand, in the negative parity sector, the only state that can
be built out of operators which are included in an elemen-
tary cube is the A& state. This is achieved by using class
2 operators.

Thus we find that the lattice nucleon can be written as
the local baryon state:

g g g [e„ky, (2r+~,x+ezy)y (2r+e,x+ezy)[U(2r+~, x+~zy, 2r)y (2r)]„
r E~, E& ( U)

+e~„y, (2r+ e,y+ ezz)yj~(2r+ e,y+ ezz) [ U(2r+ e,y+ ezz, 2r)y (2r) ]k

+e; t y;(2r+e, z+ezx)y (2r+e, z+ezx)[U(2r+e, z+ezx, 2r)y (2r)]k] ~v ), (6.3)

where e„hz=+1, U(r„rz) indicates a shortest path of gauge links connecting sites r, and rz, and g(U) means summa-
tion over all possible shortest paths.

The 5 particle is represented by the A2+ state
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TABLE IV. Reduction of SU(2)„;„XSU{2)z„„with respect to Oz.

SU(2)„,„XSU(2)„„., SU(2)d;,

0+1
1+2
1+2
0+1+2+3

2+3
1+2+3+4

0—

A+)+ F)
E —+Fi +F2-
E —+F) +F~-
A) + A2—+E —+
2F) +2F2-
A+ +E ++F++2F+
A) + A2—+2E —+
3F+, + 3F2+

8
e,,k [U(2r+ e,"x+e,y+~3z, 2r+eix+~2y)y (2r+eix+e2y)]'

r E),E'g, 63

X [ U(2r+ e,x+ e2y+ e3z, 2r+ e2y+ e3z)y (2r+ e2y+ e3z) ]

X [ U(2r+ E,x+ e2y+ e3z, 2r+ e3z+ e&x)y (2r+ e3z+ @ „x)]k ~
v ),

or by the E+ states

(6.4)

g [ejky;(2r+e&x+e2y)g (2r+e, x+e2y)[U(2r+e, x+e2y, 2r)y (2r)]k
r et, r& (U)

e jkX '(2r+ e iy+ e2Z )Xj~(2r+ &)y+ 'E2z ) [ U(2r+ &)y+ e2z 2r )7 (2r ) ]k ] I
v ) (6.5)

g I ejky, (2r+ e,x+ e2y )yj(2r+ e,x+ @ay ) [ U(2r+ e,x+ e2y, 2r)y"(2r) ];
r r&, E& ( U]

+etj&y, (2r+ e,y +E2z )yj ( 2r+ e,y +e2z )[ U( 2r+ e,y+ e2z, 2r )jt' (2r ) ]j
—2ejkg, .(2r+e, z+ezx)y (2r+E,z+e2x)[U(2r+e, z+e2x, 2r)yt(2r)]i, ] ~v ) .

Finally, we write the A& state corresponding to the —, nucleon:

(6.6)

8
e]e2E3etjk [ U(21+6&x+eyy+e3z, 2r+E&x+E2y)g (2r+e&x+e2y)];

r E'), 62, 63

X [ U(2r+ @,x+ E2y+ e3z, 2r+ &py+ &3z)g (2r+ &zy+ e3z) ]j
X [U(2r+e, x+e1y+e3z, 2r+e3z+e, x)y (2r+e3z+Eix)]k ~v ) (6.7)

Starting from the above A&, A2, and E states, one can obtain the complete 4, 4', and 8 multiplets, respectively, by
applying the face-diagonal shifts to the above states.

TABLE V. Relation between 6 irreps and observed particles.

SU(2)„,„XSU(2)„.„.,
Lightest particle
P=+ P=—

N(939) N(1535)

VII. THE t EXPANSI(ON

The t expansion method has been reviewed extensively
in the context of pure gauge theories [9,12,13]. Its appli-
cation to lattice theories with dynamical quarks was de-

scribed in Refs. [1,15]. Underlying the t expansion is the
notion that if ~1(0) is a state having a finite overlap with
the ground state, then the one parameter family of states
[12)

(7.1)

contracts onto the ground state of 0 as t~ ~.
From this it follows that the energy function

E (7.2)
(y~

—
tH~y)

where ~P ) is some hadronic state, tends to the mass of
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the lightest particle with the same quantum numbers as
~ P ) in the same limit. Moreover, E&(t) can be written as

E (t)—y (Hn+1)c( —t)"
n! (7.3)

n —1

'&~/ (/AH" '~y&, (7.4)
p=0 l

where we have utilized translation invariance by singling
out a geometrical unit near the origin (i =0). After
evaluating E&(t), we subtract from it the vacuum energy

where the connected matrix elements (H"+')
&

are
defined recursively by [9]

(Hn+l)c y (y Hn+l~y)

Eo(t) to obtain a prediction for the mass function M&(t).
All our physical predictions will be presented in the form
of mass ratios which, beyond the crossover region [1],
represent the lattice approximation of the continuum
theory.

Equations (7.3) and (7.4) lead to an expansion of the
function M&(t) as a power series in the auxiliary variable
t. Exploiting such Taylor series of any t expansion of an
operator O(t) is done by forming D-Pade approximants
[13] to the series in t and using them to obtain the asymp-
totic value of O(t). This means approximating the t
derivative of the expression by nondiagonal L/M Pade
approximants which are integrated out to infinity. In or-
der for the integration to work the degrees of the polyno-
mials have to be chosen so that MAL+2. The number
of approximants generated this way is much larger than
that of the diagonal approximants that one can generate
for the finite series.

VIII. BARYON MASSES

In the 4 sector, the lightest observed particle is the A. We have calculated this state using Eq. (6.4), obtaining the
following series to the H order:

M~ (t,y)= —+ t — t + (
—3859y +896y)t + (255y +5754y —224y)t

4 15y 7y 2 1 3 1
4' '

y 4 2 576 432

+ (62910y +1753 941y —3150 144y +28672y)t1

207 360

+ (61425y —3111003y —21042669y +13 597856y —28672y)t +O(t ) .
933 120

Next we calculate the J =
—,
' nucleon, designated as X*,by using Eq. (6.7). Its mass series to the H order is

M, (t,y)= —+ t — t + ( —5875y +1152y)t + (85y +2434y —96y)t
4 2 1y 9y z 1 3 1

y 4 2 , 576 144

+ (15 210y + 1075 057y —1227 456y + 12 288y )t
1

69 120

+ (16 065y —3338 622y —32 650 635y + 1481 2064y —36 864y ) t +0( t ) .
933 120

(8.1)

(8.2)

The computation of extended baryon states such as
Eqs. (6.4) and (6.7) possesses new features of complexity.
The state 54. can be propagated on the lattice only by ap-
plying to its moments of the Hamiltonian equal to, or
higher than, H . On the other hand, we cannot reach or-
ders higher than H due to the vast growth of the num-
ber of connected diagrams. Thus, we expect that the
mass ratios involving such states will display poorer seal-
ing behavior than the ratios of lowest-lying hadrons pre-
viously calculated. We also note that the computation of
the states that correspond to the 5 particle in the 8 sec-
tor, i.e., Eqs. (6.5) and (6.6), involves more than a
thousand connected diagrams already in the H order.
These states are at present beyond our calculational abili-
ty.

In Fig. 1 we display the ratios of the 2V* to the A4. .
The solid, dotted, and dot-dashed curves correspond to
the 0/3, 0/4, and 0/5 D-Pade approximants, respectively.

1.30

Y

FIG. 1. N* to h4 mass ratios. The solid, dotted, and dot-
dashed lines are the 0/3, 0/4, and 0/5 approximants, respective-
ly.
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In general, all our mass ratios are of order t, and thus we
can plot only the 0/2, 0/3, 0/4, 0/5, 1/3, and 1/4 D-Pade
approximants. Usually some of the approximants have
singularities or vary strongly. In all figures that follow,
we will display only those D-Pade approximants which
are not plagued by these features, and which are more or
less consistent with one another. In all our mass ratios,
we expect to find the physical result just beyond the
crossover region [1], i.e., near y-2. The ratio in Fig. 1

starts at 1 in the strong-coupling limit, since both states
are composed of three gauge links. Extrapolating toward
the weak-coupling region, we observe that the approxi-
mants do not refIect any scaling tendency, although the
N* becomes heavier than the 6, as it should. We associ-
ate this lack of scaling with the extended nature of these
baryons explained earlier.

After evaluating D-Pade approximants of various mass
ratios, we might attempt to plot ratios of any two such
ratios. Based on previous experience of applying the t ex-
pansion to the pure gauge theory [9], we hope to extract
new information this way. Indeed, in Fig. 2 we display
the ratios between the two mass ratios N/b. 4 and N/N*,
thus obtaining a better estimate for the N" /b, 4 ratio.
The plots in Fig. 2 do stabilize near y-2 on a value in
the range of 1.26—1.3, in agreement with observed
masses.

We note, however, that although the ratio between the
X* and the 5 masses turns out to be of the right magni-
tude, each of these masses turns out to be too high, as we
shall soon find out by looking at mass ratios between any
of these extended baryons and lowest-lying hadrons pre-
viously calculated. It is interesting to calculate also the 5
mass in another lattice multiplet and to check whether
the two 6 multiplets coincide in the continuum limit.
Unfortunately, the 6 in the 8 sector is too difficult to
compute. In the 4 sector, the 5 is seen to be the erst ex-
citation and can, in principle, be derived from the
lowest-lying state of this sector, the nucleon, by a stan-
dard procedure in the t expansion [14]. The expression
obtained this way for the next level is volume dependent,

0.8

FIG. 3. Mass ratios between the nucleon to the 6&. The
solid, dotted, dot-dashed, and dashed lines are the 0/3, 0/4, 0/5,
and 1/4 approximants, respectively.

hence we have tried to manipulate it by means of the
exp-fit method [9], namely, to fit the norm function
(Po~e '"~go) with a finite series of decreasing exponen-
tials, but we did not succeed to extract from it any mean-
ingful results.

Next, we study the scaling ratios between the nucleon
and our extended baryons. In Figs. 3 and 4 we plot the
ratios of the nucleon with the 5 and the N* approxi-
mants, respectively. Again, the curves displayed do not
exhibit a clear scaling behavior, especially in case of the
6 state. Attempting to read the value of these ratios near
y -2, we obtain a value in the range of 0.48 —0.58 for the
X* and 0.61—0.66 for the A. These values are too low
and correspond to a 5 mass in the range of 1420—1540
MeV, and an N* mass in the range of 1620—1960 MeV.

Figures 5 and 6 show the mass ratios of the co meson to
the 6 and the N, respectively. Again, the ratio connect-
ed with the N* rejects a better tendency for scaling.
Therefore, in Fig. 7 we plot the ratios between the nu-
cleon to 6 ratio and the nucleon to co ratio. This way we

I I T I

)

I I I I

)

t I I I

~

I I I

FICx. 2. Ratio between the X/6 and the X/X* mass ratios.
The solid, dotted, and dot-dashed lines are ratios of the 0/4,
0/5, and 1/4 D-Pade, respectively.

FIG. 4. Nucleon to X* mass ratios. The solid, dotted, dot-
dashed, and dashed lines are the 0/3, 0/4, 0/5, and 1/4 D-Fade,
respectively.
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FIG. 5. Mass ratios between the co and the h4. Shown are
the 0/3 (solid line), 0/4 (dotted line), and 1/4 (dot-dashed line)
approximants.

FIG. 8. D-Pade approximants of the mass ratios between the
scalar and the A4. The approximants shown are the 0/2 (solid
line), 0/3 (dotted line), 0/4 (dot-dashed line), 0/5 (dashed line),
and 1/4 (highest dotted line in the high y region).

0.50

0.45

0.40

0.35

0.30

FIG. 6. co to N* mass ratios. The solid, dotted, and dot-
dashed lines are the 0/2, 0/3, and 0/4 approximants, respective-
ly.

obtain a better estimate for the co to 6 mass ratios. The
plots in Fig. 7 almost stabilize to a clear asymptotic
behavior and near y-2 we read the ratio to be in the
range 0.5 —0.52. From Fig. 6 we read in the same way a
value in the range 0.4IJ5 —0.435 for the co to the X* mass
ratios. A11 these figures are consistent with one another,
and indicate a value for the 5 and N* masses which are
about 25% higher than their experimental value.

Finally, in Figs. 8 and 9 we display the mass ratios be-
tween the 0++ to the 6 and N*, respectively. The peak-
shaped curves in these figures are characteristic of mass
ratios connected to the scalar state [1]. Although these
curves do not settle onto a clear asymptotic trend, we
may estimate from the peak at the crossover region
(y —l. 5 —l.8) a ratio of 0.66—0.72 in the b. case, and a
ratio of 0.57—0.63 for the N .

0.60

-/—N PJ'

0.55

p++
N*

0.6

0.50 0.5

0.45

040

0.35 0.3
0 0.5 1 1.5 2 2.5

0.30

FIG. 7. Ratio between the N/5 and the N/co mass ratios.
The solid, dotted, dot-dashed, and dashed lines are ratios of the
0/3, 0/4, 0/5, and 1/4 approximants, respectively.

FIG. 9. D-Fade approximants of the mass ratios between the
scalar and the N*

~ The approximants shown are the 0/3 (solid
line), 0/4 (dotted line), 0/5 (dot-dashed line), and 1/4 (dashed
line).
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IX. DISCUSSIQN

We use a diagrammatic Hamiltonian approach, the t
expansion, within the Kogut-Susskind formulation. For
the first time this is applied to baryons which are not
pointlike objects on the lattice.

The calculation of these extended objects is cumber-
some. Moreover, such states need higher-order expan-
sions than the lowest-lying hadrons in order to propagate
on the lattice. This fact may explain why we obtained
too high baryon masses. Nonetheless, we found a con-
sistent picture of the baryons' hierarchy, namely,

It is interesting to note that although each of the mass ra-
tios in Figs. 1, 3, and 4, namely, the N" /b, , N /6, and
X/X* mass ratios, do not reAect any scaling tendency,
the ratio between the N/6 and the N/N* mass ratios
settles onto a clear asymptotic trend in Fig. 2. Moreover,
it predicts the correct value for the X*/6 mass ratio.
This is in accordance with our working hypothesis, which
is to plot all possible mass ratios but to regard as reliable
only those plots which show scaling behavior. The ex-
istence of scaling, for us, is an indication of the correct-

ness of the result.
Comparing our method with the standard Lagrangian

approach, we note that no Monte Carlo simulations were
done within the Kogut-Susskind formulation for baryons
heavier than the nucleon, with fully dynamical quarks.
Also, for Wilson valence quarks the nucleon-6 mass split-
ting is too small. We find the same mass splitting to be
too large. Hopefully one can find a better way to gen-
erate all relevant connected graphs, and thus continue
our calculation to higher orders. This should improve
the results for baryons which are extended objects.

In this work we have concentrated solely on the
baryonic spectrum. We can apply the t expansion to ex-
plore the mesonic picture of the Kogut-Susskind model
of two Aavors as well. In particular, one can investigate
mesons composed of one heavy quark and one light
quark, which have recently been under extensive study.
We hope to report on this subject in a forthcoming paper.
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