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D mesons in a relativistic quark model
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A relativistic quark model which was previously developed and applied to heavy-quark systems is ap-
plied to the light-heavy-quark D mesons. Kernels are generated for the bound-state amplitudes of un-

equal quark-mass systems in this model, which is essentially the Coulomb-gauge QCD Hamiltonian, aug-
mented by a scalar linearly confining term. The model generates all the correct perturbative physics up
to order a, . Results are compared to experimental data.

PACS number(s): 12.40.Qq, 14.40.Jz

I. INTRODUCTION II. HAMILTONIAN AND EQUATIONS

In earlier work [1], hereafter referred to as I, we
developed a relativistic quark model based on the varia-
tional method applied to quantum field theory. Although
in principle one could apply the variational method to a
direct solution of QCD [2] a much more modest ap-
proach was attempted. A variational ansatz was pro-
posed that was not explicitly sensitive to the non-Abelian
structure of QCD. Instead, we assumed that all the low-
energy gluon modes were integrated out, leaving an
effective, linearly confining potential between heavy
quarks. This of course is precisely the program of Monte
Carlo simulations which find the strength, form, and
Lorentz structure of the long-range potential [3]. The an-
satz did, however, contain transverse gluons, and as a re-
sult, all the physics of one-gluon exchange accurate to or-
der e, was obtained.

In I we applied our model to the heavy-quark equal-
mass cc and bb systems with some success. We would
like to stress that a model such as this is arbitrarily accu-
rate for arbitrarily heavy-quark masses, as the system be-
comes insensitive to the confining potential and sits deep
in the Coulomb well, modified by small relativistic
corrections. What is surprising to us is that the model
also seems to give satisfactory results for the lightest of
mesons [4].

In the present paper, we would like to extend this work
to the light-heavy-quark systems. Previous work on
heavy-quark [4—9] systems has relied on semirelativistic
reductions of the Bethe-Salpeter equation or a reduction
of a scattering amplitude which leads to Schrodinger-like
equations. In our approach, there are no relativistic am-
biguities and the variational method is of course inherent-
ly nonperturbative.

Unlike the equal-quark-mass systems, the Hamiltonian
for an unequal-quark-mass system contains two distinct
quark fields. In this paper, we present the integral equa-
tions in momentum space for these systems and apply
them to D mesons. We present our Hamiltonian and an-
satz in Sec. II. Also, in Sec. II, we present the integral
equations and (approximately) decoupled equation for a
general system. The kernels for specific quantum num-
bers are given in Sec. III. In Sec. IV we show our numer-
ical results and give our conclusions.

Our model Hamiltonian is the Hamiltonian of QCD in
the Coulomb gauge augmented by a term which produces
linear scalar confinement. Of course, in a true solution of
the theory, one would not need this additional term as all
the nonperturbative confining physics is generated by the
QCD Hamiltonian alone.

As our ansatz is not explicitly sensitive to the non-
Abelian terms of the Hamiltonian, our effective Hamil-
tonian is given by

H=H +H +H, +H +H, ,

where
2

H = g f d x q, (x)( iV y +m;—)q;( x),

H = ,' f d x—IA, (x)+[VX A, (x)] I,

H, = g f d x d'y qt(x) q (x)
i=1

x
I

q (y) q (y)
1

x—y

H =g, g d x q;(x)y A, (x)q;(x),
XQ

i=1 2

3b
H, = g fd'x d'y q, (x) q;(x)8,. 2

X ~x —y~q;(y) q;(y),

where q& =q and q2
——Q are two distinct quark fields and

m
&

=m and m2 =M correspond to the masses of the two

quarks, respectively. In Eq. (1), Dirac and color indices
on the quark field operators are suppressed.

Our variational ansatz for unequal-mass quark systems
consists of two components in Fock space:

~meson) = ~q0)+ ~qgg ),
where
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lqQ ) =g f d p F(p, o, 5')b;"(p, cr )D; (
—p, 5)l0~,

lqgg) = g f d p d q G(p, q, s, s', l.)b, (p, s)
s,s, A.

a, i,j

XDt(q, s') ija, (
—p —q, k)I0) .

The operators b, D, and a are creation operators for
two quarks and gluon with the momentum, color, and
polarization indicated. The functions F and G are varia-

I

tional coeKcients. The Lorentz structure of F is given by

F(p, o. , 5) = f(p)u(p, o. )I „V(—p, 5),
where u and V are the spinors for the two quarks. 1 z is
a linear combination of Dirac matrices multiplied by
spherical harmonic functions, which determines the
desired quantum numbers. The explicit form of G is not
given, as in our approximate decoupling of the generated
integra1 equations it will be directly related to F.

Sandwiching the Hamiltonian in Eq. (1) between the
ansatz Eq. (2) and using the variational principle leads to
coupled integral equations for the bound systems:

EF(po5)=(co +0 )F(pcr5)+ g f u(p, o. )u( —qo. ')V( —q5')V(p5)
4&s mM d q F(qo'5')

+co co n n Ip
—ql'

1/2
4a,+ M

G(p —
qo o'I, ) V( —qcr')y e(q —p, A. ) V( —p5)q

(A„Q p —q )'

1/2
4a,

3

DZ
G(q, —pcr'5A, )u(per)y e(p —q, A. )u(qcr')d

271,
& (~ ~ p —q)

7T 's' +co co 0 0 lp ql
(4)

and

EG(p, —qss'A, )=[co +Q~+ p —ql]G(p, —qss'X)

4cc, mM f d3k d3k', , 3,u(ps)u( kcr)V( —k'o')V(q—s')
3 2~2 (co„Qqcok Ak )' Ip

—kl'

1/2
4n,

3

M 1 F(pso ) V( pcr )y —e(q p, ~) V( —qs')
(0 Q, lp

—ql)'

1/2
4a,

3
I F(qos')u(ps)y e(q —p, &)u(qcr),1

2~ . (m, ~, lp
—ql)'"

w} ere ~ =Qm2+p2 and II =VM~+p~ are kinetic energies of the two quarks. In order to simplify the pro blem, we

drop the second term in the second equation [10],which in perturbation theory would represent corrections of order a, .
Thus the second equation becomes

G(p, —qo M, ) =
1/2

4a, 1

2~[E—~, —&, —I p —
ql ]

X g, F(pcro') V( pcr')y e—(q —p, A, ) V( —q5)
M

(0 Qqlp —ql)"

F(qo '5)u (pcr )y e(q —p, A, )u (qo')
(~@~q I p

Substituting it into the F equation, we obtain the three-dimensional integral equation
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4+s mM dEF(po5)=(co +0 )F(po5) — g f F(qcr'5')u (pcr)u(qo. ')V (q5')V(p5)
+co co n n lp

—ql2

Ip —ql

I
M —co —0 —

Ip
—ql]

Xg F(qo'5')u(pcr )y e(q —p, A, )

X u (qo') V(q6')y e(q —p, A, ) V(p5) '

F(qo '5')u (po )u (qcr') V( —q5') V( —p& ),bmM g

Qci) co 0 Qq p —q
(7)

where we can clearly identify the physical origin of the terms as fermion kinetic energy, Coulomb and transverse gluon
exchange, and linear confinement, respectively. Of course, in the limit of equal quark masses we retrieve the analogous
equation in I.

III. KERNELS

The eigenvalue equation (7) can be written in a spin-independent form in which kernels are determined by specified
quantum numbers. Substituting F into Eq. (7), multiplying both sides by I r, summing over all the spins, and after
some trace algebra, one arrives at the integral equation

1 3 4a,
Ef (p) =(co +0 )f(p) — f d'q f(q)

' K (p, q) —2bKs(p, q)2~2

where K (p, q) and Ks(p, q) are the gluon-exchange and confining kernels, respectively. They have the general forms

K( )= M ~ Mr~+m ~+ r ™"D (I — I)p

and

mM 7—M — gf+m g+m g —M
2M 2m 2m 2MKsp, q= tr

where 1V is a normalization factor,

Ip
—ql' '

i' —M
&

P+m
& g —M — g+m

and D„( p —
ql ) is

p —ql' (12a)

D;, ( Ip
—

ql ) = 1

[E ~, —&, —Ip —ql]lp —q—
l

(p —q);(p —q),

Ip —q' (12b)

Taking E=~ +0 in the denominator, we obtain the transverse gluon propagator

D„(lp—ql) =— 1 5-—
II

—ql'
(p —q);(p —q),

Ip —ql'

Since one of the main motivations of this work was to establish the unequal-mass kernels, we now explicitly list the ker-
nels for J =0+ and J = 1—.

For J =0 singlet S states and triplet P states, the kernels are
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K (p, q)= 1 1

4[co co Q Q (co Q +mM+p )(co Q +mM+q )]'~ p —q

3(co Q +mM+p )(co Q +mM+q ) —(m Q +Mco )(mQ, +Mco, )

and

Kz(p, q) =—

2 2 . 2
+[3(m+M)' —(co +Q )(co +Q )]p q —2[(m+M) —(co +Q )(co +Q )]

v

1 1

4[ co~ co~ Q„Q~( co~ Q~+ mM+p )(co Q +mM+q )]'~ ~p
—

q~

(14a)

X ~ (co co +m )(Q Q +M )+mM(co +co )(Q +Q )

+p q +p coqQq+q co Qz+mM(p +q ) [(m+M— ) +(coz+Qz)(coq+Qz)]p q
' . (14b)

For J =1 triplet 5 states, the kernels are

1 1

12[copcoqQpQq(cop+m )(Q +M)(co +m )(Q +M)]~~2 ~p q~~

X 3(co~+m)(Q~+M)(co~+m)(Q~+M) —p q
—2(co +m)(Q +M)p2 —2(co +m)(Q +M)q2

+ [2(cop+ m )(Qq+M )+2(Q +M)(co +m, )

+3(co +m )(co~+ m )+3(Q~+M )(Q~+M)]p q+4(p q)

+2[2(co +m)(Qq+M)+2(co +m)(Qq+M)+co Q +co Q

2 2
( )2

+m(Q +Q )+M(co +co )+2mM]
Ip

—ql'
(15a)

and

1 1

12[coqcoqQ Q (co +m)(Q +M)(co +m)(Q +M)]~~2 ~p q~4

X [
—3(co~+m)(Q~+M)(co +m )(Q +M)+p q~

+3[(co +m)(co +m)+(Q~+M)(Q~+M)]p q —4(p q) ] . (15b)

The J =1+ states are more complicated. Unlike the equal-mass case where I z=o' and I ~=y y generate the ker-
nels for singlet and triplet P states, here they lead to two different mixtures of the singlet and triplet states. However,
linear combinations of those forms generate the kernels for pure singlet and triplet states. For the triplet P states, we
have I r =y (a y —1)y', where

a„=(Q +M —co —m )/(Q +M+co +m ) .

The gluon-exchange kernel is

ICg(p, q)=a a IC "(p,q)+a IC' (p, q)+a IC (p~, q)+K (pg, q),
where

(16a)
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K 1 1

4[co~coqQ~Q N N ]'~ ~p
—q(

X 5(co~Q —mM)(co Q —mM)+m Q Q +M co co

where

—mM(co Q +co Q ) pc—o Q, —
q co Q +mM(p +q ) 3p —

q

+ [5m'+5M' —2mM+3~, Q, +3~,Q, +~,~, +Q, Q, ]p q+8(p q)'

+2[ —(m +M) —4mM+(co +Q )(co +Q )+2(co Q +co Q )]
p'e' —(p q)' .

p
(16b)

%~ =3(co Q —mM)(1+a )+(1—a )p +6a~(mQ —Mco~),

N =3(co Q mM)(1+aq)+(1 aq)q +6aq(mQq Mcoq)

K "(p,q) = 1 1

4[co~coqQ Q N N ]'~ ~p
—q~2

X (co Q —mM)(co Q —mM)+5(mQ —Mco )(mQ —Mco )

—3p coqQq —3q co~Q~+3mM(p +q )+p q

+[(m —M)' —4mM+co~Q, +co,Q +5co co +5Q Q, ]p q

2 2 . 2
+2[(m —M)' —4mM —(co —fl )(co —Q )+2(co Q +co Q )]p ~

q q q
[

[2

K 12 1 1

4[co co QqQqN„N ]'i ip —
qi

(16c)

X 5(co Q —mM)(mQ —Mcoq)+(coqQ —mM)(mQ~ —Mco~)+(mQ Mco )p +3(—mQ Mco )—
+[5(mco —MQ ) —3(mQ —Mco )

—(mfl —Mco )+(mco —MQ )]p q

p2 2
( . )2—2[3(mQ —Mco )+3(mQ Mco )

——m(co —co )+M(Q —Q )]q q p q
/

)2
(161)

K 21 1

4[cozcoqQ~QqN&Nq]' ~p
—

q~

X ~ (co Q~
—mM)(mQ —Mcoq)+5(coqQq —mM)(mQ~ —Mco )+3(mfl —Mcoq)p +(mQ~ —Mco„)q

+[—3(mQq Mco )+5(mco —MQ )+(mcoq —MQq) —(mQ —Mco )]p q

2[3(mQq Mco )+3(mQ Mcoq)+m(coq co ) M(Qq Qq)]
p'q' —(p q)' .

The confining kernel is

Ks(p q)=a a (Ks (p q)+a Kz (p, q)+a Kz'(p, q)+K+ (p, q),
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and

K 22 1 1

4[co~coqQ Q N N ]'~ ~p
—

q~

X [3(co co +m )(Q Q +M )
—3mM(co +co )(Q +Q )

+p co Q +q co~Q& m—M(p +q ) p—q +4(p q)

—[3m +3M +2mM+co Q +co Q +3co co +3Q~Qq]p qj,
K 11 1 1

4[co~coqQ~QqN~Nq]' ~p
—

q~

X [3(co co +m )(Q Q +M ) —3mM(co co +Q Qq) —p q

—p co Q —
q co„Q +mM(p +q )+4(p q)

+ [ —3m —3M +2mM+co Q +co Q —3co co —3Q Qq]p qJ,

K 12 1 1

4[co~coq Q~ QqN~Nq ]' ~p
—q ~

X [(3coqQ 3mM p p'q)(m Qq Mcoq )

+(3co Q —3mM+q +p q)(mQ —Mco )+3[M(Q +Q ) —m(co~+coq)]p q],

(17b)

(17c)

(17d)

K 21 1 1

4[copcoqQ Q'qN Nq]
~

Ip ql

X I(3co Q —3mM+p +p.q)(mQq —Mco )

+(3co Qq
—3mM —

q
—p q)(mQ —Mco )+3[M(Q +Q ) m(co +—co )]p q] .

For the singlet P states, we take I z =y (y —a )y', which generates the gluon-exchange kernel

Kg(p, q)=a~aqKs (p, q)+a K '(p, q)+a K' (p, q)+K "(p,q)

and the confining kernel

(17e)

(18a)

Kz(p, q)=a aqKs (p, q)+a Kz'(p, q)+a Kz (p, q)+K+'(p, q), (18b)

where Kgj and Kg with i,j =1,2 are the same as those for the triplet P states with J =1+. An eigenstate of 1+ is a
mixture of triplet and singlet states. Its eigenenergy is obtained by solving the matrix eigenvalue equation

(19)

The matrix elements on the left-hand side (LHS) are

( P,
~ P, ) = f d p f (p)[3(co~Q —mM)(1+a )+(1—a )p +6a (mQ —Mco )],1

IM
('P1~'P1) = f d p f (p)[3(co&Q& —mM)(1+a&) —(1—a )p +6a (mQ Mco )], —1

mM

and

( P, 'P, ) = ('P,
~ P1) = f d p f (p)[(a +1)(mQ Mco„)+2a (—co Q —mM)] .

The matrix elements of energy expectation on the RHS are

(20)

(21)

(22)

( P1~H~ P1)=—
2 f f d p d q f(q)f(q)(N~Nq)' Kq(p, q) —2bKz(p, q)2~' p q

where Kg(p, q) and Kz(p, q) are given by Eqs. (16) and (17), and

~'P1IIII'P, ) = —
2 f f d p d q f(p)f(q)(N~Nq)' Kg(p, q) —2bKz(p, q)2~' p q 3

(24)
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where Ks(p, q) and Kz(p, q) are given by Eqs. (18), and

( P, lHI'P, ) = — f fd'p d q f(p)f(q)(N„N )'~ ' K (p, q) —2bKs(p, q)
2,vr2

(25a)

where the gluon-exchange kernel is

Kq(p, q)=a~Ks"(p, q)+a~a Kq (p, q)+Ks'(p, q)+a K (p, q)

and the confining kernel is

Kz(p, q)=a Kz'(p, q)+a„a Kz (p, q)+K+'(p, q)+a Kz (p, q),
where K'J and Kg with i,j = 1,2 are given by Eqs. (16) and (17). Finally,

(25b)

(25c)

('P, H~ P, )= — f f d pd q f(p)f(q)(N N )'~ 'K (p, q) —2bKz(p, q)2~' P ttt 3

where the gluon-exchange kernel is

K (p, q)=a K~"(p,q)+K' (p, q)+a a K '(p, q)+a K (p, q)

(26a)

(26b)

and the confining kernel is

Ks(p q)= Ks'(p q)+Ks'(p q)+a, a,Ks'(p q)+a, Ks'(p q) (26c)

where K'~ and Kf with i,j = 1,2 are given by Eqs. (16) and (17).
Performing the angular integration over Eq. (8), one obtains the radial kernel equation

Ef (p)=[co +0 ]f(p) — f dq f(q) a, Kq(p,—q) bKs(p, q—) (27)

where K (p, q) and Kz(p, q) describe one-gluon-exchange interactions and scalar linear confinement, respectively. Their
forms depend on the quantum number J selected. For J =0+, the radial kernels are

Kq(p, q) =
[copcoqApAq(copA +mM+p~)( cQo+mM+q2)]'c~

X —(m+M) pq
—(co~+A )(co +0 )pq+ —,'(p +q )[(m+M) +(co~+0 )(co +0 )]ln

s'

+[3(co~Q~+mM+p )(co 0 +mM+q ) (mQ~+Mco„)(—mQq+Mcoq)]ln (28a)

Ks p, q
+l

[co co 0 0 (co 0 +mM+p )(coqQ +mM+g )]'

X [ (co co +m )(QpQq+M ) co 0 q coqQqp —pq- —
(p' —q')'

+mM(p +q )+mM(co +coq)(Qp+&q)+ ~(p +q )(cop+&p)(coq+&q)

+ ~(p +q )(m+M) ] [(m+M) +(co +Qq)(coq+Qq)]in p+q (28b)

For J = 1 triplet S states, the kernels become
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Kq(p, q)=
3[co co Q Q (co +m)(Q~+M)(co +m)(Q +M)]'

X —4(co +m)(Q„+M) 4(—coq+m)(Qq+M) —4(coz+m )(Qq+M) 4(—coq+m )(Q +M)

—
3(coz+m )(coq+m ) —3(Q&+M)(Q +M) —2(p +q )

+I6(co~+m)(Q +M)(co +m)(Qq+M) —2p q
—4(co +m)(Q +M)p —4(co +m)(Q +M)q

+(p +q )[4(co~+m)(Q~+M)+4(co +m)(Q +M)+4(co +m)(Q +M)

+4(co +m)(Q +M)+3(co +m)(co +m)

1 p+q+3(Q +M)(Q +M)+2(p +q )][ 1n
q 2p9' p q

(29a)

and

Kz(p, q) = 2pg

3[co co Q Q (co +m)(Q +M)(coq+m)(Q +M)]'i

X —4+ [ —2(co +m)(Q +M)(co +m)(Qq+M) —2p q(p' —q')'

+(p —
q )(co +m)(co +m)+(p +q )(Q +M)(Q +M)]

+[—3(co~+m )(coq+m ) —3(Q~ —M)(Q +M)+4(p2+q~)] 1n
1 +

2W' p 9'
(29b)

For J = 1+ triplet P states, the corresponding gluon-exchange kernel is

Kg(p, q)=azaqK~"(p, q)+a&K~ (p, q)+a K '(p, q)+K (p, q),
where

K,"(p,q) =
[co co Q Q X X ]'i

(30a)

X . —3(m M) +8—mM 4(p +q—) 3(co~+Q—)(co +Q ) —2(co~Qq+coqQ~ )
—4(co Q +co Q )

+ [10(co„Q —mM)(co Q —mM)+2(mQ —Mco )(mQ —Mco )

—2p coqQ —2q co +2mM(p +q ) —6p q

+[3(m —M) —8mM+4(p +q )+3(co~+Q~)(coq+Qq)

+2(co Q +coqQ )+4(co Q~+coqQq)](p +q )] 1n
2p9' p 9'

(30b)

K 11( )
Pq

[copcoqQ~QqNpX ]'i

X [(co Q —mM)(co Q —mM)+5(mQ —Mco )(mQ —Mco )

+p q
—3p co Q 3q co Q +3mM(p—+q )] 1n

1 p+q
q q p p pq p 9'

+[3(m —M) —12mM+3(co +Q )(co +Q )

2+ 2 ++4co~Q~+4co Q ]
2p9' p 9'

(30c)
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Kiz( )
pq

[coco Q QNN ]'i

X . [5(co~Q~ —mM)(mQ —Mco )+(co Q —mM)(mQ —Mco )

+(mQ —Mco )p +3(mQ —Mco )q ] 1n
w

+ [3(mco~ —MQ~)+3(mco —MQ„)—9(m Q —Mco )

p + +—7(mQ —Mco )] 1n —1
2pq p q

(30c1)

Kg'(p, q) =
[copcoqQpQqNpN ]'

X [(co Q~
—mM)(mQ —Mco )+S(co Q —mM)(mQ —Mco )

+3(mQ —Mco )p +(mQ —Mco )q ] 1n
q q

uq p q

+[3(mco —MQ )+3(mco —MQ )
—7(mQ —Mco )

+ +—9(mQ —Mco )] 1n —1
2S'q p q

The con6ning kernel becomes

Kz(p, q)= Kz'(p, q)+ K~ (p, q)+ Kz'(p, q)+K& (p, q),
where

Kzz( )
pq2

[co co QpQqNpN ]'

(30e)

(31a)

X '4+ 3p q +3( ~coco+m )(Q Q +M )
(

z z)z p 0 p

—3mM(co +co )(Q +Q )+p co Qq+q coqQ —mM(p +q )

—(3m +3M +2mM+ 3co co + 3Q Q +co Q +co Q )
2

+[3mz+3Mz+2mM+3co co +3Q~Q~+co~Q~+co~Q~ 4(p +q )] —ln
2pq p —

q

K,"(p,q) = 2

[co co Q QqN~Nq]'

X. .. 3(u„m, +m z)(Q, Q, +Mz) 3mM(~, +—~, )«, +Q, )+3p'q' p~qQq-
(

z z)z

+mM(pz+q )+ (co Q +co Q +2mM —3m —3M —
3co&co&

—3Q&Q&)

(31b)

—qual +4—2 1

2S'q
1

p q [co Q +co Q +2mM+4(p'+q') 3(m'+M )—p +q
p —qpqqp

—3(co co +Q~Qq] ', (31c)
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K iz( )
pq

2[(o~(oq Q~ Qq N~Nq ]'

2 2 (3(o&Q& —3mM —p )(m Qq
—M(oq)+(3(oqQq 3m—M+q )(m Q& M—(oz )

(p2 q2)2

2+ 2

+ ( —m Qq+M(o +m Q~
—M(o~+3MQ„+3MQq —3m(oz —3m(oq )

2pg

1 p+qln [—mQ +M(o +mQ —M(oq+3MQ +3MQ —3m(o„—3m(oq] (31d)

and

Kzt( )
pq

2[(o~(oqQ~QqN~Nq ]'
r

X '
(3(opQp 3mM—+p )(mQ M(o )+(3(oqQ —3mM q)(m—Qp M(o~)

(
2 2)2 P P

p
2 +q

2

+ (mQ —M(o —mQ +M(o +3MQ +3MQ —3m(o —3m(o )

1 +
[mQ —M(o —mQ +M(o +3MQ +3MQq —3m(op —3m(oq] . .

2p9'

For J = 1+ singlet P states, the radial kernels are

Ks(p, q) =azaqK& (p, q)+a Ks'(p, q)+aqK (p, q)+Kg '(p, q)

and

s(p q) =a,a,Ks'(p q)+a, Ks'(p q)+a, Ks'(p q)+Ks'(p q)

(31e)

(32a)

(32b)

Performing an angular integration over all the elements
in the matrix equation (19) gives a one-dimensional in-
tegral matrix equation. Diagonalization of this equation
leads to the true eigenvalues of 1+ states. When m =M,
all the above kernels reproduce the kernels for the quark
and its antiquark bound states [1].

IV. NUMERICAL RESULTS AND CQNCLUSIQNS

We now apply our model to the D mesons (cd, cu, and
cs). The numerical procedure used to solve the integral
equation was outlined in I, and the interested reader is re-
ferred there for details.

In this work we use identical quark-mass parameters
[m, =1.49 GeV and m„l@(d)=0.27 GeV] and the string

I

tension (b =0.18 GeV ) of earlier work [1,4]. We must of
course introduce a new quark mass (m, =0.40 GeV) and
we choose a, =

—,'X0.4575 for the strong-coupling con-
stant. The latter value was chosen to optimize the fit to
the ground state (0 ) cd sector.

Our results are displayed in Table I. We see that the
agreement with experiment [11]is quite good both in the
qualitative pattern of splittings as well as in the quantita-
tive agreement of individual states.

Although no data exist for the 0+ sector, it is interest-
ing to note that our predictions are somewhat lower than
previous calculations [7]. New data on these states will
constitute an interesting test of this approach.

We have applied our model to the B mesons as well.
We again use the b-quark mass of earlier work [1,4]

TABLE I. D mesons. Comparison between theory and experiment [11]. Note all experimental en-

tries other than for 0 states need confirmation of I, J, and P quantum numbers. All entries are given

in MeV.

JP

0
1

0+
1+
1+

2S+ 1LJ

1 $0
1 s1
13p

1 pl
11p

Theory (cd)

1870
2010
2200
2430
2450

Experiment (cd)

1869.3+0.5
2010.1+0.6

2424+6
2443+7+5

Theory (cs)

1970
2130
2310
2550
2600

Experiment (cs)

1968.8+0.7
2110.3+2

2536.5+0.8
2564. 3+4.4
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(mz =4.784 GeV), and we set a, =—,
' X0.3975 to obtain a

B( bd, J =0 ) mass of 5278 Me V (input) as compared to
the experimental value [11] of 5278. 6+2.0 MeV. The
model generates a B*-Bmass difference of 40 MeV corn-
pared to the experimental value [11] of 46.0+0.6 MeV
and a B,*-B mass difference of 55 MeV compared to the
experimental value [11]of 47.0+2.6 MeV. In view of the

fact that n, is essentially input, one should view this
latter success with some caution.
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