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Chiral symmetry breaking and the pion wave function
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We consider here chiral symmetry breaking through a nontrivial vacuum structure with quark-
antiquark condensates. We then relate the condensate function to the wave function of the pion as
a Goldstone mode. This simultaneously yields the pion also as a quark-antiquark bound state as
a localized zero mode in vacuum. We illustrate the above through the Nambu —Dona-Lasinio model
to calculate diferent pionic properties in terms of the vacuum structure for breaking of exact or
approximate chiral symmetry, as well as the condensate Quctuations giving rise to o mesons.

PACS number(s): 12.40.@q, 11.30.Rd, 14.40.Aq

I. INTRODUCTION

Nambu and Jona-Lasinio (N JL) have linked chiral
symmetry breaking [1] to properties of hadrons with the
pion appearing as the Goldstone boson [2, 3]. However,
the pion is also thought to be a quark-antiquark bound
state. Hence, through the Goldstone theorem it ought to
be possible to relate the wave function of the pion as a
quark-antiquark pair to the vacuum structure. It is sur-
prising that this aspect is absent in the very extensive
literature on the topic [1—4].

We consider the phase transition as a vacuum realign-
ment with an explicit structure. Using techniques de-
veloped earlier [5] we demonstrated [6] the gap equation
for potential mod. els to be the same as the one derived
through the Schwinger-Dyson equation. We also demon-
strated that the Goldstone theorem [7] led one to a pion
state as a localized. quark-antiquark zero mod. e of the
destabilized vacuum [6, 8]. We further discussed the ef-
fects of approxim, ate symmetry by relating changes in
the gap equation to changes in the pion wave function.
In this paper we discuss the same physics in the Nambu-
Jona-Lasinio model. The reason for doing so is the math-
ematical simplicity of the NJL model and its relevance in
the context of Salam-Weinberg symmetry breaking and
the top quark mass [9, 10].

We organize the paper as follows. In Sec. II we con-

sider the vacuum structure with quark-antiquark pairs
using an ansatz for the same by minimizing the energy
density. This gives rise to the conventional gap equation
and involves a new description of the phase transition
with an explicit construct for the destabilized vacuum
[5]. In Sec. III we identify the pion as a Goldstone mode
and relate its wave function with functions associated.
with the vacuum structure. In Sec. IV we consider the
vacuum structure for the NJL model when chiral sym-
metry is approximate. We also derive here some familiar
results of current algebra in the present framework. In
Sec. V we calculate the pion charge radius using the wave
function determined from the vacuum structure. In Sec.
VI we consider the Huctuation of the condensate mode to
give a qualitative identification of the 0 meson. Section
VII consists of discussions.

The method here consists of using equal time algebra
[ll—13] along with the construction of the ground state
through a variational principle [5, 6, 14].

II. CHIRAL SYMMETRY BREAKING
AND VACUUM REALIGNMENT

We shall now proceed in the same manner as earlier
[6] for the NJL model. Let us start with the effective
Hamiltonian

&()=@(»)' (
—'»~. v)e(»)'+ f&Y4'. (»)4'p(»)~j",' (» —Y)e,"(Y) 0'(Y), ,

which has chiral invariance. In the above i, j stand for color indices, n, P stand for the spinor indices, and V'p' &(x—y)
is the potential. For the effective @CD-based vector potential we may take
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where A are the Gell-Mann matrices. We may also have the NJL model when we take the contact potential as

V.'p,",'s(» —y) = t-" (~')- (p~')~ ~s*'~"' —(~'~')-p(&'&')~s(& )'s(& )~tj ~(~ —y). (2b)
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Here G is the dimensional interaction coupling constant
and the v 's are the isospin matrices.

The field operators @(x) may be expanded as

@(")= „,f IV„(k)er, (k)+ V. (—k)er. (—k))

'Llc '3c gk

where U and V are given by

U„(k) =
i

- jul„, V, (-k) =
i ivl,f)

2(cr k) 2( 1 )
(4)

for free chiral fields. The perturbative vacuum is defined

by this basis when we have cI
~

vac) = 0= cIt
~

vac). We
next consider a trial vacuum state given as [5, 6]

~

vac') = U
~

vac) = exp(Bt —B')
~
vac),

with

where V(k) is the Fourier transform of the potential V(r)
given as

V(k) = fV(r)e' '
dk,

and A ~ are

A~(k) = 2[1 + p sin2f(k) 6 n. kcos2f(k)]. (12)

The expression for V as in Eq. (10) can be calculated
for Eq. (1) or (2a) for an efFective potential [2]. We shall
however now illustrate the method with Eq. (2b) for the
N JL model corresponding to the contact potential. The
total energy density then becomes

f(fj = t = — dk
i
k

i
cos2f —2GN(2N+l)I2N

(2vr)'

with

B = cl„k uI„a . k vI cI, —k k dk. 5b
1

sin 2f (k)dk.
27r s (14)

bI(k) = UcI(k)U (6)

which with an explicit calculation yields the Bogoliubov
transformation

( blv(k) i ( cos f
) I ~f1 sin f(at),„
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Here a, = ul„(o k)vI, . Using the above transforma-
tion (6) or (7) the expectation value of the Hamiltonian
with respect to

~

vac') is given as

8 = (vac'
~

'R(2:)
~

vac') = T + V,

where T and V are the expectation values corresponding
to the kinetic and the potential terms in Eq. (1). With
a straightforward evaluation we then obtain that

T = (vac'
~

@'(x)t (—in . ~)@'(x)
~

vac')

dk
i
k

i cos 2f(k),
2N
27r 3

where N = N x Ny is the total number of quarks. Sim-
ilarly the potential term is given as

V= f V.'ee e(kr —ke)

x [A+ (ki)))s~ [A (k2)]s~dki dk2, (10)

Here f(k) is a trial function associated as above with
the quark-antiquark condensate. We may recall a sim-
ilar construction in the Bogoliubov-Valatin approach
[1, 2, 4]. We shall minimize the energy density of vac')
to analyze the possibility of a phase transition [5] from
~vac) to ~vac'). For this purpose we first note that with
the above transformation the operators which annihilate

~

vac') are given as

The leading order in N here corresponds to the Hartree
approximation [4]. The energy functional f(f) here is
to be determined by minimizing the energy density. This
yields

t..2f(k) = 'G'('"") = M/k (15)

where M—:2GI(2N + 1) is the dynamically generated
mass. Further, substituting the above in Eq. (14) yields
the self-consistency relation

2G(2N + 1) M
(2~)' (16)

GA'(2N+ 1) & 2m'. (17)

The energy density of
~

vac') with respect to the pertur-
bative vacuum

~
vac) may be evaluated to be

AZ = F(ff —S(f = 0) =
(2~) s (k —gk' + M') dk

N
2G(2N + 1)

which is negative when a nontrivial solution to Eq. (16)
exists or Eq. (17) is satisfied. The state with condensates

~

vac') then becomes the physical vacuum. One may also
calculate the order parameter (@vP) given as

with A above as the ultraviolet cutofF for the N JL model.
Equation (16) is usually derived through an approximate
solution to Schwinger-Dyson equation [3]. We followed
here an alternative variational met ho d. with the phase
transition as a vacuum realignment as in Eq. (5), deter-
mined through the minimizing energy density functional
[5]

The above equation has a solution with M g 0 (Gold-
stone phase) provided
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(vac'
~

gvP
~

vac') = — 2NM
27r 3

III. GOLDSTONE THEOREM
AND PION WAVE FUNCTION

We shall now recapitulate [6] that the present descrip-
tion of the phase transition permits us to define the pion
also as a quark-antiquark pair. From the gap equation
we obtained two solutions for the field operators corre-
sponding to sin 2f(k) = 0 or sin2f(k) g 0 along with
the corresponding ground state as

~
vac) or

~

vac'), re-
spectively.

For the case of chiral symmetry breaking, we have the
gap equation

to (u, d) quarks above,

t (7-
~

vr (O)) = N~ qg(k) ~

—
~

qy( —k) sin2f(k)dk
~

vac'),
2 )

(26)

where N is a normalization constant. The wave func-
tion u(k) for the pion thus is given as proportional to
sin2f(k). The operators q&(k) and qy( —k) above are
respectively the two-component creation operators for
quarks and antiquarks with the spin and isospin indices
of the quarks and antiquarks having been suppressed.
Clearly the above state has an odd parity, is an isospin
triplet, and, as stated, corresponds to the pion. Using
the normalization

(~ (o) I
~'(p)) = ~'~(p)

2G(2N + 1) 1

(2~)' (2o) the constant N is given by

Q5
~

vac) =0, (21)

where Qs is the chiral charge operator given as

a
Qs —— g(x) t —p'g(x)dx.

2
(22)

which determines the value of the mass parameter M.
Once M is determined, the function f (k) becomes known
and hence the condensate structure of the vacuum be-
comes known. However, the Hamiltonian of Eq. (1) had
chiral syminetry, which through Eq. (19) or otherwise is
now seen to be broken. Hence we should have a Gold-
stone mode corresponding to a zero mass particle [7].
We shall approach this theorem in a modified manner to
obtain the wave function as a quark-antiquark pair [8].
When chiral symmetry remains good,

2N Ng sin 2f(k)dk = l. (28)

Further, the state as in Eq. (26) as the Goldstone mode
will be accurate to the extent we determine the vacuum
structure suKciently accurately through variational or
any other method, so that [vac') is an eigenstate of the
Hamiltonian. The above results yield the derivation of
the pion wave function from the vacuum structure for
chiral symmetry breaking through Eq. (25).

We may note that we could relate the pion wave func-
tion to the vacuum structure since the vacuum had an
explicit structure as in Eqs. (5). In fact, the two-body
condensate as in Eqs. (5) for the destabilized vacuum is
strictly related to the presence of the zero mode as seen
here.

For the symmetry broken case, however,

Qs
~

vac') g 0.

We expect that this will describe a pion of zero total
momentum. Since it will be massless, it will also have
zero energy corresponding to the pion state. To show
this we erst note that

[Q, , H] =o,

H, ffQs ~vac') = 0; (25)

i.e. , the state Qs
~

vac') with zero momentum has also
zero energy, thus corresponding to the massless pion. Ex-
plicitly, using Eqs. (3) and (7), we then obtain, with qr
now as a two-component isospin doublet corresponding

irrespective of whether Qs and H are written in terms of
field operators corresponding to sin 2f = 0 or sin 2f g 0
since the anticommutation relations between the opera-
tors remain unchanged by the Bogoliubov transforma-
tion. Clearly, for the Goldstone phase, ~vac') is an
approximate eigenstate of H with FV as the approx-
imate eigenvalue (V being the total volume). With
H ff —H —EV, we then obtain from Eq. (23) that

IV. APPROXIMATE CHIRAL SYMMETRY

While considering chiral symmetry breaking, we often
use results from current algebra so that we may obtain
numbers for approximate chiral symmetry breaking. For
the sake of completeness, with the present mechanism, we
elaborate [6] these results so as to use the same for the
NJL model. For this purpose we may add a small mass
term to the Hamiltonian that breaks the chiral symmetry
explicitly. Then Qs [

vac') will not be a zero mode and
will have a finite mass. In fact the mass of the pion in
the lowest order will now be m, formally given as

(~ (O) I
HsB

I
~ (O)) = m b(O),

where HSB is the symmetry breaking part of the Hamil-
tonian corresponding to the Hamiltonian density 'RSB ——

m@@, m being the current quark mass. The above may
be related to N and the pion decay constant as follows.
First we note that the identity for the pion decay con-
stant is [15]

(3o)

where c = 94 MeV. The normalization constant N in
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Eq. (26) is then given by using

x h(0) = (vac'
l Q sQ 5 l

vac')

vac' 5 m p dp

x(7r (p) l Q s l
vac'), (31)

where we have saturated the intermediate states with
pions. The index 6 is summed and there is no summation

over the index a. With Eqs. (30) and (31) we then have

= 2(2vr) m, c, (32)

which links N of the vacuum structure with the pion
mass and pion decay constant. We shall now substitute
explicitly the pion state as in Eq. (26) in Eq. (29). We
shall also substitute the value of normalization constant
in Eq. (26) by Eq. (32). On using straightforward com-
mutation relations, we then obtain that

(m (O) I
~so

I
m (O)) = (vac'

I Q 5II»Q 5 I
vac'}

77) ~ C~ 27r

2 1 1
2 ( )2

—(vac'
I [[Q 5 IIsa] Q s] I

vac')

2 m 'bo.

From Eqs. (34) and (29) we then obtain that
uj(k) = 1+ sin2f(lkl)

2

which is the familiar result for current algebra. (39)

V. CHARGE RADIUS OF PION 1
u2(k) = 1 —sin 2f (lkl)

2

With the wave function of the pion as above, we may
next estimate the size of the Goldstone pion as related
to the vacuum structure. For this purpose we first con-
struct the positively charged pion state with momentum
p from Eq. (26) by using translational invariance. With
the same notation as earlier, taking now the appropriate
isospin combination, this state is given as

G@(t) = e(1+ sR,ht+ . ). (40)

With Ga(t) as in Eq. (38) we then obtain that

To calculate the charge radius we expand the above in
powers of p and the coefFicient of p will be related to
the charge radius through

I '(~)) = ~-/ «q) (k+ —} (")„
xq~~ —k+ — u k vac' . (36)

In the Breit frame the electric form factor is given by [ll]

1 1 (, 2 2
(R ) = — dk —

l

u' (k) ——u' uo —u"uo
l

2 4 ), k

+uo
l

ui „uiu& uiu& ~ + 3u2

, (,2 2
+k lu ——uu2 —u u2

l2 k 2 2 ) (41)

G~(t) = (2~)'(~+(-p)
I
Jol~+(p)) (37) where we have substituted

where t = —4p2 and Jo ——egtg. This may be evaluated
directly as J sin 2f(k)dk

u(k),

GeO) = elV~e f dke (k ——} ee (k+ —}
x ug k —pug k+p

+ (k —p )ee(k —p)ee(k + p)).
(38}

In the above

and primes denote difFerentiation with respect to k.
The above formula applies for any known vacuum re-

alignment with condensates. Let us now estimate the
charge radius in the Nambu —Jona-Lasinio model. We
shall also use Eq. (34) for the pion decay constant
so that chiral symmetry is approximately true. With
'RsB = m@g, the extra contribution to the energy den-
sity is —I, x 2%I. On extremization the modified gap
function is given by
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2G(2N + 1)I+ m
tan2 k (43)

where M' = 2G(2%+ l)I + m satisfies the equation par-
allel to Eq. (16) given as

2G(2N + 1) dk
(2~)' +m M'. (44)

Thus here we may also have a vacuum realignment.
We shall now choose an optimal set of parameters for

GA, A, and m. Then, for example, with A = 420 MeV,
GA2=2. 24, and m, = 16 MeV) we get M=305 MeV,
(—gg) ~ = 220 MeV, R2 =0.25 fm, and c = 94 MeV.
Here we have taken m = 138 MeV. As a further il-
lustration to see how the the corresponding quantities
change with parameters, for A=500 MeV, GA =2.15,
m=10 MeV, we have, M=320 MeV, (—gg) ~ =255
MeV, B =0.20 fm, and c =93 MeV. We note that the
pion structure as arising from vacuum realignment ap-
pears to give a smaller value of the charge radius than
would be expected. In fact, with GA = 2.0, A
700 MeV, and m= 5 MeV [3], we obtain that M= 360
MeV, (—@g) ~ = 342 MeV, R = 0.13 fm2, and c =103
MeV. Thus the above set of parameters does not ap-
pear to be acceptable [4, 16]. We may also note that
the four-component Dirac Geld operators for the quarks
will change the above numbers as examined elsewhere
[12], which however does not change the above remarks.
The above illustrates the nature of constraints derived

for symmetry breaking through determination of the pion
wave function. A parallel approach [17] with Bogoliubov
transformations and the Schwinger-Dyson equation has
been used to obtain the Salpeter wave function for the
pion) which, however, does not permit the definition of
the pion as a state since the wave function is not normal-
izable and therefore does not give rise to such constraints.

VX. NEW MODES IN VACUUM

When the vacuum has a structure, there can be exci-
tations present due to such a structure. For chiral sym-
metry breaking, let us substitute

(va" l[@(x)@(x) ~'H@(y-)@(y) —~']Ivac')
= M4. (vac'~cr(x)o. (y) ~vac')

M4 ik (x—y)
SC dk,(2~)' 2(k' + m')»' (46)

where we approximate (r(x) by a free field of mass m
Let us define

g(x)@(x) = g(x)Q(x)} + M„o.(x)
= p, + M„o(x),

where M„ is a mass parameter and o(x) may represent
the scalar field of vacuum fluctuations. Then o(x) can
represent quantum Quctuations of the condensate. In
fact, we may evaluate

I(k) = f dx exp( ck . )(vxc' ai(—]]c) x( c()
—xi@ ]]P( ) ct'( O)cod' ]Ivac') .

In that case, clearly the free field approximation for o.(x) corresponds to

M4
I(k) =

2/m' + k' (48)

Explicit evaluation of the right hand side of Eq. (47) in the limit of small ~k~ yields

1 A 2 s i /' A
I(k) — —M A+ M arctan

3 gM)
1 A M 3 AM2—k +- +

6(A + M2) 8 (A2+ M ) 16 (A2+ M )
M4,

8vrs 2m 4m~

3 (Al——Marctan
~

—
~16 iM)

(49)

where in Eq. (48) we have kepi terms up to k . Equating equal powers of k in Eq. (49) and eliminating M„ in favor
of m yields, with x = M/A,

A2 —x + x arctan( —)

-6 (1++ ) 16 in~ + 16 (1+a ) 8 (1++ )

(50)
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We may next estimate the mass of such a mode for differ-
ent values of A and M obtained in the previous section.
For example, for A = 420 MeV and M = 305 MeV,
m 2.07M; for A = 500 MeV and M = 320 MeV,
m 2.27M; and for A = 700 MeV and M = 360 MeV,
m 2.65M. These may be compared with the mass of
o field obtained through an approximate determination
of the pole of the propagator with a polarization inser-
tion, which is given as m = (4M + m ) ~ [4].

the wave function of the pion as the localized Goldstone
mode in a straightforward manner. This language is not
only physically appealing in reproducing the conventional
results but also puts severe constraints on the parame-
ters for symmetry breaking as illustrated here for the
NJL model. Some other aspects of low energy hadronic
properties as related to the vacuum structure for chiral
symmetry breaking have been discussed elsewhere [12].
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