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A discrete symmetry between quarks and (generalized) leptons can exist in nature, and its spon-
taneous symmetry breaking scale can be as low as a few TeV. Such a discrete symmetry also has
interesting implications for how electroweak symmetry is spontaneously broken, because the simplest
version of the theory requires two electroweak Higgs doublets rather than one in order to provide
acceptable values for quark and lepton masses. The effective theory generated at electroweak-scale
energies is thus a particular type of two-Higgs-doublet model. We point out in this paper that the
broken discrete symmetry imposes very interesting constraints on the form of the Yukawa ccuplings
between physical Higgs bosons and quarks and leptons. In particular, we And that the Bavor-changing
neutral Higgs couplings to down-sector quarks are proportional to the neutrino Dirac mass matrix.
If neutrinos are Dirac particles, then the severe experimental upper bounds on their mass values
renders tree-level neutral Bavor-changing Higgs effects on down-quark systems such as K —K
negligibly small. We also discuss minimization of some relevant Higgs potentials and some other
pertinent phenomenological issues.

PACS number(s): 12.15.Cc, 12.15.Ef, 12.15.Ji

I. INTRODUCTION

If there is physics beyond the standard model (SM),
then it probably involves at least one new symmetry prin-
ciple of nature. Our experience with the interactions of
quarks and leptons strongly suggests that the search for
new symmetries is likely to bear fruit, because symme-
tries play a central role in the SM.

If we adopt a "bottom-up" approach to model
building —that is, if our starting point is what we know
of low-energy particle interactions rather than an am-
bitious unifying principle of some sort —then the first
new invariance we might hope to uncover at some en-
ergy scale ) 100 GeV is likely to be a discrete symmetry.
This is a reasonable suggestion simply because discrete
symmetries are the simplest candidates. For instance,

I

one may like to suppose that the complete Lagrangian
of the world, describing some fundamental unified the-
ory, displays some large, elegant, continuous invariance
group which is broken in many stages down to GsM ——

SU(3),13SU(2)1,U(1)y. and finally just SU(3),U(1)g.
It could well be that the erst enlargement of the symme-
try group of nature above the electroweak scale involves
some discrete symmetry subgroup of the large fundamen-
tal invariance group. Discrete subgroups might well sur-
vive intact down to quite low energies because they yield
less new physics than either global or local continuous
symmetries, and are thus likely to be less phenomenolog-
ically constrained. Alternatively, it may turn out that
discrete symmetries are of greater fundamental impor-
tance than current theoretical prejudices allow.

If we look at a quark-lepton generation,

&~ - (3 2)(1/3) u~ - (3 1)(4/3) dR - (3 1)(—2/3)

(1,2) (—1), eR (1, 1)(—2), vtt (1, 1)(0)

where the quantum numbers are given with respect to
GsM, then three generic classes of discrete symmetries
suggest themselves: (i) horizontal, (ii) left-right, and (iii)
quark-lepton symmetries. Horizontal symmetries are the
simplest to implement in the sense that no extension to
the gauge group GsM is mandatory. Left-right symmetry
(either parity or charge-conjugation invariance) can be
implemented if we extend GsM to the left-right group
GI.R =SU(3) SU(2)I, CISU(2)RU(l)ii I, . This gauge
group extension requires the inclusion of a new fermion,
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the right-handed neutrino, whose presence is optional in
the SM. Quark-lepton discrete symmetry (q-E symmetry
for short) can be implemented if we extend GsM to the
new group G~g where

G« —SU(3), g SU(3), @ SU(2) i g U(1)x,

where SU(3)t is a "leptonic color" group and SU(3)~ is
just the usual color group with a new name [1]. This
gauge group extension also requires the introduction of
new fermions, in this case the leptonic color partners of
standard leptons (as well as a right-handed neutrino).

Horizontal symmetries, discrete or otherwise, and left-
right symmetry have been assiduously studied for the
past 20 years or so, and they remain very important
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and interesting possibilities for new physics. The pos-
sible existence of a quark-lepton discrete symmetry has,
however, only been pointed out quite recently, and so
much work remains to be done in this area. Actually,
some work has already been performed on neutral cur-
rent phenomenology [2), partial unification schemes [3],
the fermion mass problem [4], and cosmological implica-
tions [5, 6]. However, two important aspects of q I. sym--

metric models require more attention in the literature.
The first area concerns the phenomenology of the new
strongly interacting sector predicted by the theory. [An
SU(2) subgroup of leptonic color remains unbroken and
confines the exotic partners of the standard leptons into
unstable, nonrelativistic bound states. Although some
initial studies were conducted in Refs. [6, 7], much more
detailed work is required. The other area is the subject
of this paper: the phenomenology of the extended Higgs
sector of q-E symmetric models.

Quark-lepton symmetric models can employ a number
of difFerent types of Higgs sectors, depending on what
one wants to do exactly. For instance, if one wishes to
employ the seesaw mechanism [8] for neutrino masses,
then a more complicated Higgs sector is required than
if one just fine-tunes small neutrino masses. Also, the
q-E discrete symmetry can induce troublesome mass re-
lations between quarks and leptons if the Higgs sector is

l

too simple. It is possible to adopt difFerent attitudes to
what one should do about this problem, and this leads
to difFerent Higgs physics. There is no clearly preferred
option for the Higgs sector at the moment. In this pa-
per we will therefore review the major possibilities, but
will ultimately concentrate on the detailed phenomenol-
ogy of a particular concrete scenario for reasons we will
make clear later.

The rest of this paper is structured as follows. In
Sec. II we review the possible choices for Higgs sectors
in q-Z symmetric models. Section III forms the core of
our paper. We study one simple and workable scenario in
detail. We look at (i) the construction and minimization
of Higgs potentials, (ii) the identification of the phys-
ical Higgs fields and their Yukawa couplings, and (iii)
the derivation of bounds from tree-level fIavor-changing
efFects induced by the neutral Higgs bosons. Our con-
cluding discussion forms Sec. IV.

II. HIC C S SECTORS FOR
QUARK-LEPTON SYMMETRIC MODELS

The simplest gauge group which supports discrete q-E
symmetry is given by G~g in Eq. (2). A fermionic gener-
ation is given by

QL, (1,3, 2) (1/3), u~ (1, 3, 1)(4/3), d~ (1,3, 1)(—2/3),
I"L, (3) 1, 2) (—1/3), ER (3, 1, 1)(—4/3), N~ (3, 1, 1)(2/3), (3)

where the standard leptons SL„eR, and v~ are one of the color components of EL„E~, and NR, respectively. This
gauge structure can clearly support a discrete symmetry between quarks and the generalized leptons. The most
straightforward possibility is the symmetry

(4)

where G~, G&, R'", and C" are the gauge bosons of
SU(3)~, SU(3)g, SU(2)r„and U(1)x, respectively. Other
varieties are also possible (see Ref. [9] for a complete
discussion), but for definiteness we will concentrate on
this form of discrete q-E symmetry in this paper.

The standard model is recovered as an effective low-
energy theory through the two-stage symmetry-breaking
chain

G~g m SU(2)' @GsM m SU(2)' Iy SU(3) g) U(1)~,

while the T = 1 components form an SU(2)' doublet
of exotic fermions with electric charge +1/2 called "lip-
tons. " All of the particles which feel the residual SU(2)'
force can be made heavy, apart from the gauge bosons of
SU(2)'. Therefore, although the unbroken gauge group
at the electroweak scale is larger than GsM, the effective
theory at this scale is still the SM.

A. Higgs sector A.

where SU(2)' is an unbroken subgroup of leptonic color
SU(3)g. The discrete q-/ symmetry is broken at the same
time as leptonic color in the simplest scenarios. The weak
hypercharge generator Y of GsM is given by

The simplest way that the symmetry-breaking chain of
Eq. (5) can be induced is by choosing the Higgs sector

(6)

where T = diag( —2, 1, 1) is one of the diagonal gen-
erators of leptonic color. Each standard lepton has a
pair of exotic partners through leptonic color invari-
ance. After the first stage of symmetry breaking, that is,
Gzg —i SU(2) GsM, the standard leptons are identified
as the T = —2 components of the leptonic color triplets,

where yi ~ y2 and P ++ gP—:i+2/* under q-/ symmetry
Under the subgroup SU(2)'GsM the transformation law
for y2 is

y2 m (1, 1, 1)(0) Q (2, 1, 1)(1),

X2 ~ X2 X2)
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where the second line establishes our nomenclature for
the component fields under the subgroup. Therefore the
first stage of symmetry breaking is induced by the vac-
uum expectation value (VEV) pattern

h) =o, h') =~go, 5) =o, (y) =o)

while the second stage (that is, standard electroweak
breaking) is induced by (P) = u g 0. The hierarchy
v » u is required in order to satisfy phenomenological
bounds.

All of the Higgs multiplets in Eq. (7) couple to fermions
through Yukawa interactions. The Lagrangian is

~Yuk hl [(QL) QI Xl + (+L) +LX2] + h2[(&R) dRX1 + (ER) +RX2]
+~1[QLdRW + +L+R4' ] + ~2[QLtiR4 + +L@R4]+ H.c.

After the Grst stage of symmetry breaking, liptons gain
masses b'av and b'av &om these Yukawa coupling terms.
Since v » u, this means that the liptons will in general
be much more massive than standard leptons and quarks,
provided that the Yukawa coupling constants hi 2 are not
extremely small. The standard fermions of course gain
masses after the second stage of symmetry breaking from
the usual P Yukawa interactions. Note, however, that
the discrete q-E symmetry imposes the tree-level mass
relations

I

models which use Higgs sector B. These models are dis-
tinguished by the way the charge conjugates of $1 and P2
behave under q-l discrete symmetry. This in turn leads to
two diferent electroweak Yukawa Lagrangians and also
to two diferent Higgs potentials. The existence of two
models using Higgs sector B is a subtle point which was
overlooked in previous papers [2].

2. Model 1

m~ mQ)
Diracmd —m

Consider the charge conjugate Higgs fields $1 and Pz
where

which are not phenomenologically acceptable. Radiative
corrections will alter these mass relations, but not enough
to make them tenable.

We therefore see that the symmetry-breaking pattern
we desire can be induced by the simple Higgs sector of
Eq. (7). This scheme has the desirable property that
liptons are in general expected to be much heavier than
leptons and quarks. However, it has the undesirable mass
relations of Eq. (11). The next Higgs sector we examine
retains the desirable features of this prototype but im-
proves on the unsuccessful mass relations.

B. Higgs sector H

Oe +
and Pz = i72$z =

I
'o*

&1)

In model 1, the action of the q-E discrete symmetry on
the Higgs doublets is

$1++ p2 and p; ++ p;,

which in terms of weak-isospin components has to be
interpreted to mean that components of like weak-isospin
interchange:

4. Intr oduction

The amended Higgs sector consists of yi, y2 plus two
electroweak Higgs doublets

and

&2 - (1 1 2) (-1) =
I

fyol

which interchange under the q-E discrete symmetry. The
symmetry-breaking pattern is the same as in Eq. (5),
with both electroweak doublets in general participating
in breaking the electroweak symmetry: ($1) = ui and
(42) =u2

The Yukawa Lagrangian for the y multiplets is obvi-
ously the same as for Higgs sector A, but the P inter-
actions are di8'erent. There are actually two diEerent

(15)

This last set of interchanges commutes with complex con-
jugation, which is a necessary condition to maintain the
invariance of the kinetic energy terms for $1 2. The al-
ternative possibility that unlike weak-isospin components
interchange is not tenable, because of the minus signs
appearing in the definitions of the charge conjugate dou-
blets. For instance, $1 ~ $2o would have to be accom-
panied by gP1* e+ —pz* according to Eqs. (13) and (14).
Since this does not preserve invariance of the kinetic en-
ergy Lagrangian, this is not an allowed discrete symmetry
and so we must interpret Eq. (14) as implying Eq. (15) at
the weak-isospin component level. We similarly interpret
the fermionic transformation QL ++ I"L as implying

uI, ++ Nl, and dI. ++ El..

Note that an SU(3) transformation can be used to bring
away VEV for y2 into the (y2) = n 7L 0, (yz) = 0 form.
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Model 1 therefore has the curious feature that the left- and right-handed components of the quarks and leptons
interchange in exactly opposite ways, as can be seen by comparing Eqs. (16) and (4). Another way to put this is that
the model 1 discrete symmetry is chiral.

The Yukawa interactions for model 1 are given by

&Y ~ = A1[QLdR41 + FL&R42] + A'1 [QLdR4 2 + FL&R41]
+A2[QL&R4'1 + FL@R4'2] + A2[QL&R42 + FLERWl] + H.c ~ (17)

The quark and lepton mass matrices are thus

m~ = A2ug + A2u2)

mg ——Aqui —A~u2,

m, = —A, u,*+A', u„
m Dirac

V

and we see that the unsuccessful mass relations that are
unavoidable with Higgs sector A do not apply in gen-
eral. It is actually interesting to note that the relations
m„= m and mp ——m hold for all choices of the A's only
if uq ——u2 ——0, that is, when the electroweak symmetry
is unbroken. This is consistent with Eq. (15) because
we see that q-E discrete symmetry interchanges neutral
Higgs bosons with charged Higgs bosons. Therefore, the
electroweak symmetry breaking VEV's uq and u2 for the
neutral Higgs bosons necessarily also break the discrete
symmetry, and this is why the tree-level fermionic mass
relations are necessarily violated in this model. Our pre-
vious observation that the left- and right-handed projec-
tions of quarks and leptons transform in exactly opposite
ways is of course also consistent with the necessary vio-
lation of the fermionic mass relations. [We will see that
Higgs sector A is similar to model 2 to be presented be-
low, in that the electroweak symmetry-breaking VEV('s)
do not inevitably also break q-/ symmetry. ]

8. Model 2

Model 2 is deGned to obey the discrete symmetry

and p1 ++ —p2,

which in component form has to mean that

y+, ~ y;, yo, ~ yo„y; ~ y2+,

(20)

In contrast with model 1, the components of unlike weak-
isospin interchange here. Note, of course, that the trans-
formations in Eq. (20) commute with complex conjuga-
tion and thus leave the kinetic-energy terms invariant.
Similarly, the QL ++ FL interchange is interpreted to
mean

ul, w EL, and dL, ++ NL„ (21)

in model 2. In contrast with model 1 therefore, left-
and right-handed projections of the fermions transform
in identical ways under the discrete symmetry (in other
words the discrete symmetry is vectorlike).

The Yukawa Lagrangian for Model 2 is obtained from
that of Model 1 by the substitution Pz ~ —Pz.

~Y&k Al [QLdR4'1 + FLAP'2] + A1[ QLdR42 + FLAP'1]
+A2[QL~R01 —FLFRP'2] + A2[QL~R4'2 + FLORA] + H.c. (22)

The quark and lepton mass matrices are thus

Im„= A, u, +A,u„
m& —A, u, + A, u„

m = A2u2+ A2ug,

m. "-= A, u, + A', u,*.

Once again, the bad mass relations of Eq. (11) are in
general violated. Note, however, that the mass relations
will be reinstated in model 2 if u1 ——u2 g 0. This is

After the first stage of symmetry breaking, the lipton part-
ners of the standard leptons become heavy, and they will play
no role in the rest of this paper. We will alternate between
the notation e and E, and between v and N whenever we find
it convenient.

Of course, the discrete symmetry is dominantly broken by
the VEV for y2. The discrete symmetry breaking we are talk-
ing about in this section is an additional contribution which
comes from the @ bosons.

There is an alternative way to explain the discrete symme-
try used in model 2. We present it here because it makes
no explicit reference to weak-isospin components, and thus
should help clarify what we mean by the above symmetry.
The symmetry is equivalent to pz —+ r&$2, Fz, —+ r1Qz„

—C", and r, W,." —+ 7-ir,. W,."xi, where vi is the first
Pauli matrix. Under these transformations, D"p1 -+ 7,D"p2.
where D" is the gauge-covariant derivative. Therefore the
gauge —kinetic-energy terms for the two Higgs doublets in-
terchange under the action of the symmetry. One can eas-
ily check that the gauge-invariant kinetic-energy terms for
the fermions and for the gauge bosons are also invariant.
This establishes that the discrete symmetry of model 2 is
well defined. The ~z matrix effectively tells us that compo-
nents of unlike weak-isospin transform into each other here.
Note also that the W-boson transformation above equates to
TV3 w W3 and W +" ~ W ~ at the component level. We
thank H. Lew for alerting us to this.
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consistent with the transformation laws in Eq. (20) since
the neutral Higgs bosons interchange. If the two VEV's
are equal, then discrete q-8 symmetry is clearly not bro-
ken during electroweak symmetry breaking, and so the
tree-level fermionic mass relations ensue.

For the sake of completeness we note that Higgs sector
A behaves in a similar way to model 2. The transforma-
tion P ~ gP has to be interpreted as implying q

and q+ ++ —P . Since the phase of the VEV u is unob-
servable, q-E symmetry is not broken during electroweak
symmetry breaking and so the bad mass relations follow.

Discussion

Although both models 1 and 2 using Higgs sector B
have no mass relation problem, they also have no pre-
dictive power for masses. This is perhaps unfortunate,
since we would prefer to have an enlarged symmetry such
as discrete q-Z symmetry actually increase the predictive
power for the masses of quarks and leptons. Higgs sector
A is predictive, but the predictions are wrong. Another
response to the problem posed by Higgs sector A would
therefore be to look for some other modification of it
which maintained its predictive power for masses, but
this time with correct predictions. No such modification
is known at present, but its desirability motivates that
an ongoing search be maintained.

Because the use of Higgs sector B is the simplest way
to avoid the fermion mass relation problem, it will be
the principal focus of study in this paper (see Sec. III).
The main new qualitative result to be presented is that
discrete q /symmetry -continues to furnish us w. ith more
predictive power, even when alt trace of it has disappeared
from the fermi on mass spectrum We wil. l see that quark-
lepton partnership in both models 1 and 2 is manifested
in the Yukawa interactions between fermions and physical
Higgs bosons. In particular, we will see that the flavor-
changing neutral Higgs-boson term for a given fermion is
proportional to the mass matrix of its partner under the
discrete symmetry.

purpose of cr would be to separate the scales of leptonic
color and discrete symmetry breaking. A motivation for
this might be cosmology, because such a scenario allows
one to break the discrete symmetry before an inflation-
ary epoch in the hot big bang picture, while leptonic
color could be broken after inflation. This can be used to
render innocuous the cosmological domain walls formed
during the q-E symmetry-breaking phase transition, while
retaining exact leptonic color down to TeV-scale energies
[5]. Any of Higgs sectors A, B, or C can be extended by
introducing 0 .

Finally, we comment that the gauge group Gqg is but
the simplest symmetry which supports a discrete q-E sym-
metry. An interesting extension is provided by the gauge
group GqpL R where

G~ty~ = SU(3)qg)SU(3) g)SU(2)iSU(2)~U(1)~.

(25)

This model can support left-right discrete symmetry as
well as q Esymrnetry -[10].An even simpler extension sees
only the U(l) subgroup of SU(2) R gauged. Any gauge ex-
tension such as this will also require an extended Higgs
sector. We will not probe this issue any further in this
paper, but have mentioned it here for the sake of com-
pleteness.

III. STUDY OP A REALISTIC HIGGS SECTOR

We now study the two models using Higgs sector B in
more detail. We will address the following issues: (i) the
construction and minimization of the Higgs potentials,
(ii) the spectrum and Yukawa couplings of the physical
Higgs bosons, and (iii) the phenomenological bounds ob-
tained from tree-level flavor-changing neutral Higgs bo-
son eKects in the light P~ 2 sector. Models 1 and 2 differ
from each other in important ways, and so we will exam-
ine them separately.

A. Model 1

C. Other Higgs sect ors

There are several other interesting Higgs sectors one
can use. For instance if one wishes to address the issue
of small neutrino masses, one may introduce a seesaw
mechanism [8] by the introduction of the Higgs multiplets

The Erst issue is the minimization of the Higgs po-
tential: We have to check that the desired symmetry-
breaking pattern

(26)

(1,6, 1)(4j3) and A2 (6, 1, 1)(
—4/3),

(24)

where L q and 4 2 interchange under q-E symmetry. A
large VEV for the neutral component of A2 induces large
Maj orana masses for the right-handed. neutrinos, thus
producing the seesaw phenomenon. Either Higgs sector
A or B can be augmented by the introduction of these
antisextets, and we will call the resulting Higgs sector
generically as "Higgs sector C."

Another Higgs field of some interest is a real gauge sin-
glet o which is odd under q asymmetry (o ~ —cr). Th-e

(~~) = 0, (~2) = 0

&0)

is possible. In this equation we have chosen u~, u2, v )
0 by a phase convention, and we have also taken the
possible phase angle ( to reside with P2.

In order to construct the Higgs potential, we Erst write
down all gauge-invariant terms with definite trans forma-
tion properties under q-E symmetry that are quadratic
in the Higgs-boson fields. The terms E that are even
(E m E) under the discrete symmetry are

Ex —= Aqua'a + 4'24'2 and E2 = y~yq + y2y2. (27)
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The terms 0 that are odd (0 + —0) are

01 = 0'101 0202) 02 = X1Xl X2X2~

(28)

V = I 4,E1+P E2+AlE1+A2E2
+A301 + A402 + [A303 + H.c.]
+AsE1E2 + A70102 + [A30103 + H.c.]
+ [A30203 + H.c.] + Al p0303,

0.'=(0 4 )',

where

The Higgs potential V is obtained from these terms as
follows:

where py ~) A1 4 6 7 10 are real numbers and A5 8 9 are in
general complex. There are no quartic terms that cannot
be written down as the product of E's and 0's.

The minimization equations for the Higgs potential
written in this form are not particularly enlightening,
and it is diKcult to tell if minima are local or global.
The terms p& and A1 4 6 can actually be written in a
much more useful form. %'e will call the resulting partial
Higgs potential V~,g„and it is given by

1 large = Al(4'1 tt'1 + f24'2 ul u2) + A2(X1Xl + X2X2 v ) + As(4'l4'1 + 4'2/2 + X1X1 + X2X2 ul u2 v )

+A4(X1Xl)(X2X2) + A3[(4141)(4242) (4142)(4142) ]

The remaining terms in the full Higgs potential are as-
sembled into a contribution called V, ~j so that V =
Vlarge + Vsrnall.

Consider the parameter space region given by A1 4 6 &
0. The first three terms in Vj,g, are clearly minimized by
taking ($14'1) + (4zp2) = ul + u2 and (X1X1)+ (X2X2) =
v . The fourth term is minimized if either (Xl) = 0
or (X2) = 0. Without loss of generality we may take
(Xl) = 0, thereby being consistent with our previous
exposition. The fourth term thus guarantees leptonic
color-breaking, q-E symmetry breaking and the preser-
vation of quark color as an exact symmetry. The last
term guarantees that electromagnetic gauge invariance
remains exact. The argument goes like this: We start
by using a weak-isospin rotation to transform to the ba-
sis where ($1 ) = 0. This however does not ensure that
(P2 ) = 0. But the last term in Eq. (31) at the minimum
is then just A3($2 p2 )~((Pl)~ . Since A3 ) 0, then either

(Pz ) = 0 or (/Pl) = 0, and so we choose the former.
We have thus shown that the VEV pattern of Eq. (26)

arises when all the A' coupling constants in Vj,g are pos-
itive, provided that the omitted terms in V, ~~ are small
enough. We have not shown that this is the only region of
parameter space that will do, only that it is an example
of a suitable region. This is perhaps fortunate, because
this region has a serious drawback: the existence of a

light pseudo Goldstone boson. The point is that Vj,g, is
invariant under independent phase rotations for X2, $1,
and P2 that are all spontaneously broken. Two of the re-
sulting Goldstone bosons are absorbed, but one remains
as a light physical boson. It will pick up some mass from
V, ~~ and via radiative corrections from the Yukawa La-
grangian, but the fear is that it will be light enough to
mediate unacceptably large neutral Havor-changing pro-
cesses.

This problem has arisen because the $1$2 combina-
tion is odd under the discrete symmetry, and thus can-
not appear in Higgs potential terms of the form (positive
number) x($1/2 + ulu2 cos() . Terms such as ($1/2)
eliminate the spurious phase invariance, but they seem-
ingly cannot be written in a manifestly useful way for
purposes of easy minimization while at the same time re-
specting the discrete symmetry. However, we can easily
convince ourselves that a pseudo Goldstone boson does
not necessarily always accompany our required VEV pat-
tern. Let us write down an effective Higgs potential for

Pl and P2 after a nonzero VEU for X2 has already spon-
taneously broken the discrete symmetry. We do this by
allowing the soft discrete symmetry-breaking quadratic
terms $1/2 and $1/1 —P2P2 to appear in our effective
potential. The most general form is

Al (4'l4 1 + 4'24'2 ul u2)

+A3 [($141)(0 24'2) (0'l0'2) (0 14'2) ] + A7 (0'l4'1 424 2 1 + 2)

+As'[($1$2) + ($1/2) + 2ulu2 cos(] + As'[z($14) —z(014'2) —2ulu2 sin(]

+As [4 lyl 4 2q 2 + (4'142) + (4 14'2) ul + u2 + 2ulu2 cos (]
+A'3'[pl/1 —p2p2 + z($1/2) —z($1&$2)" —ul + u2 —2ulu2 sill (]

+Alp [(et 14'2) + (0'l0'2) + z(q~1$2) z(It'1 tt'2) + 2ulu2 cos 6 2ulu2 sin (] (32)
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If all the A" parameters are positive, then the required
pattern of symmetry breaking follows. Furthermore,
there is no reason to make the terms breaking the spu-
rious phase invariance small, and so the putative pseudo
Goldstone boson is eliminated. This result shows that
some of the terms in V, i~, which are putatively small,
can actually be large enough to solve this pseudoprob-
lem without inducing the spontaneous breaking of elec-
tromagnetic gauge invariance, or otherwise spoiling our
desired symmetry-breaking pattern.

We now exhibit the physical Higgs fields. Writing

o hi + ig$ 0 62 + ig2
&l

——ul+
2

p2 = u2 +
2

0+iE
X2 =&+

2
)

where for simplicity we have put the CP-violating phase
to zero, we identify the unphysical neutral Goldstone-

boson fields as
p u2 92 ul rll

(34)u2 + u2

where g is the field absorbed by the Z . The field E
is absorbed by a Z' boson arising from the spontaneous
breakdown of leptonic color. The field we called y~ in
Eq. (8) is also absorbed when leptonic color breaks. The
unphysical charged Goldstone bosons are

(»)Vul+ u2

and they are of course absorbed by R"+. From now on we
will work in unitary gauge, so that these unphysical fields
will simply be set to zero in the Yukawa Lagrangians.

The physical Higgs Gelds consist of the charged field
H+ orthogonal to g+, where

u24'l + ul42
gu2 + u2 (36)

the CP-odd field g orthogonal to g, where

u2g1 + ulg2
gu2 + u2 (37)

and three CP-even Gelds whose mass eigenstates are lin-
ear combinations of hq, 62, and H. Now, in most of pa-
rameter space the field H mixes very little with the Gelds
hi 2, because the scale of leptonic color breaking has to
be signiGcantly higher than the electroweak scale. We
will concentrate on this large region of parameter space
in the rest of this paper. We therefore approximately
write the mass eigenstate fields as hi 2 and H, where

(h'l~ ( cosP sing& fkll
) k Sill~ COS ~P kk2)

for some mixing angle P. We can of course relate P to the
parameters in the Higgs potential, but we will not need
to know this expression.

The most useful way to write the Yukawa Lagrangian
is to replace the A parameters in Eq. (17) by the mass
matrices through Eq. (18). We then obtain that

1- 1—
CY„k = —ql. (m„C, + m. e ) 2Ru+ —Pl. (m„e; —m, e;)ER

+ Ql, (m„—" '4'2 —mdC'l)dR + I'L, (m„" 'C'—l + ms@2)NR + H.c. ,

where u = gu2l + u22and 't

ul. m~uRrl+ El,m„ERrl-
2u +2u

u242+ ul4li=

2=

+ ughg+u2h2 ~ g

( uih2 —u2~~

II )'

(40) dl, m„" 'dRrl+-Nl, msNRrl + H.c.
2u 2u

and 4i 2
—i~qC i 2. Under q-E symmetry,

Ci m C~ and C2++ (42)

and

and the electroweak symmetry-breaking VEV's are
(C l) = u and (42) = 0.

By using Eq. (41), the Yukawa Lagrangians involving
the physical mass eigenstate fields H+ and g can be easily
read off Eq. (39). They are

+ 1- 1
k

——dl. mEuRII + —uI, m„" dRH+
u

1— + 1-+ Nl, m„ERII+ + —El.m„NRH + H.c—. (43)

These Yukawa Lagrangians are extremely interesting,
because the discrete q-8 symmetry is seen to act in a
highly nontrivial way: The Yukama coupling constants
for quarks (leptons) are proportional to the mass matrices
of the corresponding discrete symmetry partner leptons
(quarks). This is a rather diferent situation from the
usual expectation that the Yukawa coupling constants
for fermion f should be proportional to the mass mt of
that same fermion. Note in particular that the down-
quark flavor-changing neutral couplings of the g Higgs
boson are proportional to the Dirac masses of the neu-
trinos. Since neutrino Dirac masses are constrained to
be very small, we see that neutral flavor-changing pro-
cesses mediated by g are highly suppressed for down
quarks. This means, most importantly, that no useful
bound is obtained from K-K mixing on the tree-level
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favor-changing g couplings. The reader should also
note that the fermion fields in Eqs. (43) and (44) are
weak-interaction eigenstates, not mass eigenstates. In
the mass eigenstate basis, two unitary diagonalization
matrices would also appear in the Lagrangians, a point
we will return to later on.

Using the definition

tan~ —:u2/ul, (45)

we can write the interaction Lagrangian of the fermions
with the mass eigenstate |P-even bosons h& 2 as

)

1
ur, m„(cos(w —p)h'I + sin(cu —p)hz) + m, ( sin—(u —p)hl + cos(w —p)hz) uR

2v,

+ El, m„(sin(~ —p)h'I —cos(~ —p)h2} + m (cos(~ —p)h'I + sin(Lv —p)h2) EII
2u
1+ dl, m~(cos(w —p)hi + sin(u —p)hzj+ m " '(sin(w —$)hl —cos(u —p)hfdf dII
2u

+ Nl. md( —sin(or —p)h' + cos(~ —p)h')
2u

+m„" '(cos(iv —p)hi + sin(~ —p)h2) N~+ H.c., (46)

where again interaction eigenstates have been used for
the fermions. This Lagrangian is also very interesting,
because in the fermion mass eigenstate basis it is clear
that the favor-changing contributions for a given fermion
are always proportional to the mass matrix of its q-E
partner (multiplied by diagonalization matrices). This
result is similar to that obtained for the boson g. Once
again, the most important consequence of this is the large
suppression of down-quark sector flavor-changing neutral
Higgs efFects because of their proportionality to tiny neu-
trino Dirac mass matrices. Note, however, that if we set
m„" ' = 0 exactly, then all interactions between g and
the down quarks disappear, whereas the h~ 2 fields still
have interactions although they are now strictly flavor
diagonal.

Having made the important discovery that discrete q-
E symmetry plays an interesting and important role in
constraining the Yukawa interactions of physical Higgs
bosons and fermions in model 1, we now turn to a similar
analysis of model 2. We will then return to model 1 when
we come to examine phenomenological bounds on tree-
level favor-changing neutral processes in a subsequent
subsection.

B. Model 2

Ei = 4'I 4'I + tt'24'2 i E2 = XlX1 + X2X»

E' = (4' 4' )'

Oi = PI/I —P2P2 02 —= XIXi —X2X2 (48)

respectively. As for model 1, the Higgs potential V can
be written as sums of E, E, and 0 forms. However, this
time we can write all but one of these terms immediately
in a form useful for answering minimization questions.
The result is

Happily, the analysis of the Higgs potential for model
2 is much simpler than for model 1. This is because
the combination $1/2 = PI i&2/2 is now even under the
discrete q-1 symmetry. The even and odd quadratic com-
binations are now given by

+large ~I(4'l4'I + 4'24'2 ui u2) + ~2(XIXI + X2X2 v )
2 2 2 2 2

+As [($14'I)($2/2) —(0'l0'2) (0'l0'2) ] + A4(XIXI) (X2X2) + As [0'l0'2 + (0'1/2) + 2uiu2 cos (]
+As [2/1/2 —2(4'l4'2) —2ulu2 sin (] + As(QIQI + $2/2 + XIXl + X2X2 ul —u2 —v )

+As [$141 + 0 2/2 + 0'1/2 + (0'l 0'2) —ui —u2 + 2ullL2 cos (]
+~s[4'l4'I + f24'2 + ~4'142 &($1/2) —ui —u2 —2ulu2 sin()
+~'.[X',X + X."X.+ 0 0. + (y y.)'+ 2, ,-.g —"]'
+~', [X',X. +X,'X. +'4.A — (0.0.)' —2 .. &- ']'
+~10[4'l0'2 + (4'142) + 14'1/2 —z(4 1/2) + 2uiu2 cos ( —2uiu2 sin (] (49)

If we extend the Higgs sector to accommodate the seesaw mechanism (see Higgs sector t above), then of course this quahtative
conclusion no longer holds, because neutrino Dirac masses can then be large. W'e also point out that in the Higgs sector
scenario we have no explanation for why the neutrino Dirac masses should be so small. Our result is simply that given tiny
neutrino Dirac masses, then tiny down-quark sector Qavor-changing neutral couplings follow.
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If we take all the A parameters above to be positive, then the correct symmetry-breaking pattern is assured, provided
that the one omitted term, namely, V7, where

v7 = ~7(4'] 4'1 4'24'2) (x1xl x2x2) (5o)

is small enough or innocuous enough. If we want to we can partially incorporate this term in our analysis by writing
an effective soft-breaking term of the form A7'[01 —u1+ uz] in an e6'ective potential after leptonic color breakdown,
but there is no practical need to examine this term more closely.

The identification of physical and unphysical fields is exactly the same as for model 1. The Yukawa Lagrangians
are, however, a little difFerent. The charged Higgs-boson Yukawa Lagrangian is

dL(2uiu2m„— u m, )uRH + 2 2 NL(u m„—2uiu2m, )ERH +
tl, 'll —lE2 1 D 2 1

1 2 Dirac ++ 2 2 uL( —2uiu2mg + u m )dRH + 2 2 EL( umph +—2uiu2m )NRH + H.c.
u

Note that the q-E partnership is manifested in a more complicated way for this Lagrangian compared with its analogue
in model 1.

The CP-odd neutral particle g enjoys the interactions

Yuk
2 2 2uL(2u1u2m„— u m, )uR7l + EL(u m„—2uiu2m, )ER7l

2u(u2 —ul) 2u(u', —u', )

+
2 2 dL( 2ulu2md +™)dRg + 2 2 NL( u m + 2ulu2m )NR9 + H c.

2u(u2 —ul) 2u(u22 —u2)

As for model 1, the flavor-changing interaction of g for a given fermion class is proportional to the mass matrix of the
discrete symmetry partner of that fermion. Most importantly, the down-quark neutral flavor-violating piece is once
again proportional to the Dirac mass matrix of the neutrino and is therefore very small. A difference from model 1 is
that there is a nonzero piece for a given fermion proportional to the mass matrix of that same fermion (and is thus
diagonal in the mass eigenstate basis).

The CP-even mass eigenstate Higgs bosons h, i & have an interaction Lagrangian given by

h
~Yuk uL m„( cos((u + p) h—', + sin(~ + $)h2} + m, (sin((u —p) h', —cos(~ —p) h2} uR

2(u2 —ul)

EL m„(sin((u —p)h', —cos(~ —p)h2}+ m, (—cos((u 4- p)h', + sin(~+ p)h2} ER
2(u2 —ul)

dL mg( —cos(co+ p)h'1+ sin(u) + p)h2}+ m " '(sin((u —p)h'1 —cos(~ —$)h2} dR
2(u2 By)

+ NL mg(sin(cu —p)h1 —cos(ur —p)hz} + m " '(—cos(w + p)h'1 + sin(w + p)hz} NR + H.c.
2(u2 —ul)

As the reader can easily see, the flavor-changing interac-
tion for a given fermion class is proportional to the mass
matrix of its q-8 symmetry partner. Once again, down-
quark sector neutral flavor-violating processes are zero if
the neutrino Dirac masses are zero.

1 Wee level n. e-utral flavor changing egfe-cts

Let the mass eigenstate fermion field f be denoted byf'. We introduce the left- and right-sector unitary diag-
onalization matrices VL R through

C. Phenomenology f,' =—V,'fL and f„' =—V„f (54)

In this section we will present an overview of the phe-
nomenological implications of models 1 and 2. The main
interest is on the tree-level neutral flavor-changing eKects
mediated by 7l, h1, and h2. (We will not cover loop ef-
fects quantitatively in this paper; we will be content to
qualitatively discuss the most interesting of these here.
We hope to return to a more detailed phenomenological
analysis in future work. )

where f = u, d, e, v. The corresponding diagonal mass
matrices are given by

diag f ftmf ——V~mf VR .

We now rewrite the flavor-changing pieces of the neutral
Higgs Yukawa Lagrangians in terms of mass eigenstate
fermions.

For model 1 we obtain
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uL, Vr", Vr',™'V~VX ujtg + er VL'VL"™' Vga e~g
+2u 2u

+ dL, V&V& m '
Vg V& d&g+ vL, Vr, VL, m&' V&Vg v&g

+2u 2u

together with

—1 u et diag e ~t IZFc —— uL, Vr", VL', m. '
&g &g "u/[»n(~ —y) ht + cos(~ —0') "2]

2u

e ~'t diag u+ e&VL'VL" m„' Vg V& eR[sin(u —$)ht —cos(w —p) h2]
2u

d& V&~V& tm~' st V& dz [sin(~ —P) h~ —cos(~ —P) h2]
2u

+ vL Vr V& m&' V&V~ v~[—sin((u —P)ht + cos((u —$)h2],
2u

(57)

V~ & 1&
1)

(58)

where e is a small parameter, which for the KM ma-
trix equals about 0.2. Note that this qualitative pattern
is preserved when two such matrices are multiplied to-
gether. For purposes of illustration, if we take e 0.1,
then for both up quarks and charged leptons we find that

for flavor-changing g and h~ 2 interactions, respectively.
(Note that the two Lagrangians above also contain fiavor-
diagonal terms. ) The corresponding Lagrangians for
model 2 are easily discerned from Eqs. (52) and (53).
They can be obtained from the two model 1 Lagrangians
above by making the substitution u ~ (u22—u2t)/u and
by changing some of the plus and minus signs.

Let us make some qualitative observations. (i) As we
have emphasized, if the neutrino Dirac masses are zero,
then there are no tree-level down-quark sector interac-
tions which change flavor. In this case, there are also
no neutrino-sector flavor-changing vertices, because we
are free to redefine the neutrino fields by use of the
down-sector diagonalization matrices. (ii) All the ac-
tion is therefore in the up-quark and charged-lepton sec-
tors. Since the up-quark sector masses are larger than
corresponding charged-lepton masses, the largest flavor-
changing couplings will occur for charged leptons. In
particular, those couplings proportional to the large top-
quark mass will dominate, unless they happen to be
suppressed by small mixing angles. (iii) Our experi-
ence with the Kobayashi-Maskawa (KM) matrix suggests
that the intergenerational mixing pattern for these flavor-
changing interactions should be hierarchical. It would
therefore follow that the large top-quark mass will have
most influence on 7 —+ p conversions. Of course, a hi-
erarchical mixing pattern is not inevitable, but at this
juncture it nevertheless represents the best guess, in our
opinion.

To get a feeling for the likely strength of these flavor-
changing transitions, let us assume that all of the mixing
matrices V follow the qualitative form of the KM matrix:
namely,

mi em2 E m3

E m36 m3 m3
(59)

where mi 2 3 refers to the first, second, and third gener-
ation masses, respectively. So, looking at charged-lepton
transitions, we see that w ~ p is proportional to e mq 1
GeV. Observe that w —+ e is a further power of e smaller,
while p -+ e is driven by em which happens to be the
same order of magnitude as 7. ~ e.

Let us look now at the specific process p ~ e e+e
which will in general be mediated by all the neutral Higgs
bosons g and hi 2. We will assume that all of the Higgs
particles have roughly the same mass m4„and we will
assume that no accidental cancellations occur between
the three tree-level Feynman graphs contributing to this
process. The partial decay width I' is then roughly given
by

4 Emem~ mpI'=10 4 x
m~ ) u4 (60)

having used u 300 GeV. We see that typical values

[This decay rate is calculated within model 1. The model
2 estimate is of exactly the same form, except that the u
quantity is replaced by (u2 —ut)/u. If we take this quan-
tity to have roughly the same value as u, then our semi-
quantitative conclusions are the same for both models.
Note also that this process requires one flavor-conserving
vertex. The neutral Higgs-boson Yukawa interactions
feature both the m and m, matrices for these flavor-
conserving interactions, However, with the assumed mix-
ing pattern and because m„&) m, we can approximately
omit the piece proportional to the electron mass. Sim-
ilar observations regarding the model 2 estimate versus
the model 1 estimate, and the flavor-conserving vertex
complication, will obtain for the other processes consid-
ered below. ] The experimental bound is I /I'~ ( 10
[ll], where I'„ is the total width of p, which leads to the
constraint that
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such as e 0.1 and m@ 300 GeV fall well within this
limit.

It is of interest to also look at w-lepton rare decays,
since the large top-quark mass contributes. The bound
for 7 —+ p @+p obtained from the experimental limit
r/r. & 10-' [11] is

&e2m, m, & (10 4, (62)

where m~ ——1.9 GeV is the mass of the D meson and
fD = 200 MeV is its decay constant. We have used the
standard vacuum-saturation approximation to calculate
this expression. The experimental upper bound on the
mass difFerence is b,m & 10 GeV [11],which leads to
the limit

(64)

Again, the values e = 0.1 and my ——300 GeV easily
satisfy this constraint.

The partial width of the decay D ~ p+p is cal-
culated within the vacuum-saturation approximation to
be

1 ~em~m ) ( fry
8ir ( u'm2~ ) (m„+ m. )

The experimental bound is I ~+„- & 10 GeV [11],
which leads to the constraint

~em„m &10 '. (66)
)

Once again, this is easily satisfied with e = 0.1 and m4, ——

300 GeV.
So we have shown that the tree-level flavor-changing

neutral Higgs-boson effects within the model can easily
fall within current experimental limits on unseen decays
and on neutral-meson mixing. Most spectacularly, the
down-quark sector yields no bounds because the neutri-
nos are constrained to be light. But, as we have just
seen, the charged-lepton and up-quark sector bounds can
be met with Higgs-boson masses of the order of the elec-
troweak scale, provided we invoke hierarchical generation
mixing. Note, however, that the mixing hierarchy need
be no more severe than what we find in the KM matrix.

which again is easily satisfied with e 0.1 and m@ 300
GeV. The other rare decays of the ~ which can be medi-
ated by tree-level Higgs-boson exchange, such as w ~ gee
and v ~ eee, all give much weaker constraints.

Turning now to the up-quark sector, we will examine
D -D mixing and the rare decay D ~ p+p . Neutral
Higgs-boson exchange contributes to neutral D-meson
mixing in both the 8 and t channels. This leads to an
extra contribution to the mass difference given by

1 f em„l', 7m~
Am = — "

~

m&f~2
24 gum&y (m„+ m,,)'

2. IIigh, er lo-oy e+ects

The main phenomenological point we want to make in
this paper is that the existence of neutral flavor-changing
vertices in quark-lepton symmetric models does not
necessarily mean that the offending electroweak Higgs
bosons have to be made artificially heavy. We feel this
point is adequately demonstrated by the bounds calcu-
lated in the preceding subsubsection for tree-level pro-
cesses. However, there are a whole host of interesting ef-
fects that will be induced at higher-loop levels also, and
so for completeness we include a brief discussion of some
of them.

For instance, radiative decays of the second and third
generation quarks and leptons will be induced at one-loop
order. In addition to the SM graph featuring a virtual-
fermion —lV loop, there will be new contributions com-
ing from charged-Higgs-boson —fermion loops and flavor-
changing neutral-Higgs-boson —ferinion loops. (There are
also small one-loop contributions from a heavy-TV' —lipton
virtual pair. See Ref. [2] for a brief discussion. ) It would
be interesting to compare the predictions for these decays
in q-E symmetric models with other two-Higgs-doublet
models [12]. For instance, in model 1 with zero Dirac
neutrino masses there will be no contribution from either
charged or neutral Higgs bosons to 6 —+ 8p. This amus-
ing fact may be important, given that the recent CLEO
measurement of B ~ K*p is consistent with SM expec-
tations [13]. Similar one-loop effects will also contribute
to processes like 6 ~ sS+E where 8 is a lepton.

Charged Higgs bosons will contribute to neutral-meson
mixing through box graphs, and the distinctive q-E part-
nership phenomenon in the Yukawa Lagrangians should
produce interesting systematics. For instance, in model 2
the charged Higgs bosons have couplings proportional to
both quark and lepton mass matrices, whereas in model
1 the coupling is exclusively through the partner lepton
mass matrix. It would be interesting to see how expecta-
tions for both of these models compare with expectations
in other two-Higgs-doublet models [12].

Finally, we note that there will be extra contributions
to the anomalous moments of charged leptons at one-
loop level. For instance, both the charged and neutral
Higgs bosons contribute to the anomalous magnetic mo-
ment a„of the muon. What is of some interest here is
that the vertices involved will have pieces proportional to
the up-quark masses, and so will be larger than those in
the usual two-Higgs-doublet models. Given our assumed
mixing pattern, a„will be about equally affected by m
and (em&), which are both about two orders of magni-
tude greater than the corresponding quantity in the SM,
namely, m . The SM neutral Higgs contribution gives
roughly a„10 [14], so that the contribution in q-/.

symmetric models is roughly 10 . This is comfortably
below the experimental error on a& which is about 10

8. Heavy Higgs bosons

We end this section with a few words about the phe-
nomenology of the heavy Higgs bosons in Higgs sector B,
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namely, the neutral field H and the charged and colored
field yg.

Particle H is expected to be heavy because it is associ-
ated with leptonic color and discrete symmetry breaking.
However, it couples only very weakly to standard parti-
cles and is thus very dificult to produce in the laboratory.
Its only direct Yukawa couplings are to liptons, not lep-
tons, and it does not couple to any of the electroweak
gauge bosons. Its tree-level couplings to standard parti-
cles occur therefore only through mixing with hz 2, which
we expect to be quite suppressed. We thus expect the
actual phenomenological bound on H to be very weak,
although the generic expectation is that it ought to be
relatively heavy.

The colored scalar yq contributes to neutral-meson
mixing, as discussed in Ref. [15]. The generic bound ob-
tained is that h2/mx ( 10 GeV, where 62 is relevant
Yukawa coupling constant. We note that this is a weak
constraint.

ing, because Yukawa coupling constants are in important
instances proportional to the mass matrix of the discrete
symmetry partner of the fermion in question, rather than
of the fermion itself. In particular, the flavor-changing
neutral vertices are always proportional to the mass of
the partner fermion. If neutrinos are Dirac particles,
then this implies that flavor-changing neutral Higgs ef-
fects in the down-quark sector are negligible, and so all
of the traditional constraints like those from neutral kaon
mixing are absent. The largest flavor-violating eÃects oc-
cur in the charged-lepton and up-quark sectors, but we
showed that these efFects are typically undetectable if a
Kobayashi-Maskawa pattern of intergeneration mixing is
invoked. We conclude, therefore, that electroweak Higgs
bosons with masses in the 100-GeV range are perfectly
acceptable, even though some of them mediate neutral
flavor-changing processes at the tree level.

IV. CONCLUSION

The simplest realistic Higgs sector in models with lep-
tonic color and a quark-lepton discrete symmetry con-
tains two electroweak Higgs doublets. We have demon-
strated that the eBective two-Higgs-doublet model ob-
tained at the electroweak scale is unusual and interest-
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