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Unified universal seesaw models
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A set of grand unified theories based upon the gauge groups SU(5)L X SU(5)~, SO(10)L X SO(10)& and
SU(4)c XSU(4)1 XSU(4)~ is explored. Several novel features distinguish these theories from the well-

known SU(5), SO(10), and SU(4)c XSU(2)~ XSU(2)~ models which they generalize. Firstly, standard
model quarks and leptons are accompanied by and mix with heavy SU(2)I XSU(2)z singlet partners.
The resulting fermion mass matrices are seesaw in form. Discrete parity symmetries render the deter-
minants of these mass matrices real and eliminate CP-violating gauge terms. The unified seesaw models
consequently provide a possible resolution to the strong CP problem. Secondly, sin 0~ at the unification
scale is numerically smaller than the experimentally measured Z scale value. The weak angle must
therefore increase as it evolves down in energy. Finally, proton decay is suppressed by small seesaw mix-

ing factors in all these theories.

PACS number(s): 12.10.Dm, 11.30.Er, 11.30.Ly

I. INTRODUCTION

Among the many questions left unanswered by the
standard model of particle physics, the origin of fermion
masses ranks as one of the most intriguing. Details of the
fermion mass spectrum remain a perplexing mystery, and
even its gross features are not understood. One general
characteristic which remains unexplained within the con-
text of the minimal standard model is the disparity be-
tween the electroweak scale and quark and lepton masses.
This dichotomy can of course be accommodated in the
standard model by tuning certain Yukawa couplings to
be suKciently small. However, a more natural explana-
tion for this mass gap would be preferable.

In the past few years, a qualitative explanation has
been offered in which the familiar neutrino seesaw mech-
anism [1] is applied to charged fermions as well [2,3].
This universal seesaw proposal necessitates the introduc-
tion of new heavy partners for each of the known stan-
dard model fermions with which they mix. The lightness
of observed quarks and leptons then results as a conse-
quence of the seesaw mechanism. This scheme obviously
works best for the first generation of fermions and worst
for the third. In particular, achieving the anomalously
large mass for the top quark is problematic. Nonetheless,
the basic idea of a universal seesaw mechanism is in-

teresting and sheds some light on the fermion mass puz-
zle.

A second and much more compelling motivation for
studying theories with a universal seesaw mechanism is
that they can resolve the strong CP problem. Such
theories generally possess a parity symmetry which
prohibits a CP-violating OQcD term from appearing in the
@CD Lagrangian and renders Yukawa coupling matrices
Hermitian. So while the fermion mass matrix can be
complex and generate weak CP violation, the argument

OQFD of its determinant is zero. The physically observ-
able parameter O=OQCD+OQFD consequently vanishes at
tree order. Universal seesaw models thus offer a solution
to the strong CP problem which does not involve axions
[4,5,6].

The universal seesaw mechanism has been studied in
the past mainly within the context of the left-right sym-
metric SU(3)c XSU(2)L XSU(2)z XU(1) model. In this
paper, we explore a number of possibilities for embed-
ding this mechanism within a unified theory. In par-
ticular, we investigate models based upon the gauge
groups SU(5)L XSU(5)z, SO(10)L XSO(10)~, and
SU(4)c X SU(4)L X SU(4)z. As we shall see, such unified
theories provide a rationale for the seemingly ad hoc in-
troduction of heavy SU(2)L XSU(2)z singlet fermions in
their ununified counterparts. Moreover, these particular
models generalize the well-known SU(5) [7] and SO(10)
[8] grand unified theories (GUT's) and the
SU(4)c X SU(2)1 X SU(2)z Pati-Salam model [9]. So
they are of interest in their own right.

To help guide our exploration, we will adopt the fol-
lowing set of unified seesaw model building rules.

(I) The model must reproduce the measured Z scale
values for the standard model couplings [10—12]:

sin 9~(M, ) =0.2325+0.0008, (l. la)

aEM(M, ) = 127.8+0.2, (l. lb)

a, (M, ) =0.118+0.007 . (1.1c)
(II) The model must satisfy other phenomenological

constraints such as limits on new particle masses and
bounds on proton decay.

(III) The model should incorporate heavy
SU(2)t XSU(2)R singlet fermions which mix with stan-
dard model quarks and leptons to allow for a seesaw mass
matrix whose determinant is real.

(IV) The model should contain fermions in anomaly-
free but complex representations in accordance with the
"survival hypothesis" [13].

(V) The model preferably maintains left-right symme-
try from the unification scale down to the standard model
subgroup level.

These requirements are listed in approximate order of
importance. The first two experimental constraints are
binding and must be satisfied by any realistic GUT. The
third point summarizes the distinctive features of univer-
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sal seesaw models that allow them to resolve the strong
CI' problem. The final two rules represent natural
theoretical guidelines which are more negotiable than the
first three constraints. In particular, the last item is in-
cluded only to help restrict the large number of possible
symmetry-breaking patterns in the models we shall ex-
plore. So we may relax this final aesthetic condition in
order to satisfy the other more stringent requirements in
this list.

The remainder of our paper is organized as follows.
We present the SU(5) X SU(5) and SO(10) X SO(10) mod-
els in Secs. II and III. These theories illustrate the basic
features of all unified universal seesaw models. They also
serve as warmups for the SU(4) X SU(4) X SU(4) model
which is discussed in greater detail in Sec. IV. Finally,
we close in Sec. V with some indications for possible fur-
ther investigation of this new class of GUT's.

II. THK PROTOTYPE SU(5) XSU(5) MODEL

The first model that we shall explore is based upon the
gauge group G=SU(5)z XSU(5)~. This theory
represents an obvious generalization of the Georgi-
Glashow SU(5) model [7] and shares many of its attrac-
tive features. It is also the simplest unified seesaw model
and has been analyzed in the past I14,15]. While this
theory ultimately turns out not to be phenomenologically
viable, it is worth reviewing since many of its basic
characteristics are common to a11 unified universal seesaw

t

2-(5+ 10, 1)+(1,5+ 10), (2.1)

is then readily established. The fermions' colors, Aavors,
and electric charges are indicated by conventional letter
names in the matrices below:

models.
To begin, we impose a Zz symmetry on the chira1

theory which combines a spatial inversion with inter-
changing the SU(5) factors in the product group G. Such
a discrete symmetry is needed to ensure the equality of
the SU(5)L and SU(5)z coupling constants above the
unification sale. In its absence, the couplings would run
di6'erently and diverge even if they were set equal at one
particular renormalization point. The generalized parity
operation enforces a left-right symmetry on the Lagrang-
ian which may be violated only softly by super renormal-
izable interactions. It also dictates a one-to-one
correspondence among matter field representations of
SU(5)z and SU(5)z. The spectrum of this theory conse-
quently exhibits an explicit parity doubling.

We next embed the standard model within the GUT
following the Georgi-Glashow model blueprint. Color
SU(3) and weak SU(2) are identified with the diagonal
SU(3)z+z subgroup of G and the SU(2)I subgroup of
SU(5)L respectively. U(l)EM is generated by the diagonal
sum of the familiar SU(5)z and SU(5)~ electric charge
generators. The SU(3) XSU(2) XU(1) content of a single
fermion family representation,
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O' —U' —u —d3 2 1 1

-(5 1) 1(pz)'J= ~—v'2
u1 uz

dz
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Uz —U1

U1 —uz
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3
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R

Three generations of families are assumed as in the standard model and assigned to three copies of X
We now specify a simple symmetry-breaking pattern that starts with the unified chiral gauge group and cascades

down to unbroken color and electromagnetism:

SU(5)z XSU(5)~
&Mr, vT

SU(3)z XSU(2)z XU(l)z XSU(3)~ XSU(2)R XU(1)~
i&zR

SU(3)z+~ X SU(2)z X SU(2)~ XU(1)z+ii

SU(3)z+~ X SU(2)z XU(1)r
1Uz

SU(3)z+R XU(1)EM

(2.3)
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A minimal number of fundamental Higgs fields is introduced into the theory to achieve this pattern. As in the G-eorgi-
Glashow model, SU(5)r and SU(5)R are broken with scalars 4L —(24, 1) and 4R —(1,24) that transform in their adjoint
representations. The fermion families decompose under the resulting [SU(3)X SU(2) XU(1)] subgroup as

V-[(3,1, 1, 1)" ' +(1,2, 1, 1) ' ' +(3,1, 1, 1) ' +(3,2, 1, 1)' ' +(1,1, 1, 1)' ]L

+[(1,1,3, 1) '' +(1,1, 1,2) ' ' +(1,1,3, 1) ' +(1,1,3, 2) ' +(1,1, 1, 1) '']R . (2.4)

The subsequent breaking of chiral color and chiral hyper-
charge to their diagonal subgroups is performed at the
ArR scale by Higgs fields ro-(5, 5) and Q-(10, 10). If
these scalars develop the vacuum expectation values

&~&,'=&~&,"=(ru&3'= &II & I'))=&II & "')
=&n& ,',',),

, =(n&,",,),
, =A„, (2.5)

the chirally colored (3, 1, 1, 1) and (1,1,3, 1) and chirally
hypercharged (1,1, 1, 1)' and (1, 1, 1, 1) ' fields in (2.4)
marry together and acquire Dirac masses through the
Yukawa interactions

Xv„k,„,(co, A)= —f (PL )'(co)'; (PR );

+ (%L), (fI)';J (%R)'J +H. c.
2

(2.6a)

These fourteen SU(2)r XSU(2)R singlet fermions au-
tomatically emerge in the unified theory as the heavy
seesaw partners that are added by hand in un-unified
seesaw models. They are denoted by capital letters in
(2.2). The remaining sixteen fields in (2.4) reside within
SU(2) doublets and stay massless at the ArR scale. They
essentially correspond to the known standard model fer-
mions plus a right-handed neutrino and are represented
by the lower case letters in (2.2).

The last two steps in pattern (2.3) are accomplished by
scalars PL —(5, 1) and PR —(1,5) which break SU(2)r and
SU(2)„via the vacuum expectation values (VEV's)

& y„&=(0,0, 0, 0,u„ /v'2)'.

Masses connecting heavy and light fermions are then gen-
erated by the Yukawa terms

+Yukawa(4 ) f/[(PL )ic(+L ) (4L )j+(0R )i'+(+R ) (4R )j'l

+fy[~jk! (+L) C(q'L) (NL) +~' 'jik'(pR) c(pR) (A) ]+H c.

The quark and lepton mass matrices thus assume the seesaw forms

(2.6b)

0 v 2fyUL
„,=(uL UL) ~—, ~TJn

QR 0 2fyUL
1

+(dLDL )

2fJUL
+(eRER ), t + +Hc.

TJ PUR JQ LR L
(2.7)

UL URm= —0 f
AIR

M =O(f ALR ),
(2.8)

It is important to recall that the fermion fields are
(%~=3)-dimensional vectors in family space. The Yu-
kawa couplings in Eqs. (2.6a) and (2.6b) are consequently

X&XN~ matrices with generation indices that have been
suppressed. Parity constrains f and fn to be Hermi-
tian, while the form of the second term in (2.6b) automat-
ically renders f&

symmetric. If these Yukawa couplings
are approximately comparable in magnitude, then the
mass matrices have the well-known seesaw eigenvalues 0 —,'f ~ALR

2,fyALR f~ALR /Ur. "R

0
X ' (2.10)

provided ULUR &&A&R. We thus recover the universal
seesaw mechanism in this SU( 5 ) X SU(5 ) theory.

The fermion mass matrices in (2.7) are generally com-
plex and induce weak CP violation as in the standard
model. But their determinants are real. This can be sim-

ply verified by rewriting the down-type quark matrix for
example as

O(uL/ALR )

O(UR /ALR )

1 Q

and corresponding eigenvectors

(2.9)

Since the diagonal matrices are real while the middle ma-
trix is Hermitian, we conclude that arg(detjtitdD ) =0. So
as a result of the generalized parity symmetry in the
SU(5) X SU(5) model, the complex argument OQFD of the
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total mass matrix as well as the O~cD term in the QCD
Lagrangian vanish at tree order. The seesaw GUT there-
fore provides a possible solution to the strong CP prob-
lem.

Unfortunately, the symmetry breaking pattern in (2.3)
is not phenomenologically viable. Recall that once the
embedding of the electroweak subgroup inside the gauge
group 6 is specified, the value of sin 0~ at the unification
scale is fixed:

Tr(TL )
sin 8~(MoUT)=

Trg
3 =
16

=0.1875 . (2.11)

In this SU(5) XSU(5) model, there are twice as many
electrically charged fermions as in the SU(5) theory but
precisely the same number of weak SU(2)L doublets. So
sin 011 (MoUT) is half as large as in the Georgi-Glashow
model [7] and starts out numerically smaller than
sin Oii, (M, ) =0.2325. Moreover, renormalization effects
decrease the value of sin 0~(1M) for 1M &MoUr in the
SU(5) XSU(5) theory just as in the SU(5) model [16].
Therefore, pattern (2.3) cannot duplicate the Z scale mea-
surement and must be rejected.

One can try to search for alternate breaking patterns in
which sin 0~ increases as it evolves down in energy from
the GUT scale. Maximal enhancement is achieved if the
first stage of symmetry breaking is taken to be
SU(5)L X SU(5)R ~SU(3)L X SU(2)L XU(1)L XSU(5)R
[14,15]. This clearly leads to trouble with proton decay.
Moreover, detailed calculation demonstrates that this
asymmetrical-breaking pattern still cannot yield the
values for the standard model couplings in (1.1) [15]. We
therefore conclude that an SU(5) XSU(5) seesaw theory
is ruled out.

III. THE SO(10)X SO(10) MODEL

The GUT scale value for sin 0~ tends to be small in all
unified universal seesaw models as we have seen in the
particular case of SU(5)XSU(5). So in order for these
theories to be phenomenologically viable, we must find
some mechanism for enhancing sin 0~ as it evolves down
in energy from the unification scale. We will illustrate a
general strategy for overcoming this problem in the con-
text of an SO(10) X SO(10) model.

This second theory represents an obvious generaliza-
tion of the first considered in the preceding section, and a
number of parallel features can immediately be estab-
lished. For instance, a discrete interchange symmetry
must again be imposed on the separate factors in the
gauge group 6=SO(10)L XSQ(10)R. As a result, parti-
cle representations occur in pairs, and fermion families in
particular transform as

V—(16,1)+(1,16), (3.1)

which generalizes the SU(5) X SU(5) assignments in (2.1).
There are, however, some significant differences between
the two models. Most importantly, the larger size of
SO(10)X SQ(10) allows several new possibilities for elec-
troweak subgroup embedding and symmetry breaking.
As we shall see, this greater flexibility provides the key to

increasing sin20~ at the Z scale.
Among the different potential breaking schemes, we

focus upon the following pattern which maintains explicit
left-right symmetry down to the standard model:

SO(10)L XSO(10)R
R

(3.2)

We have listed underneath each of the subgroup factors
in this pattern our nomenclature conventions for the as-
sociated generators and coupling constants. '

The generators at each level in (3.2) are linear com-
binations H=g, c;G; of those at the previous level, and
the corresponding couplings are related as
h =g; (g, /c, ) . In particular, the electric charge
generator

g T3 + T3 + T3'+ T3'+( z )1/2U15+( 2 )1/2U15
L (3.3)

of the final unbroken U(l)EM subgroup is a combination
of elements in the Cartan subalgebras of SU(2) L R,
SU(2)L R, and SU(4)L R. The corresponding relation
among these groups' coupling constants

g2L(P +g2R(I ) +g2L(P) +g2R(P)

+ ', «L(I ) '+ ', g4R(-I ) '- (3.4)

fixes the GUT scale value of the weak mixing angle:

e(MARUT )
sin 011,(MoUT) = =0 1875 .

g2L(MGUT)
(3.5)

The ranges of the SO(10},SU(4}, SU(3}, and SU(2} generator
labels 0., A, a, and i are, respectively, 1 —45, 1 —1S, 1 —8, and 1 —3.

8 10R

&MoUT

SU(4)L XSU(2)L XSU(2)L XSU(4)R XSU(2) XSU(2)'
UR

R R
4L g2L g 2L ~4R g2R g 2R

SU(4)L+R X SU(2)L X SU(2)R X SU(2)LR

g4 g2L g2R 82|.A,
SU(3)L+R XSU(2)L XSU(2)R XU(l)L+R

U& T Ti g —T3'+ (
2 )1/2U15

L R 3

82L

SU(3)L+R XSU(2)L XU(1)r
O' TL Y/2= TR3+S

JUL

SU(3)I. +R X U(1)EM
O' g = TL+ I'/2
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Since the SU(3)XSU(2)XU(l) content of the fermion
representation (3.1) in the SO(10)X SO(10) model is iden-
tical to that of (2.1) in the SU(5) XSU(5) theory except
for an additional electrically neutral SU(2)I XSU(2)z

I

singlet field, we have again found a value for
sin 0~(MGvT) which is precisely half a large as in the
Georgi-Glashow model. But the behavior of sin 8~
below the unification scale is qualitatively different:

sin 0~(p) = '

g2I

g 21.

I
g 2I.

1

2

2
+3

g4

2

+ 2 g2L,

4L

2 g2I.

&4R

+C —P —+IR ~

2 ~ +I.R —I —'" GUT
(

(3.6a)

(3.6b)

2 12, VR P "~C& „A (3.6c)

g2L,
VI —P —VR .( (

(3.6d)

r(I~, ~+e -
) (3.54X10I"(K+~@+v„)

restricts A& ~ 10 GeV. Finally, the unification scale
M~UT must be sufficiently large to allow for an accept-
able proton lifetime.

It is useful to imagine constructing a low-energy

(3.7)

In (3.6a), the SU(2) couplings g2I, g2z, gzL, and gzz are
all asymptotically free and increase as they run down in
energy. However, the SU(4) couplings g4L and g4~ in-
crease even faster. So the denominator in (3.6a) decreases
and the total fraction grows larger for p &MARUT. This
rising trend continues until the A~ scale is reached. At
that point, sin 8~(p) begins to decrease and continues
downward all the way to p=MZ. The final sign and
magnitude of the net change in sin 0~ depend in detail
upon the numerical values of the various intermediate
scales and p functions of the couplings appearing within
the multilevel pattern (3.2). But we at least see how an
enhancement of the weak mixing angle may be achieved
in principle [17,18].

Unification by itself cannot uniquely determine all the
symmetry-breaking scales in (3.2). However, a number of
phenomenological considerations restrict their values.
Firstly, K-K mixing places lower Inass limits of 1.6—2.5
TeV on 8R gauge bosons in manifestly left-right sym-
metric SU(2)L X SU(2)z X U(1) theories [19,20]. There-
fore, vR must lie at least in the multi- TeV region.
Secondly, limits on the lepton family number violating
decay KL —+p+e provide a bound on the Ac scale, for it
is mediated by SU(4)L +~ gauge boson exchange. Includ-
ing renormalization effects [21], we estimate that the
branching fraction limit [10]

effective field theory at each symmetry-breaking stage in
pattern (3.2) in order to simplify the renormalization-
group analysis of coupling constant evolution. Particles
that can acquire masses at a certain scale are integrated
out together and do not contribute to subsequent renor-
malization group running. We thus find the following
one-loop gauge boson and fermion contributions to the
U(1) and SU(n) P functions P(g„)=b„g„/16':

bi =-,'&v

(3.8)

11n 4——X
3 3

It is then straightforward to integrate the
renormalization-group equations to obtain a linear sys-
tem of equations that relates the three high-energy quan-
tities a,o(MGvT) =g,o(MovT) /4~, ln(MovT/Alz), and

ln(Ar z /A&) to the three low-energy parameters
sin Hw(Mz ) aEM(Mz ), and a, (Mz ):

Ordinary quarks and leptons are singlets under SU(2)L+ +,
while their seesaw patterns acquire heavy masses and decouple

at the A«scale in (3.2). There is consequently no fermion con-
tribution to the SV(2)1+zP-function coefficient bz.
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b2L

2 2b4L

b2L

b4

2L+ —', b4L b2L+b2+ —,b4 2w/a ip(MoUT )

lnMoUT /AL~

1nAI ~ /Ac

2~ cos 0~(Mz )/aEM(Mz )
—(b i +b2 )»Ac «z br» "w /Mz

2' sin 8~(Mz )/aEM(Mz) b2L, InAlg / z
2~/a, (Mz ) b3l—nAc/Mz

(3.9)

Unfortunately, no consistent solution to this matrix
equation exists which satisfies the phenomenological re-
strictions on the intermediate scales and reproduces the
high precision numbers in (1.1). A fit for the GUT scale
parameters based upon the inputs vR =5 TeV, Az =1000
TeV, and ALR =100000 TeV yields the results

a ip(MoUT ) =0.025

MGUT 1.3 X 10' GeV,

which imply the Z scale values

sin 0~(Mz ) =0.197,

a '(M )=124 3,
a, (Mz)=0. 137 .

(3.10)

(3.11)

IV. THE SU(4) X SU(4) X SU(4) MODEL

The prototypical example of a unified Gc XGL XGR
theory is the SU(3)c XSU(3)L XSU(3)z model [22].
This amusing "trinification" theory has been studied in
the past as an alternative to SU(5) and SO(10) unification.
The SU(3) model, however, cannot accommodate a
heavy SU(2)I XSU(2)z partner for each standard model
fermion. So we are led to consider the next simplest pos-
sibility based upon the gauge group

G =SU(4)c X SU(4)L X SU(4)~ (4.1)

which is supplemented with a cyclic Z3 symmetry to en-
sure equality among the separate SU(4) coupling con-

The match between these theoretical numbers and the ex-
perimental measurements in (1.1) is obviously poor.
Nonetheless, we see that the basic strategy of embedding
part of the hypercharge generator within an asymptoti-
cally free subgroup has led to an increase in sin Hii. (Mz)
over its unification value [18]. This trick must generally
be employed in any unified universal seesaw model.

At this point, we could explore other symmetry-
breaking schemes for the SO(10)XSO(10) theory in

which manifest left-right symmetry is broken at an earlier
stage than in pattern (3.2) so as to further enhance the
value for sin 0ii, (Mz). Alternatively, we could continue
to search for a phenomenologically viable chiral GL X GR
model based upon an even larger group such as E6XE6.
But we turn instead to explore a somewhat different
theory with the gauge structure Gc X GL X GR in the fol-

lowing section.

stants. This theory represents an obvious generalization
of SU(3) trinification as well as the
SU(4) c X SU(2)I X SU(2)~ Pati-Salam model [9]. Indeed,
Pati and Salam originally proposed G as a possible global
symmetry of nature in which lepton number plays the
role of a fourth color. The similarities and differences be-
tween our model and these others that have been studied
in the past will become evident as we proceed.

Embedding the standard model subgroup within SU(4)
is straightforward. We take a generalized set of Gell-
Mann matrices as generators of SU(4)c. The first eight
members of this set are associated with color SU(3), while
the fifteenth matrix

U15
C

1/2
3

2

1

6

1

6
(4.2)

generates a commuting U(1)c factor. For SU(4)~z, we
use the set of 4X4 Pauli matrices

1 J 1 JP ~ a~ . .=12 3
2i 2 2i/2 2i 2

as normalized generators. The linear combinations

(4.3)

cr;(I+r ) 1
o'

T'
L, R 4 0

o'(1 —r ) 1TL, R 4
(4.4)

1/2
3~ 3 3~ 2Q=TI +TI. + TR+ T~ + — Uc

3
(4.5)

as the generator of electromagnetism. This definition im-
plies

sin Oii, (MoUT) =
—,', =0.2143

While this GUT scale value is still below the Z scale mea-

1

2&2

belong to an SU(2)L z XSU(2)L z XU(1)z z subalgebra
of SU(4)L z. Weak SU(2) and its right-handed analogue
are identified as SU(2)I and SU(2)z. Finally, we choose
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surement

sin Oii, (Mz) =0.2325,

it is certainly closer than the corresponding

sin 8ii, (MoUT ) = —,', =0.1875

d2
Vc~(4, 4, 1)=

3

IO

u, D, U

u2 D2 U2

u3 D3 U3

v E N 'L,

I+ JO J+

(4.8a)

that we found in the SU(5) X SU(5) and SO(10)XSO(10)
models. So we already see one clear advantage of the
SU(4) theory over its predecessors.

Gauge bosons in this model transform according to the
45-dimensional representation

O'L~ (1,4, 4)=
IOc J— JOc

K E+ L, L, +

K ' l, I
d d e1 2 3

(4.8b)

g- (15, 1, 1)+(1,15, 1)+(1, 1, 15), (4.6) u u1 2 u v3

D' D' D' Z'
1 2 3

(4.8c)

9'- (4,4, 1)+(1,4, 4)+ (4, 1,4) . (4.7)

One generation of left handed quarks and leptons along
with their seesaw partners fit snugly inside (4,4, 1), while
conjugate fields appear in (4, 1,4). The remaining (1,4,4)
contains a new set of leptons. A11 these particles' colors,
favors, and electric charges are indicated in the matrices
below:

which automatically remains invariant under cyclic Z3
permutations. In the fermion sector, a single family of
left handed fields is assigned to the anomaly-free but
complex representation

U, U, U, N'

There exist a number of potential symmetry-breaking
chains that start from the GUT group and end
with the standard model. The simplest schemes which
retain manifest left-right symmetry down to the
SU(3) X SU(2) XU(1) subgroup do not sufficiently
enhance sin 0~ as it runs down in energy to reproduce
the measured Z scale values. However, if left-right sym-
metry is broken either spontaneously or softly at the first
stage, then we can find viable breaking patterns that lead
to phenomenologically interesting results. One such pos-
sibility is

SU(4)c X SU(4)L X SU(4)~
1AI —MoUT

SU(4)c XSU(2)1 XSU(2)1 XU(1)i XSU(4)~

SU(4)c XSU(2)1 XSU(2)1 XU(l )L X SU(2)~ XSU(2)~ XU(1)~
c

SU(3)c XU(1)c XSU(2)L XSU(2)L XU(l)1 XSU(2)~ XSU(2)~ XU(1)~
1+LR

SU(3)c XSU(2)L XSU(2)~ XU(1)i~ XU(1)c
LvR

SU(3)1+~ XSU(2)L XU(l)i,
J vL

SU(3)L+z XU(1)EM .

(4.9)

The renorrnalization-group analysis of coupling con-
stant running in this pattern is similar to that described
in the preceding section for the SO(10)XSO(10) model.
The only qualitatively new feature that we include in the
SU(4) analysis is scalar contributions to P functions.
These come from the Higgs sector of the theory which we
will discuss in detail shortly. The results of the
renormalization-group analysis yield a range of values for
the symmetry-breaking scales in (4.9) that reproduce the
standard model parameters in (1.1) and satisfy all other
phenomenological constraints. For simplicity, we merge
the intermediate Az and A& thresholds together and
quote a set of representative values for these scales:

A~ =MGUT =6.47X10" GeV,

Az =Ac =2.07 X 10 GeV,

AL~ =1.0X 10 CzeV,

u& =5.0X 10 GeV,

UL =2.46X10 GeV .

(4.10)

The evolution of sin 61~ for this choice of scales is illus-
trated in Fig. 1.

We now consider the minimal Higgs content of the
SU(4) model needed to perform the several stages of
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symmetry breaking in (4.9) and to provide fermion
masses. The 6rst three steps result from vacuum expecta-
tion values of the adjoint 6elds in

0.26

@=4&c(15,1,1)++I(1, 15, 1)+4ii(1,1, 15) .

These scalars' VEV's,

(4.11)

0.24

0.22

(4.12)
0.20

2

I

I

6

logto(p/Gev)

I I I I I I k

8 10

(C, )=A,
—3

FIG. 1. Evolution of sin 0~(p) over the range
Mz & p & MGUT in the SU(4) model. Dashed lines mark the lo-
cations of the intermediate U~, AL&, and Az =A& scales.

break the separate SU(4) factors in 6 as
breaking. The PL„and PL~ fields are presumed to ac-
quire the distinct vacuum expectation values

SU(4)~ g = SU(2)L it X SU(2)l ii x U(1)L„~, (4 1») 0 0 0 0
0 o o

&Plz&= o o o o(+c &

SU(4)c:SU(3)c XU(1)c . (4.13b)

(4.15)
The SU(2)z and SU(2)z subgroups under which the

seesaw fermions transform are subsequently reduced at
the A«scale to the diagonal U(1)1z generated by
SL~ = TL + T~. We introduce two sets of scalars,

0 0 Ui 0

0 0 0 0
OA O

0 0 0 0

(41,4, 1)+p ~(L1,4, 4)+$ («4, 1,4), (4.14)

labeled by the flavor index I=u, d to accomplish this
Heavy Dirac masses for the U, N, D, and E fermions are
then generated via the Yukawa interaction

Xv„k,„,(P )=f Tr[('Pz )(c4, 1,4)CV«(4, 4, 1)(t' ~(11,4, 4)+(4 ~)c(4,4, 1)CV«(1,4,4)(t«(4, 1,4)

+ (4 )(1,4, 4)CV (4, 1,4)$ (4, 4, 1)]+H.c. (4.16a)

We also give O(A«) masses to the new leptons in (4.8b) through a second Yukawa term

Xv„k, ,(X)=—Tr[(VCL )(4,4, 1)C+«(4,4, 1)X«(6,6, 1)+(%1~)(1,4,4)CV«(1, 4, 4)X«(1,6, 6)

+ (%iic )(4, 1,4)CV«(4, 1,4)X~c(6, 1,6)]+H. c. , (4.16b)

which antisymmetrically couples fermions to the addi-
tional Higgs Geld

&=Xcl.(6 6 1)+X«(1 6 6)+XRC(6 1 6) .

The only components of X that may develop nonvanish-

ing vacuum expectation values which do not break color
and electromagnetism but do violate U(1)L z are

Ii2] t12] [34] [34](Xi~)(i2), (X«)(3&), (X«)(i2) and (X«)(34) We choose
these VEV's to all equal Aiz.

The last two symmetry-breaking steps in (4.9) result
from the us and uI entries in (4.15) and
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0
0 0 0
0 0 0
0 0 0

Ui 0 0
(4.18)

partners. The final forms of the quark and charged lep-
ton mass matrices appear as

M U
—ter 0 f UR t

0
0

&0RC&= ()

0 0 0
0 0 vR

0 0 0
0 0 0 MdD dl' —0 f UR

DL . f"UL f'&L,R

(4.19a)

The Yukawa Lagrangian induces mixing between the
heavy seesaw fermions and their light standard model and

Ec
+

~charged Ii
leptons z +

~IL

L+

L +
L

f Ut

(f"+f")vR

jV

f UR

LR

(f"+f')UR

(f"+f")vL

~+LR

(f"+f )vt 0

g +LR

g +LR

(4.19b)

'We refrain from explicitly writing down the neutral lep-
ton matrix since it is larger and more complicated than
those exhibited above.

We should recall that the f", f, and g Yukawa cou-
plings are X&XX& matrices in fermion family space. As
we saw before in the SU(5) XSU(5) theory, it is useful to
invoke a parity symmetry P to constrain the forms of
these Yukawa matrices. We therefore follow Ref. [23]
and promote the discrete Z3 symmetry in our SU(4)
model to S3 through the addition of a parity operation
and its two cyclic partners. P performs a conventional
spatial inversion and swaps the SU(4)L and SU(4)R fac-
tors in the gauge group. Its action upon the
SU(4)c XSU(4)L XSU(4)R gauge fields

C"( xt )~ C( x, t ), —I."(x, t )~R„(—x, t ),
R "(x, t )~I.„(—x, t )

(4.20a)

forbids a CP-violating topological term from appearing in
the gauge part of the Lagrangian. In the fermion sector,
parity maps left handed fields into their right-handed
analogues which we express as left-handed conjugates:

%,R(x, t) C(%;R)*(—x, t)—,

Vcl (x, t) —C(VCL )'( x, t)= —C(+RC) —( x, t), —

+Rc(x, t) —+ —C(VRc)*( x, t)= —C(%'cL ) (
—x, t) . —

(4.20b)
Finally, the scalars transform under P as

@C(X,t)~@c( X, t), yLR(X, t)—+yL—R( X, t), PLR(X, t)~(P~~R—)t( X,t), —

~'I. (» )~+R(,t), ycL, (x, t)~yRc( —x, t), P c(Lxt)~(P R)c( x, t), — (4.20c)

@R(x,t)—+C&L( —x, t), y R( ctx) —+yt~L( —x, t), P R(cxt)~(P cL)t( —x, t) .

It is straightforward to check that the Yukawa interac-
tions in (4.16a) and (4.16b) remain invariant under parity
only if the f and g coupling matrices are Hermitian.
The fermion mass matrices can thus be complex, but
their determinants are real. So 8=8QcD+QFD vanishes
at tree level, and the SU(4) model provides a possible

solution to the strong CP problem.
We next diagonalize the fermion mass matrices in

(4. 19a) and (4.19b) neglecting small intergenerational
mixing between families. The masses of standard model
quarks and charged leptons fix the diagonal elements inf",f, andg:
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VLVR

md =0.009

m, =0.181

mb =4.5

e+

0.0007
0.0147

+LR

VL VR

0.0004
0. 1218

m„=0.005

0.3654

m, =1.5

10.556

m, =130

(4.21)

the unification scale M~UT =6.47 X 10" GeV. This mass

seems much too light to yield a proton lifetime consistent
with the experimental lower limit [10]

zz) 5X10 yr . (4.22)

FIG. 2. Dominant contribution to proton decay from y scalar

exchange in the SU(4)' model. Primed and unprimed fields

denote mass and gauge eigenstates, respectively.

+LR

(m„+md )

m, +md

(m, +m, )

mp+m

However, the diagram in Fig. 2 is further suppressed by
O(us/AIR) as a result of seesaw mixing between fer-

mion gauge and mass eigenstates. Such seesaw suppres-
sion of proton decay is generic in all unified seesaw mod-

els. Naive dimensional analysis yields the proton lifetime
estimate.

(m, +mb)
m~+mb

16~
Tp

'M4
x

mp
(4.23)

0.0017
0.7998

233.9

We have numerically evaluated these matrices using the
indicated GeV quark masses and the scale values in
(4.10). The resulting Yukawa couplings for the first and
second families are reasonable in size. Unfortunately, the
results for the third family are corrupted by the huge top
quark mass. The large value for m, can of course be
oft'set by adjusting the inverted seesaw prefactor in (4.21).
But then we are left with very small Yukawa couplings
for the lightest quarks and leptons as in the standard
model. So to avoid a nonperturbative top quark Yukawa
coupling, we must either diminish the hierarchy between
the VL, VR, and ALR scales or else introduce additional
scalar fields to provide greater flexibility in the scalar sec-
tor. Neither of these options is attractive. Further study
is clearly needed to determine whether a more elegant ex-
planation for the ferrnion mass hierarchy can be
developed in this model.

Finally, we investigate proton decay in the SU(4)'
theory. Recall that left-handed standard model fermions
and antifermions appear in separate multiplets in (4.8).
Therefore, gauge boson exchange cannot mediate ferrnion
number violating transitions such as P —+~ e+. Proton
decay only proceeds through y scalar exchange graphs
like the one illustrated in Fig. 2. We expect the mass of
the y scalar shown in the figure to be on the order of

3Previous attempts to understand quark and lepton mass

hierarchies in the context of un-unified universal seesaw models
have been somewhat more successful. See Refs. [24—26j.

where g» is the Yukawa coupling for the first family in

(4.16b) while 16m. represents a two-body phase-space fac-
tor. Inserting numerical values, we find wz ——4.6X 10 yr
which is consistent with the bound in (4.22).

V. CONCLUSION

The SU(5) X SU(5), SO(10)X SO(10), and SU(4)
X SU(4) X SU(4) models that we have investigated in this

paper illustrate the basic features of all unified universal
seesaw theories. They generalize several well-known

GUT models that have been studied in the past. In addi-

tion, they provide a more natural basis for previously
proposed un-unified seesaw models and oAer a possible
resolution to the strong CP problem.

Many possible extensions of this work would be in-

teresting to pursue. Gauge boson mixing, neutrino
masses, and loop contributions to 0 should all be further
analyzed in these models. Moreover, a number of alter-
natives to the symmetry-breaking patterns that we have
considered here and which may well be phenomeno-
logically viable remain to be examined in the
SO(10) X SO(10) and SU(4) theories. Generalizations to

E& XE6 and SU(5) that maintain left-right symmetry
down to the standard model subgroup could also be con-
structed. In short, unified universal seesaw models
represent a new class of grand unified theories in which
there is much room for further exploration.
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