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Parametrization relating the fermionic mass spectra
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%hen parametrizing the fermionic mass spectra in terms of the unit matrix and a recursive matrix Ao,
which corresponds to an underlying scaling pattern in the mass spectra, each fermionic sector is charac-
terized by three parameters: k, o;, and R. Using the set of relations displayed by the parameters of the
different sectors, it is possible to formulate a "family Lagrangian" which for each sector encompasses all

the families. Relations between quark masses are furthermore deduced from these "family Lagrang-
ians. " Using the relations between the parameters of the different charge sectors, it is also possible to
"derive" the quark mass spectra from the (charged) leptonic mass spectrum.

PACS number(s): 12.15.Ff

I. INTRODUCTION

The fermion masses do not seem to bear any simple
mathematical relation to each other. Yet, in the standard

odel (SM) the same mechanism is responsible for gen-
erating all the fermion masses, so one would expect to
find traces of some common underlying structure. But
not even the only obvious pattern displayed by the fer-
mion masses, namely, the family structure, is predicted
by the SM, where the families are all treated on the same
footing. This is because in the SM the gauge invariance
does not supply any constraints on the Yukawa cou-
plings, whereby the quark masses and mixing angles are
left as free parameters.

There have been many attempts to constrain the Yu-
kawa couplings, either by introducing extra symmetries
or simply by postulating some "plausible" quark mass
matrices. A central motivation in this search for fermion
mass matrices is the hope to find an ansatz that would
give a hint of some underlying mechanism —a common
structure hidden in the fermion mass spectrum.

Instead of looking for a certain ansatz for the mass ma-
trices (in the weak basis), I have studied the diagonalized
mass matrices in their corresponding mass bases, i.e., the
mass spectra. My hope was to find some parametrization
of the fermion mass spectrum that would possibly reveal
some underlying relations both within and between the
sectors. Speculating that there is an underlying scaling
pattern in the mass spectra, I express the fermion mass
spectra DJ =diag(rnid„ml2, rnl3), where j runs over all the
fermionic charge sectors, as

1 0 0
D =ct. 0 R 0 . +k.I=%0+k I,

0 0 R.J
where I is the unit matrix and k, a, and R are func-
tions of the mass eigenvalues. With some assumptions
about the relations between the parameters k„d and the
mass eigenvalues m„d, this allows a set of relations to be
established between the parameters of the different sec-
tors, such as al /ad =a„/e&, R„/Rd =Rd /RI, and

k& =k„kd /Qk„—kd. I begin by introducing the param-
etrization, accounting for how it makes it possible to ex-
press the fermion mass spectra in terms of k„and kd. I
then make use of the parametrization (1) in formulating a
"family Lagrangian density, "

X„=if„y„d"g„(P+Rm—„,)g„g„, n =1,2, 3,
which for each sector includes all the families. Addition-
al relations between the parameters of the different sec-
tors are found, expressed in mass eigenvalues the rela-
tions between the parameters of the quark sectors
can be formulated as m, =m, /( md +m„) and
mb=m, /(md —m„). I furthermore express the quark
mass spectra in terms of the (charged) leptonic parame-
ters: with the leptonic masses as input, quark mass
values can be "derived" that agree well with "experimen-
tal" (running) mass values [1,2] for d, s, b, u, and c; and a
top mass value of the order of 120—180 GeV.

Parametrizing the neutrino sector in the same way as
the charged fermion sectors leads to the relation
m ~2m, and when inserting the upper bound limit

P
value [3] of m, a limit on the m is obtained, which

P r
agrees with the ~-neutrino limit deduced from primordial
helium considerations [4].

I also consider the form of the quark mass matrices
when the mass spectra are parametrized as in (1), these
mass matrices can be expressed in terms of the leptonic
parameters and projection matrices in Aavor space.

The approach proposed in this paper is quite different
from the mass matrix procedure usually found in the
literature. One of the most popular mass matrices is that
of Fritzsch [5]. It advocates a scheme where only the
mass of the third family is initially nonzero, and the
lighter families are endowed with masses through the so-
called radiative feed-down scenario.

Another popular approach is the democratic family
mixing [6] scenario. In this scheme, as in the Fritzsch
ansatz, it is the third family that is assumed to be pri-
marily massive. The two lighter families are assumed to
become massive only as the initially "democratic family
mixing matrix" of the so-called Nambu form,
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1 1 1

mp — 1 1 1

1 1 1

(2)

is modified, in order to obtain mass matrices with eigen-
values that correspond to the physical fermion masses.
In this scenario, the final mass matrices will have a form
where the primordial "democratic" origin remains ap-
parent, such that

Xo~R (i P'y"8„'P' —Rmop'f') =X, ,

X, is thus of the same form as Xo, with mo replaced by
Rm p. It can be interpreted as indicating a simple scaling
pattern, so that the existence of a Dirac field whose quan-
ta have mass mp implies the existence of other Dirac
fields whose quanta have the masses mpR m1R, . . . .
That is, "family Lagrangian density" X„of a given
charge sector can be expressed as

1 1 1 X„=iP„y"B„g„Rm—„ (10)
m=a 1 1 1 +A,

1 1 1

(3)

where the magnitude of the matrix elements of A is as-
sumed to be small compared to a. In my approach (1),
there are also two terms, one much smaHer than the oth-
er, in the sense that the k are assumed to be small com-
pared to the R, but the family structure does not emerge
like in the scenarios mentioned above, where the family
structure so to speak is built step by step from the initial
situation with one heavy and two massless states. In my
approach the entire family structure of a sector instead
appears at once, in one step.

II. SCALE TRANSFORMATION

X =i Py„B"P mgP, — (4)

and the Dirac field has dimension I= ——'„so under a
scale transformation

P transforms as

f~f'(x') =R ~ g(Rx)

and the Lagrangian density transforms as

X~L'=R (i g'y„B'"g' Rm g'g') . —

The family pattern is similar for all the fermion sec-
tors. There have been many attempts to interpret this
pattern; the most successful is possibly the radiative
feed-down scenario mentioned above. There have also
been attempts to understand the family structure as a set
of excited states, while still others believe that the fami-
lies can be understood in terms of some underlying hor-
izontal symmetry pattern.

My parametrization of the fermion mass spectra can be
related to some speculations made a long time ago, about
the possibility of interpreting the family pattern as result-
ing from some kind of "mass scaling" [7]. The Lagrang-
ian density for a Dirac field is given by

where n = 1,2, 3 is the family index.
It is clear that the fermion masses do not exhibit a

structure such as in (10). But is it conceivable that this
pattern could be traced in the mass spectrum of a fermion
sector, however, "blurred" by some (smaller) additional
contribution. That would mean that each fermionic mass
spectrum DJ =diag(mJ &, m&2, mJ3), hiding an "unblurred"
mass spectrum,

m =a

m2 =m1R,

should be on the form

1 0 0

D) =a 0 R~ 0 +k I=&oJ.+k~1,
0 0 R1

(12)

2
mj 1mj 3 mj2

(m. ,
—m 2) —(m.z

—m 3)

(m, —m.z)

(mi, —mJ2) —(m.2
—m. 3)

(m.2
—m 3)

R =
(m, —m ~)

(13)

j=d, u, l, v .

It is interesting to relate this parametrization to the
Aavor symmetries of the weak mixing matrix. The matrix
elements of the weak mixing matrix can be expressed by
means of projection operators in fiavor space [8],as

where the "additional contribution" k 3. is supposed to
be smaller than the first term, in the sense that
tr(%o ) =tr(DJ ) and

I tr(%'o, ) —[tr(%o, ) ]'I /2 = [tr(D,') —[tr(D, ) ]'I /2 .

The parametrization (12) fixes the parameters k, a,
and R, such that

Now assume that the scale transformation is discrete, i.e.,
the value of R in (5) is fixed, and consider the Lagrangian ~

V
~

=tr[P (m)P'(m')], (14)

+o='Coy„~"4o mo'I('oyo

corresponding to a Dirac field with mass mp.
Under the discrete scale transformation, Xo transforms

where P (m) and P'. (m') are the projection operators
corresponding to the mass matrices m and m' of the
charge —', - and —

—,
' -quark sectors, respectively. A projec-

tion operator projects out the appropriate flavor in any
frame, i.e., mP (m) =m P (m), where m is the mass ma-



48 PARAMETRIZATION RELATING THE FERMIONIC MASS SPECTRA 5325

D —+D. +qlL (15)

trix and m is the eth mass eigenvalue. That the projec-
tion operators are unchanged as the mass spectra change
by

generate "family" value, the k remain finite and
nonzero, whereas the a. and R vanish).

The different sectors are characterized by their mass
coefFicient k as well as by their charges. If we naively re-
late these "characterizing parameters" by setting

D —+qD (16)
k„Q„
kd Qd

(18)

w'here q is a coefficient, implies that the mixing matrix is
not a function of the absolute mass eigenvalues of the
quarks, but of the mass differences m —

m& and m'. —m&

and the ratios mjlmz and m~' /m. t It. is clear that R~ is
invariant under (16), while a and R are invariant, and
k ~k +q, under (15).

Note that we are not interested in the (singular-
looking) case where m, —m z

=m z
—m &, because then the

R =1 and the matrix %0 is proportional to the unit ma-
trix. The mass spectrum (12) should come about in such
a way that the family structure emerges at once in the
final step, with u nonzero and R different from zero and
from +1, so that no pair of equal masses occur. There is
thus no trace of any stepwise procedure as far as family
nondegenration is concerned. Likewise, the limit where
m

& /mz =m&/mz is excluded, as it corresponds to k =0,
that is, to the "unblurred situation. "

III. THE PARAMETRIZATION

In the SM, before the spontaneous symmetry breaking,
the fermions are massless and degenerate, whereby they
do not mix. Now suppose that in the first step of symme-
try breaking the fermions became massive but remained
degenerate within a given sector (up-type, down-type,
etc.). Thus at this nrst stage, there is still a "family de-
generacy" in each sector, whereas the SU(3)L XSU(3)z
chiral symmetry is broken down to SU(3)L+~ with the
introduction of these "primary" nonzero masses.

The degenerate primary mass matrix in each fermionic
sector is then of the form

1 0 0
Do =k 0 1 0

0 0 1

(17)

where the degeneracy of the Do's is to be subsequently
broken, in order to obtain the physical mass spectra and
a weak mixing matrix that differs from the unit matrix.
We know from experiment that the final mixing matrix
remains close to the unit matrix. Therefore, it can be
written as V= I+X, where the magnitude of the matrix
elements of X is much smaller than 1. This "close-to-
unity" structure of the mixing matrix is a further motiva-
tion for the actual approach.

The parametrization (13) indeed shows that a~. and R~
are pure "family symmetry-breaking" parameters. Only
the k can be though to be related to the first step of mass
endowment, with merely "sectorial Aavor symmetry
breaking, " which in the quark sector can be interpreted
as a predecessor of the breaking of the strong isospin (if
we let the masses in each sector approach the same de-

kd+k„
kd —k„3

which agrees with the numerical value

(m„—md )/(m„+md ) = —0.28 .

(19)

This can be considered as yet another argument for the
assumption (18).

If we accordingly suppose that

kd+k„
kd —k„

mu md

m„+md
(20)

we get that

(21)

The simplest interpretation of (21), namely, that
k„=—md and kd =m„, corresponds to the relations

kd+k~ mg md

kd —k„=m„+md,

which implies

(22)

cx ~ kd kg and Ad kd (23)

We can then express m„+md and its heavier colleagues
in terms of the family breaking parameters

m„+md =a„,
m, +m, =a„R„+ad(Rd —1),
m&+m, =a„R„+ad(Rd —1) .

(24)

The parameters of the d sector can be calculated from
(12), using the (running) quark mass values [1,2] (at p = 1

GeV)

md =8.9+2.6 MeV, m, =157+36 MeV,

mb =5.7+0.07 GeV

and (25)

m„=5.1+1.5 MeV, m, = 1..36+0.02 GeV,

we get that k„=—2kd. This is an accordance with the
expectation that

~ k„~ )
~ kd ~, in agreement with the

overall feature of the d-sector mass values of being small-
er than the u-sector mass values. In order to reAect that
m„&md, we may then choose that k„&0 and kd &0.
The strength of the strong isospin breaking measured by
(m„—md)/(m„+md ) would at this stage of the pro-
cedure then correspond to
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the numerical value of R„can be evaluated, and a top
mass value of the order of 120—180 G-eV is deduced.

Furthermore, with the whole body of quark mass
values inserted in (13) and (19), the measure of the
strength of the isospin breaking, (kd+k„)/(kd —k„), is
found to be about —0.27, which is of the same order of
magnitude as the —

—,
' of the relation (18).

IV. THK MASS SPECTRA IN TERMS
OF THE "PRIMARY" QUARK MASSES

So far, (12) is just a parametrization of the fermionic
mass spectra. Its relevance lies in the possibility of relat-
ing the parameters of the different sectors. It turns out
that, for the charged lepton (I) mass values

and parametrized in terms of the ratio cu =k„ /kd, with

(29)

[which according to (27) means that S/g= —a&k&], and
w~ h Du Du /kd& d Dd/kd& and DI Dl/kd~

1 0 0
D„=co I+(I —co) 0 g S 0 (30)

1 0 0

Dd =I—(1+co) 0 g S 0 (31)

O O q'S'
m, =0.511 MeV, m„=105.66 MeV,

m, =1782.4 MeV,

(26) BI=-
+co 1

1 0 0
ri)1 —(co —1) 0 g S 0

o o q4s'
(32)

the parameters of the I, d, and u sectors can be related as
follows:

it is clear that, in the limit where co —+1, the family struc-
ture disappears, since S—+0.

or

R„ Rd
(xi ki —k„kd, and

Rd RI

V. THK FAMILY LAGRANGIAN DENSITIES

The parametrization (12) of the fermionic mass spectra
can be reformulated as

a&=+a„ad =Qk„—kdz,

k„k„
kI=

V a, ad Qk„—kd

m, =k+a=P+Rmo,
mz=k+aR =P+Rm, ,

m3=k+aR =P+Rm2,

(33)

Ri =Rd /R„.

where mo=k+a/R and the k, R., and a are given by
(13), and P =k.(1—R ). This means that the masses can
be considered as functions of R:

Again making use of the idea that the fermionic sectors
are primarily characterized by their k- values and their
charges, it is interesting to note that we can alternatively
express the leptonic parameters in terms of k„d and the
charges, in the sense that

m ) (R)=P+Rmo =k(1 —R)+Rmo,

m~(R)=P+Rm, =k(1 —R)+Rm),
m3(R)=p+Rm2=k(1 —R)+Rm2,

(34)

Q,a, = 2Q„I, , —

Q(k, =Q„k„+Qdk„
(28)

which permits us, while mo is considered as a constant,
to interpret the k I term in (12) as the extremum matrix
(the j indices suppressed):

so that Q, m, =Qdk„—Q„kd.
In (23), (27), and (28), k„and kd appear as "generat-

ing" the a's and k&. Is it conceivable that the family
structure could simply be due to this initial "breaking of
the sectorial symmetry"?

In this perspective, k„and kd are "primary, " they
should thus be explained by means of some fundamental
structure. One conjecture is that the origin of k„and kd
would be the "quark-antiquark condensates" (uu ) and
( dd ), the "quark-antiquark condensate" ( qq ) is invari-
ant under flavor SU(3) transformations, but not under
SU(3)1 X SU(3)z (and in the limit m„=md =0, both k„
and kd are negative).

If we express the u, d, and I spectra in terms of k„and
kd, that is, if we consider the spectra normalized in kd

extremum

m, (R)
0 m2(R)

0

0

m3(R) ~am„xa~ =0

n =1,2, 3 . (35)

m, =% (mo) =P+Rmo,

m2=% (m, )=P+Rm, =P+RP+R mo, (36)

m3=% (m2)=P+Rmz=P+RP+R P+R mo,

Furthermore, in the parametrization (33) the masses can
be regarded as generated by a "mass boost" X, such
that
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where the P's, R's, and ma's are as given above.
This permits us to introduce, in analogy with (10),

starting from the "initial" Lagrangian density

Z, =ipse„ai q —m, qy,
the "family Lagrangian density"

m S
mb=

md mu

m 2

kd+k„

m C

m, =
md+m„

m
C

kd —k„

which leads to the relations

(44)

ig„.y„B"P„—(P+Rm„, )g„g„, (37)

where m„, n =1,2, 3 are the fermion mass eigenvalues
within the given charge sector. According to (27),
R„=Rd/R&, and with the mass values (25) and (26) we
also have that

—Qim„
Q„kd+Qdk„

(45)

In the same spirit as in (28), the corresponding leptonic
expression would be

P. = Pd/P—i . (38)

X3=ipy r)"p p(1+R—)gp .

(39)

However, when Lz and X3 are simply considered as part
of a series of Lagrangian densities, with mass terms

In the limit where the first family is massless, the mo
satisfies mo= —P/R. Still with a massive first family,
these relations are approximately satisfied, and
mo = —P/R. So the form of the "family Lagrangian den-
sity*' in the chiral limit of the light fermions is also possi-
bly relevant for the massive case.

Vanishing masses in the first family corresponds to

VI. QUARK MASS VALUES "DERIVED"
FROM THE LEPTONIC MASS VALUES

Since the lepton masses so to speak exist at an other
ontological level than the semitheoretical, semiempirical
objects that are the quark masses, one way of testing the
obtained relations between the parameters of the di6'erent
sectors, is to attempt to express the l, d, and u mass spec-
tra in terms of the leptonic masses.

Using the relations (27), I express all the spectra in
terms of the parameters k& and F= —p

—+p +4, where

p = a& /k&. Rewriting R
&
/R d =R„/R „as

(. . . ,X,X ) =(. . . , Pfg, —P(1—+R)gg, . . . ), (40)

the predecessor ofXz in this "series" (40) should have the
mass term

Rd =gR(,
R„=g R(,

where

(46)

m& (1+R)
2

2+F '

1md=—
2

0 r

P + P
1+R

u
1+R

0 (42)

It turns out that the coefficient P/(1+R) is "relevant, " in
the sense that from the parameters P„,Pz and R„,Rd,
corresponding to the chiral limit of the light quarks, the
nonzero masses m„, and md can be "deduced, "as

P P
1+R 1+R

1 0

Dd =6 FI+ (2+F) 0—i}Ri
0
0

0 0 gR

the spectra expressed in terms of the lepton masses are

1 0 0
I+ (/4 F0 Ri 0—

&4 F'—
0 0 R

(48)

With a massless first family and the following quark
mass values for the second and third family, m, =150
MeV, mb =5.7 GeV, m, =1.35 GeV, and m, =130 GeV,
we get, according to (42), md =8.9 MeV and m„=5
MeV.

In terms of mass eigenvalues, this "prediction" corre-
sponds to the relations

m, mb
2

m, =
2mdmb m 2

and

1 0

D„=G —2]L+(2 F) 0 i} Ri—
0 O q4R'

G= k(

2E

(50)

(51)

m S
md mu+

mb
(43) Using the charged lepton mass values (26), this parame-

trization corresponds to the quark mass values
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md =8.8 MeV, m, =145 MeV, mb =5542 MeV,

(52)

m„=5.2 MeV, m, =1365 MeV, m, =135 GeV,

VIII. THK NEUTRINO MASS SPECTRUM

Even with the assumption that the neutral leptons are
massless, m =0, j=e,p, ~, the neutrino mass spectrum

J
can sti11 be written as

corresponding to running (1 GeV) masses [1,2].

VII. DEPENDENCE ON ONLY TWO LKPTONIC
PARAMETERS

1 0 0
B =k I+a 0 R 0

0 0 R

(61)

'1 0 0
D„=G —21+(2—F) 0 g S 0

0 0 gS
where

(56)

k(

2F

If R& is expressed as a function of the other leptonic
parameters, i.e.,

RI =g S,
the mass spectra can be expressed as functions of only m,
and m„(and m, is "predicted" from the formalism). The
mass spectra then take the form

1 0 0

D, =G I+&4 F' O —q'S O, (54)

il
~4

1 0 0

Dd =G FI+(2—+F) 0 g S 0 (55)

0 0 S

Even in the massive case, m presumably is quite small,
e

hence a = —k, . Inserted in (62), this leads to

m „=2m —m /k
P P

(63)

a = —k, also implies that m = k„(1—R ) and

m = k (1—R ). In any case, R ~ 1, which means that

in order to have positive masses k must be negative,
which according to (63) means that m ~2m . A v„

P
mass value less than 0.27 MeV [3], gives 2m (0.54

MeV. This corresponds to a limit on m in accordance
with the ~-neutrino range

0.5 MeV(m &0.74 MeV

deduced from primordial helium considerations [4].

IX. THE QUARK MASS MATRICES

where, in the massless case, R =1 and o.„=—k . If we
instead assume that the neutrinos have nonzero masses,
the m and m are related by

P

(m —k ) +a,k
(62)

2

2+F (59)

With the mass spectra given by (12), the mass matrices
m and m' of the charge —,

'- and —1/3-quark sectors cor-
respondingly, take the form m. =kj I +A~, which in the
mass basis of the —', sector corresponds to

and F= p t/p +4, w—her—e p=al /k&.
Like el and k&, the parameters uzi and kI satisfy the re-

lations n&+ki=m„etc. , but these parameters can no
longer simply be determined by (13). If we suppose that
m, and m„are given, and we equate g S with

R, =(m„—k)/(m, —k),

1 0 0
m =D„=k„1L+a„O R„O

0 0 R„

m'= VDd V~,

(64)

(65)

k can be found, and thereby cz as we11. With m, and m„
fixed, we can thus "derive" a m value, m, =1832.3
MeV. Furthermore, with these al and kl values we get
another set of quark mass values: viz. ,

md =8.5 MeV, m, =145 MeV, mb=5677 MeV,

where Dd is given by (12), and V is the weak mixing ma-
trix. Explicitly, m' can be written as

m =~d I+~dF1 +~dRdF2+ ~dRdF3

where F, j= 1,2, 3, are projection matrices, given by
r

(60)

m„=5. 1 MeV, m, =1357 MeV, m, =138 GeV .

These values of md, m„mb, m„, and m„as well as the
corresponding ones in (52), obviously agree well with (25).

V1. 0

FJ = 0 V2.

0

0 1 1 1

OV. 1 1 1
3J

0

0

0 0

V2 0

0

(67)



48 PARAMETRIZATION RELATING THE FERMIONIC MASS SPECTRA 5329

That is, (F ) &= V . V&J, where V~ are
ments of the weak mixing matrix. Each
to a (mass) eigenstate, so naturally, since
trix is unitary, F1F3 0 F1F2
F1+F2+F3=I, and Fj Fj j 1 2 3.

the matrix ele-
F corresponds
the mixing ma-
and F2F3 =0,

X. IN AN ARBITRARY BASIS

The quark mass matrices (64) and (66) clearly retain
traces of their initial degenerate form in any basis,
presumably also in the weak basis. The transformation
from the mass basis of m to an arbitrary basis B, is made
by means of the unitary transformation matrix X„
whereby the quark mass matrices m and m' take the
form

1 0 0

X= 1 0 0
0 1 0

The matrices A and B then take the form

0 0 0 1 1 1 0 0 0
Ai= 0 1 0 1 1 1 0 1 0 =%PA],

0 0 0 1 1 1 0 0 0

(74)

(75)

ture of the B- is close to that of the A, because the
"close-to-unity" structure of the mixing matrix implies
that the V - that multiplies the X;. in each Z,", is close to
one, V.=1.JJ

In order to illustrate this, consider m and m' in some
basis which is reached from the mass basis of m by a sim-
ple unitary rotation such as, for instance,

0 0 1

and

m =X, k„I+a„O R„O
0 0 R„

X,

=k„I+a„A1+a„R„A2+a„R„A3
=6[—2I+(2 —F)( A, +R„A~+R„A 3 ) ]

(68)

(69)

0 0 0
0 0 0
0 0 1

1 0 0 1

0 0 0 1

0 0 0 1

1 1 1 0 0
1 1 0 0 0 =A, PA,*
1 1 0 0 0

1 1 1 0 0 0
1 1 1 0 0 0 =%~PA~,
1 1 1 0 0 1

(76)

(77)

m =X,(kd 1+adF, +adRdF~+adRqF3)X,
=kd I+ad B1+ad Rd B2+ad Rd B3

=G[ Fl+(—2 +F)( B+RgB~+RdB3)], (70)

01 1 1

1 1 1

1 1 1

0

(71)

where X, are the matrix elements of X„' and

Z1. 0 0

0 Z2. 0

P Z

r

Z1 0 0

BJ = 0 Z2J 0 1 1 1

0 0 Z„

where

where F and G are given in Sec. VI and A and B are
projection matrices with A; A =9, B;B =0 for i', and
A 1+A2+ A 3

=I, B1+B2+B3= I, AJ = AJ, BJ =BJ.
The matrices m and m' are formally similar, with A and
B., j=1,2, 3, 0 given by

X1 0 0 X1 0

0 X2 0 0 X*

0 0 X,j 0 0
L

and

0V32 0 1 1 1

V12 0 1 1 1

0 V 1 1 1

B2= 0

0

V32

X 0 V'„0 =X P%,*,
0 0 V22

B3= 0

0
V13 0 1 1 1

0

V31 0 0

0 V„O 1 1 1

0 0 V, 1 1 1

V31 0 0

X 0 Vf, 0 =$)%Sf
0 0

(78)

(79)

Z 1J V1J'X1 1 + V2J'X 12 + V3jX13

Z2j Vl jX21 + V2j X22+ V3j X23

Z3j V1jX31 + V2jX32 + V3jX33

and X;. and V," are the matrix elements of X, and the
weak mixing matrix, respectively. The "close-to-unity"
structure of the mixing matrix implies that the Z;. are, in
a sense, not so difFerent from the X;J. That is, the struc-

where

X 0

0 0 V23

1 1 1

1 1 1

1 1 1

V', 3 0 =%35'S3, (80)
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0 0 0
A)= 0 1 0

0 0 0

0 0 0
A,=000

0 0 1

(83)

etc. The only nonzero element in A, is A, (22), and corre-
spondingly in %t, the biggest element is %,(z2)

= V» = l.
Similarly the only nonzero element in A2 is A2(33) and

g2(33) V33 1 is the biggest element in X2; and so on.
In this sense the structure of A „Az, and A3 is similar

to that of %„Xz,and %3. It is the "close-to-unity" struc-
ture of the mixing matrix that brings about a similar pat-
tern in the B- and the 2, corresponding to a formal
similarity between the quark mass matrices I and m '.
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