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SO(10) cosmic strings formed during the phase transition Spin(10) ~ SU(5) xZ2 are studied.
Two types of strings, one effectively Abelian and one non-Abelian, are constructed and the string
solutions are calculated numerically. The non-Abelian string can catalyze baryon-number violation
via the "twisting" of the scalar field which causes mixing of leptons and quarks in the fermion
multiplet. The non-Abelian string is also found to have the lower energy, possibly for the entire
range of the parameters in the theory. Scattering of fermions in the fields of the strings is analyzed,
and the baryon-number-violation cross section is calculated. The role of the self-adjoint parameters
is discussed and the values are computed.

PACS number(s): 98.80.Cq; 11.17.+y; 12.10.Gq

I. INTRODUCTION

Motivated by the Callan-Rubakov efFect in the con-
text of magnetic monopoles [1], studies have been car-
ried out recently on the possibility that cosmic strings
can also catalyze baryon-number violation with strongly
enhanced cross sections. It has been shown that the wave
function of a fermion scattering off a cosmic string can
acquire a large amplification factor near the core of the
string, leading to enhancement of the processes that vi-
olate the baryon number inside the string [2, 3]. The
catalysis processes that have been studied include those
mediated by scalar fields and by the grand-unified X and
Y' gauge bosons in the string core. Although strings, in
contrast to monopoles, have no magnetic fields outside,
fermions can interact quantum mechanically with the
long-range gauge fields via the Aharonov-Bohm effect.
Depending on the flux of the string and the core model
used, the enhanced catalysis cross sections (per length)
can be of the scale of strong interactions in comparison
to the much smaller geometrical cross section hGUT,
where hGuT 10 GeV. In the early Universe when the
density of cosmic strings is high, such processes can play
important roles, washing out any primordially generated
baryon asymmetry [4], or conceivably even generating the
baryon to entropy ratio observed today.

Cosmic strings can be produced during certain phase
transitions when a gauge group 0 is broken down to a
subgroup H by the vacuum expectation value of some
scalar field P. The topological criterion for the existence
of a string is a nontrivial fundamental homotopy group
of the vacuum manifold G/H, denoted by 7ri(G/H). For
a connected and simply connected G, the general con-
struction of the scalar 6eld at large distances from the
string is given by

Here ~ is some generator of 0, 8 is the azimuthal angle
measured around the string, and g(0) and g(2vr) belong

to two disconnected pieces of H. In the papers referenced
in the previous paragraph, the scalar field responsible for
the formation of the string is taken to have the simple
form P(8) = e' ego = e'sPa. As a result, a non-Abelian
string can be modeled by a U(1) vortex, and the scat-
tering of fermions in the background fields of the string
is governed by the Abelian Dirac equation. In general
however, for a given $0, the generator r can be chosen
such that e'r Po "twists" around the string in more com-
plicated fashion than a phase e's times Po. This gives
rise to dynamically difFerent strings which are intrinsi-
cally non-Abelian [5]. One expects the complexity and
rich structure of such strings to lead to interesting ef-

fects on fermions traveling around them. In particular,
we will demonstrate in this paper that for certain r's,
the twisting of P(8) can result in mixing of lepton and
quark fields, providing a mechanism for baryon number
violations distinct from the processes in Abelian strings
studied previously.

Since no strings are formed in the minimal SU(5)
model, we choose the gauge group SO(10) [6] in this
paper as an example of grand-unified theories in in-

vestigating the 8-violating process. We will construct
string configurations, solve numerically for the undeter-
mined functions, and study the baryon catalysis in the
SO(10) theory, although we expect such processes to oc-
cur in other non-Abelian theories as well. In SO(10),
stable strings can be formed when Spin(10), the sim-

ply connected covering group of SO(10), is broken down

to SU(5)xZz by the vacuum expectation value of a
Higgs field P in the 126 representation [7]. It must be
pointed out, however, that the subsequent symmetry-
breaking SU(5) xZz -+SU(3) xSU(2) xU(1) xZz produces
magnetic monopoles which would have to be elimi-
nated to provide a consistent cosmological scenario.
If the monopoles were eliminated by inBation, then
the cosmic strings would also disappear. While other
symmetry-breaking patterns for SO(10) are possible, we

use Spin(10) —+SU(5) xZz because it produces strings in

the simplest way. The emphasis here will be on studying
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the particle physics.
The generators of SO(10) transform as the adjoint 45,

which transforms as 24+ 1 + 10+ 10 under SU(5). The
24 and 1 generate the subgroup SU(5) xU(l), where the
U(l) includes simultaneous rotations in the 1-2, 3-4, 5-6,
7-8, and 9-10 planes. We are interested in the generators
outside SU(5) because, to have noncontractible loops at
all, g(8) in Eq. (1) has to be outside the unbroken H for
some 8. We will refer to the U(1) generator as ~ u and to
any of the other 20 basis generators outside SU(5) as ri.,
we name the associated strings as string 7 ti and string
~i, respectively. As we shall see, the scalar field of string
wi causes mixing of leptons and quarks while string 7~i~ is
effectively Abelian and no such mixing occurs. Properties
of string r~u such as the string mass per unit length [8]
and its superconducting capability in terms of fermion
zero modes [9] have been studied. We will compare it
with string ~i, which will be the main subject of study
of this paper.

In Sec. II, we give more detailed discussion of the Higgs
126 and the breaking of Spin(10) to SU(5) x Z2, and elab-
orate on the B-violating mechanism due to the nontrivial
winding of the Higgs field. In Sec. III, we write down an
ansatz for the field configuration of each string and de-
rive the corresponding equations of motion. The numer-
ical solutions and the energy of the strings are presented
in Sec. IV, where we find that ri strings have lower en-

ergy than ~ ti strings, probably for the entire range of
the parameters in the theory. Having shown that such
strings are energetically favorable, we turn to the scat-
tering problem in Sec. V, where the Dirac equation in
the background fields of the strings is solved, and the
differential cross section for the B-violating processes in
string vi is calculated. We also comment on the role of
the self-adjoint parameters and compute their values us-

ing our string solutions. To establish a common notation
and to facilitate reading of this paper, we include in the
Appendix a discussion about the relevant aspects of the
spinor representation 16of SO(10), which accommodates
a single generation of left-handed fermions.

is Z2, therefore a Zz string is formed during this phase
transition. The subsequent symmetry breakings can be
implemented by the adjoint 45 of SO(10) and the funda-
mental 10 in the usual fashion:

Spin(10): SU(5) x Zz

:SU(3) x SU(2) x U(1) x Z2

: SU(3) x U(l), x Zz. (2)

This Zz string survives all the symmetry breakings since
Z2 is preserved at low energies.

The 126 representation consists of fifth-rank anti-
symmetric tensors satisfying the self-duality condition

'r~p = S~p + iA~p ) (4)

where n, P = 1, . . . , 5 label the matrix elements, and 8, A
are real 5x5 matrices, representing the real and imagi-
nary parts of 7.. Hermiticity and tracelessness of ~ require
+~p = Sp~, A~p = —Ap~, and TrS = 0. A natural way
to embed SU(5) in SO(10) is to treat five-dimensional
complex vectors as ten-dimensional real vectors, i.e. , re-
place the paired indices (n, a), where n = 1, . . . , 5 label
a five-dimensional vector and a = 1, 2 label its real and
imaginary parts, by the index i, i = 1, . . . , 10. Then,
the generators of the subgroup SU(5) of SO(10) can be
expressed as

The component which acquires an expectation value (P)
transforms as an SU(5) singlet, and to write it down ex-
plicitly, we first specify how the SU(5) subgroup is em-
bedded in SO(10). The fundamental representation of
SO(10) consists of 10x10 matrices, which can be labeled
by indices i, i = 1, . . . , 10. The generators of SO(10)
in this representation can be written as antisymmetric,
purely imaginary matrices. The generators of SU(5) in
the fundamental representation are Hermitian, traceless
5x5 matrices which can be written as

7~~ pQ = L(A~pI0$ + S~pM~b) )' (5)
II. SG(10) STR.INGS

There is considerable freedom in the breakings of
SO(10) down to the low-energy gauge group SU(3) x U(l).
Two commonly studied examples include the breaking
via an intermediate SU(5), SO(10)1SU(5), and the one
via an intermediate Pati-Salam SU(4) x SU(2) I, x SU(2) R
[10]. Details of the symmetry-breaking patterns and
the Higgs fields inducing the breakings can be found
in Ref. [6] and the papers by Slansky and Rajpoot
[11]. Kibble, Lazarides, and Shafi argued that the
strings formed during the phase transition SO(10)
~SU(4) x SU(2) L, x SU(2) R become boundaries of domain
walls [7]. Thus in this paper we choose the SU(5) break-
ing pattern instead for its simplicity. More precisely, we
study strings formed when Spin(10) —+SU(5) xZz by the
vacuum expectation value of a Higgs 126 P. The non-
trivial element of Zq corresponds to rotation by 27t in
SO(10). The homotopy group zi[Spin(10)/SU(5) x Zz]

f(&1"+5)(4 &1&1'''ASCE5) I ' i ~O'1C1g CX3&4CXg (7)

where p, is a parameter.
Some words about our notation. The tensor indices

i i, . . . , is of P;, ...,, will be suppressed for convenience and
legibility whenever no ambiguity should arise. In the

where I is the 2 x 2 identity matrix and M = io2, o z being
the second 2x2 Pauli matrix. One can convince oneself
that in this (n, a) notation, the rank-five antisymmetric
Levi-Civita tensor e~,~,~,~,~, which transforms as an
SU(5) singlet in the SU(5) notation becomes

~ f(a1" a5)
~&1A2 CL3 &4&5 9

where f(ai as) is defined to equal the number of a,
that takes the value 2. It is also straightforward to check
that this expression satisfies the self-duality condition
[Eq. (3)]. Thus (P) is written as
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expressions like rP and e' 9$ where r operates on P, r is
understood to be in the same representation of P; i.e. , r
is the shorthand for

&1'' &5/1'''$5 &1/1~&2/2 ~5/5 + &1/1 &2/2 &5/5 +

With the symmetry-breaking Spin(10)4SU(5)xZ2,
strings are formed. At spatial infinity, the general form
of P is given by Eq. (1). For the energy to be finite, the
covariant derivative of P, D„P = B~P+eA„Q, has to van-
ish at spatial infinity; therefore the gauge field A„ takes
the form A~ = i ,r, —A"= 0, as r ~ oo. In the core of
the string, there is a magnetic flux $ A dl = —,7. point-
ing in the direction of w in group space. Strings carrying
fIux pointing in different directions in group space are
topologically equivalent since the only nontrivial wind-
ing number here is one, but dynamically they can differ.
Because the scalar field P(8) varies with 8, the embedding
of the unbroken subgroup SU(5) in SO(10) outside the
string also varies with 8. More precisely, the generators
re, a = 1, . . . , 24 of the unbroken SU(5) at 8 are related
to the generators r0 of the unbroken SU(5) at 8 = 0 by
the similarity transformation

re =~(8)rog '(8) ~(8) =e"
Consequently, the fermion fields which transform as 1, 5,
and 10 under SU(5) are also rotated as one goes around
the string. How the fields mix depends on which direction
in group space $(8) winds.

The SO(10) generators can be written as 10x10 ma-
trices of the form (ra~),j = —i(hah' —6~6A), where a, b

label the group indices, i, j label the matrix elements,
and a, b, i, j all run from 1 to 10. In this notation ~ ~~ is
given by

1 2a —1, 2P —1 2a, 2P) n & p
2

Other than the SU(5) group properties, the linear com-
binations above can also be classified under the group
SO(4), which is locally isomorphic to SU(2) x SU(2). For
a given n and P where n ( P, the two generators of
Eq. (11) plus the diagonal

1
(

2a —1, 2a 2P —1, 2P)
2

can be easily shown to obey the SU(2) algebra. Similarly,
the two generators of Eq. (12) plus

1
(

2a —1, 2a + 2P —1, 2P)
2

(14)

generate another SU(2). Thus, for a given n and P (n &
P), the six generators of Eqs. (11)—(14) generate rotations
in the four-dimensional space spanned by vectors in the
2n —1, 2n, 2P —1, 2P directions.

III. FIELD CONFIGURATIONS

1
(

2a —1, 2p 2a 12p —1)
2
1

(
2a —1 2P —1+ 2a 2P) n(p

2
)

are all of the form of Eq. (5), and therefore can be chosen
to be the 20 off-diagonal generators of SU(5). Note that
the superscripts n, P above label the group indices while
the subscripts n, P in Eq. (5) label the matrix elements.
The 20 ri's outside SU(5) then can be expressed by the
other 20 linear combinations as

2a —1, 2P + 2a, 2P —1)
1

1 =——
2

r ii = (r12+7,34+ + r910)1

5
(10) The relevant part of the Lagrangian for the SO{10)

theory is given by
where the factor of 1/5 is included for P(8) to have a 27r
rotational period. It takes a little more effort to write
down the ri's. Let us first write the SU(5) generators
specified by Eq. (5) in terms of r given above. The four
diagonal generators are trivial. For the other 20 gener-
ators, one can group the 10x10 space into 2x2 blocks,
and write the 45 7-A~'s as 7

2a 1, 2P —1 r2a —1, 2—P r2a, 2P —1

and r2a 2P, where n, P both run from 1 to 5. Then it is
not hard to see that the 20 linear combinations

trF„F" + (—D„p)*(D"1t) —V(p), (15)

where F&v —— i F&~ra, A„=— i A~ra, F»— 0&A~ ———
0 A„+ e[A„,A ],D„= 0„+ eA„; A„, a = 1, . . . , 45,
are the SO(10) gauge fields and P is the Higgs 126. The
most general gauge-invariant and renormalizable poten-
tial V(P) contains all the distinct contractions of two and
four P's:

3JCV(4') = lgV'i i14'i5i15 + 2 (4'i1 "i5 it'i1 i5 ) + V34'i1n2n3n4n5 4'j1n"2n3n4n5 pi1e2e3e4e5 p j1e2e3e4e5

+ ~44'i1i2n3n4n5 ~j,j2n3n4n5 4i li2e3e4e5 ~j1j2e3e4e5 + 5~ii j2n3n4n5 4 j1i2n3n4n54 ili2e3e4e5 4 J 1je24ee35
+ 644142j3n4n54j j 1243gni41n42543e4e54j1j2j3e4e5 {16)

In writing down the v3 through v6 terms above, one has to
consider two things: (1) the possible ways to contract the
indices, and (2) which P's are to be complex conjugated.
One can deal with (1) without the complication of (2)
by adopting an equivalent real 252 representation for
P because a complex, self-dual 126-dimensional tensor

I

can be thought of as a real, 252-dimensional tensor by
dropping the self-duality condition and taking the real
parts of the resulting complex, 252-dimensional tensor.
One can see there are only four distinct terms and they
are terms v3 through vs in Eq. (16) above. Then when p
is taken to be complex, two out of the four P's have to be
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complex conjugated to make the potential real. There
are three possibilities: PP*PP*, P'PPP*, PPP*P", for
each of the four contractions PPPP when P is real. But
after the self-duality condition is applied, one can show
that only one of the three terms is actually independent.

The Euler-Lagrange equations of motion for P and A„
are given by

VD„D"P =—
T (&a 2) (g Fa pv + efabcgb gc pv)

(17)

where Pp = (P) as defined in Eq. (7). The boundary
conditions on the functions are

f(0) = 0, f(r) ":
S

g(0) = 0, g(r) ': 1,

V(P) is minimized at f = p, . Inserting this ansatz into the
equations of motion and using the relations r,llr, llpp =

and (rallpp) (r llpp) = pppp = 3840—:N, we obtain
two coupled difFerential equations for f(r) and g(r):

f"+ f' — —f = f(vi + 2Nv2f ),(1 —g)'

(21)

Tr(r ll) ~

g" ——g' = —2Ne (1 —g)f
where the prime denotes differentiation with respect to
r, and Tr(r2ll) =

&
from Eq. (10). An expansion of f(r)

l

= ie((D"4)'(r 0) —(r 4)'(D"4)), (18)

where a is not summed over, and where a basis has been
chosen so that Tr(r r ) = 6' Tr(r ).

We construct for string rail a solution of the following
form.

Ansatz I:

0 = f(r)e'""'4o = f(r)e"4
8 g(r)=2 7a,ll ~

Arlr14'p = 4'p

is generated, where

(24)

and g(r) in powers of r around the origin reveals that
f(r) is odd in r with a linear leading term, whereas g(r)
is even in r with a quadratic leading term.

Inserting Ansatz I for string 7'all into the Lagrangian
gives

gall ( all) t2+NfI2+N( g) f2
Tr~~2 ~ (1—

2+2+2 r2

+N(vi f + Nv2f ) . (22)

As a consistency check, note that the equations of motion
obtained by varying Za" with respect to the functions g
and f are identical to those in Eq. (21).

Note that the parameters vs through vs in the poten-
tial V are absent from Eq. (21) and 8 " above. This is
because whenever one index of a given P is contracted
with one index of another P, this index is summed over
from 1 through 10, or in the (n, a) notation discussed
earlier, from n = 1 through 5 and a = 1, 2. For a given
a, the term with a = 2 by definition has an extra factor
of i2 = —1 compared to the term with a = 1. These two
terms cancel each other when they are added. Because
this is true for every o., the third through the sixth terms
in V vanish identically for the string-7, ll ansatz.

To construct an ansatz for string ri, we need to con-
sider separately the two sets of generators in Eq. (12),
which will be referred to as

2a —1, 2P + 2a, 2P —1)1

2
(23)

(
2n —1, 2P —1 2a, 2P) ( p

1

2

As we shall see, it is sufficient to derive the equations of
motion for an ansatz based on a generator of the form
ri+ By a sim. ple redefinition, it will then be possible to
construct an ansatz based on a generator of the form 7.

q

For now, we consider the case when ri has the form ri+.
The simple extension of ansatz I with 7.

~~~ replaced by v.
q

does not work for string ri. The problem arises from the
term ririg on the left-hand side of Eq. (17) in which a
new tensor Pp,

Pp, , ...,, if two indices take the values (2a, —1, 2P) or (2n, 2P),
0 otherwise.

As a result, the differential equations for g(r) and f(r) are satisfied only if g(r) = 1 or f(r) = 0 everywhere, which
is not consistent with the boundary conditions given by Eq. (20). (Note that the solution g = 1 and f = p is the
vacuum field configuration expressed in a singular gauge. )

We construct a nontrivial solution for string ri by replacing f(r)pp and r ll in ansatz I with [fi(r)pp+ f2(r)pp ] and
ri, respectively. Note that Pp is not orthogonal to &g because Pp+.. .,Pp.. .. g 0. Therefore instead of expanding P
in Pp and Pp, we will use the more convenient basis Pp and Pg where

yH y yA

and Pp is orthogonal to Pg:

(26)

~0 i1" i5 ~0 i1" i5 (27)
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From the definition of $0 [Eq. (25)] and the properties of $0, one can see that

if two indices take the values (2n —1,2p) or (2a, 2p —1),
0 otherwise~ ~

~ ~

~

~

~ ~

(28)

Zs, g(r)
er

4"=0,
(3o)

where, as will become clear in the next two paragraphs,
the functions f,(r) and f, (r) are named after their odd
and even parities in r.

At the origin, we require the fields to be regular. Since
&g is left invariant by e' ' [Eq. (29)] but $0 is not, at
the origin f, (0) can be any constant but f,(0) has to
vanish. At large r, the scalar field P has to take the form

p ei7gsy ei7ye(yA + yB)

and $0 is annihilated by 7i.

rid() ——0.B

The solution constructed for string rl is of the following
form. Ansatz II:

4= '"'(f.( )~."+f.( )~. ),

where e As = vs + ~4 + ~4 + p2, and Tr(ri) = 1 from
Eq. (12). An expansion of g, f„and f, in powers of r
around the origin gives

f, (r) = air + asr
f, (r) = a() + a2r

g(r) = bzr + b4r4 +
where the coefficients of all the higher terms are related
to ao, ai, and b2, recursively. The function f, is indeed
odd and f, even in r as claimed earlier.

Inserting ansatz II for string ri into the Lagrangian
gives

Tr 7-2gl ( i) )2+ {f)2+ f)2)
e r
N (1 —g)+
2 r2 fn + &|Lnse

where

for the unbroken gauge group to be SU(5), so both f, (r)
and f, (r) approach p, at large r. The boundary condi-
tions on the functions are

2+ 2 + 2+ 2 2

ee) (f2 f2) )2 (36)
f.(o) = o f.(r) "

f.(o) = a. f.(r) : S (32)
g(0) =0, g(r) ":1,

where ao is a constant.
The equations of motion for (t) and A„are closed when

the fields take the form in ansatz II. We obtain three
coupled differential equations for f,(r), f,(r), and g(r).
The algebra involved in extracting these three equations,
however, is considerably more tedious than in the r ))
case mainly because the forms of $0, $0, and ri are less
symmetric. We will not present the algebra involved and
simply quote the results:

f."+ „f.'—
= f, (22 + ~22(f, + f, ) — eA2(f, —f, )), —

fll + f) (1 g)
r

= f, (22+ ffee(f, + f)+ &&e Ae(f —f, )), ,

(33)

Tr(r,') i
g" —-g'

I
= —N&'(1 —g)f,')

Here again, note that the equations of motion obtained
by varying Zi with respect to the functions g, f„and f,
are identical to those in Eq. (33).

Now let us consider the other case when ri has the form
of ri . One can show that Eq. (24) now is ririgo = $0,
and instead of rico ——0, one has rico ——0. Therefore
by switching the definitions of ()))0 and ()))0 in Eqs. (25)
and (28), all the equations between (24) and (32) are
preserved, and one can show that the equations of mo-
tion are unchanged. We conclude that ansatz II applies
to all 20 ri's, where, for ri+, $0 and Po are defined by
Eqs. (25) and (28), respectively, but for ri, the defini-
tions of the two are reversed. The equations of motion
are given by Eq. (33) for all cases.

IV. NUMERICAL CALCULATIONS

In this section we present the numerical solutions to
the two sets of differential equations (21) and (33) with
the appropriate boundary conditions at the origin and
some large value of r. We implemented two methods:
the "shooting" and the relaxation methods to handle
this two-point boundary value problem. In the "shoot-
ing" method [12], an initial guess for the free parame-
ters at r = 0 was made and then the equations were
integrated out to large r where the boundary conditions
were specified. As the name of the method suggests, the
true solutions were found by adjusting the parameters
at r = 0 in the beginning of each iteration to reduce
the discrepancies from the desired boundary conditions
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at large r computed in the previous iteration. For string
ri, the small-r expansion of the functions in Eq. (34)
gives g(0) = g'(0) = 0, f, (0) = f,"(0) = f,'(0) = 0, and
f,"(0) = 2aq, where a2 is related to ao, ai, and bz, but
the values of

f, (0) = ao,
f,'(0) = a
g"(0) = 2bz,

were adjusted to match the boundary conditions at large
r. For string-r~~~, we have shown that f(r) is odd and g(r)
is even in r, with f(r) = ar+ and g(r) = br +
Thus only the two values f'(0), g"(0) were free parame-
ters. At large r, discrepancies from the boundary con-
dition were corrected by the multidimensional Newton-
Raphson method which computed the corrections to the
initial parameters. With an initial guess for the param-
eters at r = 0, this "shooting" process was iterated until
the "targets" were met. The fourth-order Runge-Kutta
method was used to integrate the equations.

We have also implemented a relaxation scheme for
comparison. In this method the first step is to express the
string energy as a function of the values of the functions f
and g (or f„f„and g) defined on an evenly spaced mesh
of points. While a Simpson's rule approximation worked
well for the middle range of parameters, a more sophisti-
cated approximation was used to extend the range of pa-
rameters that could be treated. For each interval of two
lattice spacings, smooth functions f and g were defined
by second-order polynomial interpolation from the three
mesh points (midpoint and two end points); with the help
of a symbolic integration program, the integral defining
the energy was carried out exactly for the interpolated
functions. (By this method the energy obtained is a rig-
orous upper limit on the true ground state string energy. )
To avoid divergences caused by the explicit factors of 1/r2
in the energy density, the first interval had to be treated
more carefully —instead of fitting the functions with a
second-order polynomial, we fitted the coefBcients of the
analytically determined power series, such as Eq. (34).
Trial functions f and g were chosen, and then the en-
ergy was minimized by varying each mesh point one at a

I

4f f. f.) ~
Then only the following combinations of parameters ap-
pear in the differential equations:

Vg
2 2 7e

(39)

= 1 v4 v5 v6
A3 ——V3 + —+ —+

e~ 4 4 12

The Hamiltonian densities 'H " and 'Pji for the two strings
are simply —2'" and —Zi given by Eqs. (22) and (35)
because all fields are assumed to be time independent.
With the same rescaling, one obtains

ai z i2 fez ( —g)' f

+-(1 —f )
1 2 2

2
(40)

time, successively going through the lattice many times.
We found it efficient to begin with a coarse mesh which
was made successively finer by factors of 2, interpolating
the solution at each stage to obtain the first trial solution
for the next stage. For the final run in each case we used
2048 points.

We found the results by the two methods to agree to
approximately one part in a million or better. In general
we were able to explore a wider parameter range with the
relaxation method than with the "shooting" method, but
the qualitative features given by the "shooting" method
remained the same. (The author wishes to thank Alan
Guth for implementing the relaxation part of the calcu-
lations. )

The dependence of the equations on the parameters in
the theory can be simplified if r, f, f„and f, are rescaled
as (vi & 0)

r~g vir, —

2 ~l z 12+ f~ +f~ (1 —g) 2 +1~( f, +f,
)~ + As

(
q z)z

(—vi)z 2 rz 2 2r2 ~ 2 ( 2 ) 200pz
(41)

where the r ~& equation depends on Az only but the ri
equation depends on both Az and As.

Typical solutions for the two strings calculated from
the "shooting" method are shown in Figs. 1 and 2, where
A2 ——0.132 and A3 ——10.25. For the same Aq and Aq, the
solutions given by the relaxation method appear indis-
tinguishable visually from those in Figs. 1 and 2. For
string 7.~~i, we were able to find solutions in the approxi-
mate range 10 ~ & A2 ( 10 using the "shooting" method
and 10 & Aq ( 10 using the relaxation method. For
string ~z, we explored the range 5 x 10 ' & A& & 1 and
0 ~ 5 K A3 ( 10 . In general, the functions converged more

slowly near the two ends of each range above, and we did
not attempt to find solutions beyond these limits. We
numerically integrated 'M'" and 'Ri for the solutions we
computed, and found string wi to have the lower energy
for all the parameters we explored. In Fig. 3, the energy
density 2nrff of the two solutions shown in Figs. 1 and
2 is plotted, and the energy of string ri is clearly lower.
For comparison, we point out that the energy per unit
length of string ~ ii in the range 0.9 & Ag & 4.0 has been
calculated by Aryal and Everett [8]. Our values in this
range of parameters agree with theirs to within 1%%uo.

One of the most important properties of the two strings



536 CHUNG-PEI MA 48

I I I I

[
I I I I

)
I I I I

I
I I I I

(
I I I I

)
I I I I

j
I I I I

1

2.5

I I I I
]

I I I I
[

I I I I
)

I I I I
[

I I I I
]

I I I I
)

I I I I

STRING v'i 15

0
0

I I I I I I I I I I I I I I I I

5 6 7
0

0
I I I I I I

4 5 6 7

FIG. 1. The solution of string ri, g(r), f, (r), f,(r), as a
function of dimensionless r for the case Aq ——0.132, A3

10.25. The function g(r) represents the spatial dependence of
the gauge field, and f, (r), f,(r) represent that of the Higgs
Geld.

FIG. 3. The radial energy density 2vrr'H(r) (in units of
vz/v2) of string ri and r II, computed from the solutions in
Figs. 1 and 2.

we investigate in this paper is whether string ri has lower
energy than string ra,II. We just showed that this is true
for some range of the parameters. To systematically ex
plore a wider parameter range, however, it is very lab~
rious and time consuming to calculate the ri solutions
for different A2 and As first and then compute the cor-
responding energy. Instead, we employ an upper-bound
argument to reduce the two-dimensional parameter space
(Ag, As) to one. We set f, = f, =—fi in the Lagrangian
and take g(r), fi(r) as trial functions for string ri. The
advantage in using f, = f, is that the last term in
Eq. (41) vanishes, and the equations no longer depend
on As. Moreover, Eqs. (40) and (41) then have the same
functional form, difFering only in the coefficients of the
first and the third terms, and one can solve the equa-

tions for string ~p the same way as for string 7.
~~ us-

ing different values of A2. The corresponding energy,
denoted by Ei(f, = f,), gives an upper bound on the
true energy of string 7.i by the variational principle. If
Ei(f, = f,) ( E ii for a given A2, then one can con-
clude that string ri has the lower energy for that value

of A2 and all values of As. (Note that in the limit of
A3 ~ oo, the trial functions approach the true string so-
lution because for the energy to be finite, the last term
in Eq. (41) requires f, ~ f, )Our re. sult is presented in

Fig. 4, where the ratio Ei(f, = f,)/E, II is plotted as a
function of logqo A2 for 10 & Ag & 2.5 x 10 . Note that
Ei(f, = f,)/E II ( 1 for all seven decades of A2, and is

approaching an asymptote of 1 (or possibly less than 1)
as A2 —+ 0. For large A2, we find the individual curves
of E~II vs logip As and Ei vs logip A2 approach straight
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FIG. 2. The solution of string r,II, g(r), f(r), as a function
of dimensionless r for the same case as in Fig. 1. Here g(r)
represents the spatial dependence of the gauge field and f(r)
that of the Higgs Geld.

FIG. 4. The ratio of the upper bound on wz energy,
Ei(fo —fe)& over the roII energy, E II, as a function of A2.

E&(f = f, ) is calculated by setting f, = f, in the La-
grangian.
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V. SCATTERING SOLUTIONS

To study the scattering of fermions by an SO(10)
cosmic string, one first needs to understand the 16-
dimensional spinor representation of SO(10) to which the
left-handed fermions are assigned. Spinor representations
certainly have been discussed in the literature [13],but to
establish a common notation, we discuss in the Appendix
the construction of the generators, the 16 states, and the
identification of states with fermions that are relevant to
this paper.

Now we proceed to study the Dirac equation

(i P —e P'r —m)@ = 0 (42)

in the background fields of string r ii and 7.i. A„r
A„"re,ii and A„ri. As shown in the Appendix, the fermion
fields can be written as a 16-dimensional column vector
where each component is identified with a fermion given
by Eq. (A16). The generators r~&& and ri can be written
as 16x16 Hermitian matrices, where r ii is diagonal with
one diagonal entry equal to 2, ten entries equal to—10

lines, suggesting that the ratio Ei (f, = f, )/E~ii levels off
at a constant for large A2. We conclude that string ri has
lower energy than string ~~~~ for 10 ( A2 & 2.5 x 10
and all A3, and probably is the ground state for the entire
range of the parameters in the theory.

and five entries equal to —ip. For ri, we choose ri ——

~(rss + rs ) for illustration. We find that 7.i takes the
block-diagonal form

where

so&oaI2

(0 0 0 I)0000
0000

(I o o 0)

(43)

and I is the 2x2 identity matrix. For string radii, since
r ii is diagonal, Eq. (42) decouples into 16 equations, one
for each component of the wave function, and there is
no mixing of leptons and quarks due to twisting of the
Higgs field. However, since the 16 eigenvalues of 7.

~~ are
all fractional, all 16 fermions scatter nontrivially off the
string via the Aharonov-Bohm effect. As pointed out by
previous studies, the wave functions of these fermions can
be strongly enhanced near the core of the string, leading
to strong B-violating processes inside the string.

In the case of string ri, the analysis is the easiest if
one works in the basis where ri is diagonal. Upon diag-
onalizing v.1 by a unitary matrix U and simultaneously
rotating the fermion basis gp in Eq. (A16) to @p = U@p,
one can write Qp as

/e +ui e —ui &+di & di «d us+d2 s 2 2 s su &e+,diI . (45)

(46)

Since ri is diagonal, the ith components of Q and @p are
simply related by a phase.

In the diagonalized basis of ri, Eq. (42) decouples into
16 equations of the form

(i P+ eA, P' —m)$, = 0, (47)

where each Q, interacts with the gauge field with coupling
strength eA,', A, are the eigenvalues of —ri. The eigenval-
ues are A =

2 ++1 ~
~ +d1 ~ u3+d2, u2+d3, A, =

2

We note that gp above is the fermion field in the gauge
where P does not wind with 8 and A„—+ 0 at large r
everywhere except on a sheet of singularities at 8 = 0.
This gauge will be referred to as the "sheet" gauge in

analogy with the "string" gauge of a magnetic monopole.
The particle content is probably most transparent in this
gauge since both the scalar and fermion fields do not
wind with 8. The Dirac equation, however, can be easily
solved analytically (in the limit of zero string width) in

a different gauge where the scalar field {t winds with 8
and the gauge field falls off as r at large r. The fields
in ansatz II [see Eq. (30)] for string ri were constructed
in this gauge, which will be referred to as the 1/r gauge.
In the diagonalized basis of ri, the fermion field g in the
1/r gauge is related to the fermion field Qp in the "sheet"

gauge by the gauge transformation

ei~g {vr—8)q

for e —ui, v' —di, us —dz, uz —ds,. and A, = 0 for all
others. Since the e+ u' and e —u' components have

opposite (and fractional) eigenvalues, one can expect a
pure e or u' to turn into a mixture of e and u' as it
propagates around the string, producing baryon-number
violation. From this point on, we will consider only the
interesting cases where A, are fractional.

In the presence of an infinitely thin ~1 string along the
z axis, the gauge field A„ takes the form Ai" = Ai' =
0, A i e = —,„,where (r, 8) denote the usual polar coordi-
nates with 8 running counterclockwise from the positive
x axis. Owing to the symmetry along the z axis, the
matrix ps in Eq. (47) drops out, and, with the choice for
the p matrices,

o.s 0
{)

o
{ 0 —i'r» '

(48)

xi (r) ~I inc —iEt
(r)e" p

' (49)

—io1 0 &0
&3=I( 1 0I

Eq. (47) decouples into two independent equations for

the upper and lower two-component spinors of @,, where

the two equations differ by the sign of the mass term,

Writing the upper spinor of @, as
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one can show

( m —Z i (—8„+"+"'+')) r'~I)
+~,(-i(O, —"„) —m —Z ) (g2) (50)

( 'I, ~=gz-
X2) + z+m ~+(n+A, +I) (kr) )

(51)

and the solutions are Bessel functions of order (n+ A, )
and (n+—A, ):

The appropriate boundary conditions to impose, as
pointed out in Ref. [14], are the square integrability of the
wave functions near the origin and a self-adjoint Harnil-
tonian. The usual requirement that wave functions be
regular at the origin is sometimes too strong and has to
be relaxed. Since J (r) ~ r /(2 v!) for small r, one can
see that the solutions above are square integrable if the
+ sign is chosen for the modes n+ A, ) 0, and the —sign
for n+ A, ( —1. For the mode —1 & n+ A, ( 0, how-
ever, both choices are square integrable albeit neither is
regular at the origin, and the solution takes the form

(yi& sin p J„+g,. + cos p J („+~,)
ik for —1&n+A, &0,

qx ) ( ~~+,+ — o v -(+.+)) (52)

where p, sometimes is referred to as the "self-adjoint pa-
rameter. "

The scattering amplitude f"*(8) for the ith fermion in

Q appears in the asymptotic wave function written as the
sum of the incident plane wave and the scattered part:

—iA, (~—8) i(kx —Et)uEe ' ' e

—A, (~—e) gA, q~q i(kr —Et) (53)

where uE and vE are given by

1 l (' 1
*e I

.
& Z+m) 4 Z+m ) (54)

Expanding e'"* = e'""'o'e and e'"" in Bessel functions
using

where [A, ] denotes the largest integer less than or equal to
A, , and b' is related to A, and the self-adjoint parameter
tan p, by [14]

(—1)"—tan p, A, vr
tanb = tan

(—1)"+tang 2
(58)

With the gauge transformation Eq. (46), one can easily
see that (@0), in the "sheet" gauge is given by Eq. (53)
without the phase e

To illustrate the processes that violate the baryon nurn-
ber, we consider an incident beam of electrons propagat-
ing in the fields of the string. We will study the (e, u')
subspace and ignore other fermions since e in Q is mixed
with u' only. In the "sheet" gauge, the eigenstates of ~l
can be written as

eikrcos8 ) tn J (kr)&inc e —u' (0
(59)

and with

f~i (8) ) f~i etna (56)

and the electron is simply given by

Eq. (53) can be matched to the solutions in Eq. (51) mode
by mode at large r. Then the scattering amplitude can
be calculated:

e = I 1
& ~2)

An incident wave of electrons can be written as

(6o)

fA, (8)
Ig

,(P )+I)e (sin (2 —7rA;)

+2vrk ( sin 2 )
(57)

I

e u
~

~g s(kx Zt)—
Oinc = +E

which scatters into

(61)

Moses =
1

Uz f'(8) I

~2 I+f '(8)
I (62)

Note that the suppressed index on the two-component spinors uE and vE should not be confused with the index
associated with the two-component eigenvectors used here to label the e+ u' and e —u' components of the Dirac
field. Rewriting go„above as

'&sea = (63)
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one finds that the scattered wave consists of a mixture
of electrons and u' quarks if f& g f ~ T. he differential
cross section per unit length for the production of a u
quark is defined by

for A, = 2, n = —1, and

g(r)o.xi = — xi+Pxz,2r
(72)

= lim
d8 r ~ j; (64) g(r) —2

~rXz =
2r xz —Pxi

where J' = @p'@ . Substituting $0;„,and @o„a, into the
currents, one obtains

dg 1 1 1 2

d8 4
=- f (8)-f-~(8)

The scattering amplitude f"' is given by Eq. (57) and
depends on b, which is related to the self-adjoint pa-
rameter p, by Eq. (58). To compute the cross section
in Eq. (65), we first derive a simple expression relating
p for A; =

2 to P for A, = —&. Recall that sing and
cos p, are the coefficients in Eq. (52) for the special mode
—1 & n+ A, ( 0. Here one is interested in A, = +2,
thus the special mode takes the value n + A;

wher en = —1 for A; =
z and n = 0 for A,

For n + A; = —z, the Bessel functions in Eq. (52) are
simply J+ i, which have the analytic forms

Xi X2 ) X2 +1 (73)

Since Eq. (71) is linear, the value of xz(0) can be chosen
arbitrarily when integrating the differential equations.
From Eqs. (69), (70), and (73), one obtains

P =P+ —+A]7T',
2

(74)

for A, = —z, n = 0. Upon closer inspection of the two
sets of equations above, one finds that Eq. (72) is in fact
identical to Eq. (71) if xi is identified with xz and xz
with —Xi. What about the boundary conditions at the
origin'? In Eq. (49), for n = —1, the upper component
depends on 8 but the lower component does not, and vice
versa for n = 0. Therefore yi and y2 must vanish at the
origin for the solution to be continuous, but yq and yi
can be nonzero at r = 0. One thus has

Ji (z) = 2
sinx, J i (x) =

7t.r ' 2
cos x . (66)

and consequently

For convenience, one can rescale Xz and r by

.8+mX2~1
k

X2 )

(67)

from Eq. (58); ni, nz c Z. Finally, one can compute
1 1f ~ —f & and write out the baryon-number-violating dif-

ferential cross section in Eq. (65) as

r ~ —vier,

where vi(( 0) is the quadratic coupling in the Higgs
potential in Eq. (16), and define a new parameter

do- 1 cos ~ . 2 0 ~ 0
~ e + sin —+ 2cos —sin2b

d8 2vrk sin 2
(76)

p—:A:/g —vi .

Then Eq. (52) leads to the simple expression

= tan(Pr + P,) for A, =
z

X2
(69)

g(r)
&.x~ = — xz —Pxi2r

= tan(Pr + P) for A, = —
z .X1 =

X2

The bars over Xi, Xz, and p, are used to distinguish the
solutions and the self-adjoint parameter of A, = —

z from
those of A, = 2.

Now let us examine Eq. (50) which Xi, Xz and Xi, Xz
satisfy. For generality, we temporarily relax the as-
sumption of zero string width and use the realistic form
A;g(r)/r for the gauge field in place of A;/r in Eq. (50).
Rescaling Xz, Xz and r by Eq. (67), Eq. (50) can be
rewritten as

g(r) —2
rgb =

2r xi+ Pxz,

where 6 is the self-adjoint parameter for A, = &.
Although the scattering problem above was analyzed

in the limit of zero string width, the structure of the
string core is "encoded" in the parameter h which appears
in the differential cross section above. In general the
self-adjoint parameter is determined either from physi-
cal properties at the origin or sometimes by symmetry
arguments. Since the string solutions have already been
obtained in the previous section, one can first solve for
Xi(r), Xz(r) by integrating Eq. (71) numerically, using
the function g(r) for the gauge field computed earlier.
Then Eq. (69) can be inverted to give p at a given r.
The true value of p is given in the limit r ~ oo. Since
g(r) depends on the quartic couplings Az, As in the Higgs
potential, one can see from Eq. (71) that xi and xz de-
pend on P, A2, and As. Defined in Eq. (68), P measures
the ratio of the incident fermion momentum A: to the
Higgs boson mass parameter g—vi, which is of the order
of the grand-unified theory (GUT) energy scale. To put
it another way, P measures the string width relative to
the wavelength of the incident fermion. In Fig. 5, we set
P = 1 and plot p, computed at a given r for three sets of
A2 and A3. At large r, p approaches different asymptotic
values due to the different core structures corresponding
to the three sets of A2 and A3. In Fig. 6, we choose the
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FIG. 5. The self-adjoint parameter p computed from Eqs.
(69) and (71) at a given r, for three sets of (A2, A3): (0.132,
10.25), (0.264, 20.50), and (0.528, 41.0), where P = 1. The
true value of p, is given in the limit r ~ oo.

same set of parameter as in Figs. 1—3: A2 ——0.132 and
As = 10.25, and plot p for five values of P ranging from
0.1 to 2.0. One can see that as P decreases, i.e., when
the wavelength of the fermion becomes large compared
to the string width, p, decreases.

VI. CONCLUSIONS

We constructed two types of strings, string r~II and
string ri, in the SO(10) grand-unified theory. They
are topologically equivalent but dynamically diferent
strings, produced during the phase transition Spin(10) ~
SU(5) x Z2 in the early universe. String r~II is electively
Abelian, and can catalyze baryon-number violation with
a strong cross section via grand-unified processes inside
the string. It has been the subject of study in several

recent papers. The richer Higgs structure of string ~~, on
the other hand, has been shown in this paper to induce
baryon catalysis by mixing components in the fermion
multiplet, turning leptons into quarks as they travel
around the string. The underlying B-violating mecha-
nism is the "twisting" of the scalar Field, which leads to
different unbroken SU(5) subgroups around the string.
This mechanism is distinct from the grand-unified pro-
cesses which can only occur inside the string core where
the GUT symmetry is restored.

The corresponding string solutions have been calcu-
lated numerically with both the "shooting" and the re-
laxation methods. The energy of both strings was com-
puted. With an additional upper-bound argument, we
found string ri to have lower energy than string r~II in a
wide range of parameters: 10 ( A2 ( 2.5 x 10 and all

A3. The ratio of the upper bound on ri energy to the r II

energy increases as Az decreases, and possibly approaches
one from belo~ as Ag ~ 0, Scattering of fermions in the
fields of string ri has also been analyzed, and the B
violating cross section is given by Eq. (76). We conclude
that string ri is more stable than string r,II, and can
catalyze baryon decay with strong cross sections via the
interesting mechanism of Higgs field twisting.
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APPENDIX

The generators of SO(2n) in the spinor representation
can be constructed from a set of 2"x 2" Hermitian matri-
ces I' ",a = 1, . . . , 2n, which satisfy the Clifford algebra(n)

I
l

I I I I
l

I I I I
l

I I I I
l

I I

P =0.1

(I ("),I("))= 2a.,
Starting with the two Pauli matrices for n = 1,

(A1)

P = 0.2
(A2)~(i) (0 1 l ~(i) (0 i,II—

() )I ~2 —
I( 0

P =05 one can iteratively build the higher-dimensional I' "+

from I'(") by

P= 1.0

P = 2.0

I I I l I I I I I I I I I l I I I I l I I I I I I I I I l

0 1 2 3

I (n+1) I a
(~} ) 6 1

y
~ ~ ~

y
2flE0-1. )

p(n+1) )(0
~2n+i =

I(1 0)I ~

( +i) &0 i1—
()

(A3)

FIG.. 6. The self-adjoint parameter p, computed from Eqs.
(69) and (71) at a given r for difFerent ratios of P, where
Ag ——0.132, A3 ——10.25.

One can cheek that these I' matrices satisfy the ClifFord

algebra. The z generators of SO(2n) are con-an(an —z}
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structed by

1
M b = —.[r, rb], 0, b = 1, . . . , 2n,

4i

Moreover,

gI cit26364c5 & EiI eit2c364c5 ), (All)

I i = a f03030303 I 2 —02a3a3a303,

r3 = I a, a3a3a3, 14 ——I a2a3a3a3,

I'5 ——I I aqa3a3 I 6 —I I a2a3a3,

I 7 —I I I a&a3 ~8 = I I I aga3,

I'g = I I I I o.g, I'gp ——I I I I o 2,

(A6)

and the 45 generators M can be found accordingly. Pur-
thermore, one can write down the five diagonal M's that
generate the Cartan subalgebra:

1
M~2 ———a3IIII,

2
1

M34 ———Ia3III,
2
1

M56 ———IIo.3II,
2
1

M78 ———III0.3I,
2
1

Mg yp ———IIIIo.3 .
2

(A7)

The eigenvalues of the five generators above can be
used to label the states in the spinor representation. Let
2@i, . . . , 265 be the eigenvalues of Mi2, ~ ~ ~ 1 M9 ip respec-
tively with e, = +1 or —1, and denote the states by

I
tic263E465 ) . (AS)

This 32-dimensional representation is reducible to two
16-dimensional irreducible representations because there
exists a chirality operator

~=(-i) r, r, "r„5

= a3a3a3a3a3 )

where M b satisfy the SO(2n) commutation relations

[Mab~ Mcd] = i(~bcMad + ~ad Mbc ~acMbd ~bd Mac) ~

(A5)

Thus far, we have used the explicit matrix notation
to construct I' and M. For convenience, however, we
will use an alternative notation in which each of the
2" x 2" matrices is written as a tensor product of n
independent Pauli matrices, each acting on a diferent
two-dimensional space. We choose the convention that
the first matrix from the right in the tensor product acts
on the largest 2x2 block in the matrix notation, while
the second from the right acts on the next, and so on,
with the matrix on the left acting on the smallest 2x2
block. In this notation, the 10 I"s of SO(10) given by
Eq. (A3) become

where the eigenvalue Q, e, is +1 or —1 depending on
whether the number of spins that are down (e, = —1) is
even or odd.

We assign the 16 left-handed fermions to the states
of positive chirality, i.e. , states with even number of
5; = —1. The explicit identification of states to fermions
can be achieved by first breaking the SO(10) 10x10 rep-
resentation into an upper 6x6 and a lower 4x4 blocks
for the subgroups SO(6) and SO(4), and then embedding
SU(3) in SO(6) and SU(2) in SO(4). The generators for
SO(4) are M b, a, b = 7, 8, 9, 10, and with the choice [13]

1
7; = —e,~gM~A; —M, gp ) i, j) A: = 7, 8, 9 (A12)

for the generators of SU(2), one can easily verify that the
last two spins in

I
Eit2csc4c5 ) label the SU(2) states with

I
+ —

&, I

—+ ) labeling the doublets and
I
+ + ), I

——)
the singlets. Similarly, the first three spins in Isie2ese4e5)
label the SU(3) states with I+++ ), I

———) labeling the
singlets, and

I
++—), I

—++) with their permutations
labeling the SU(3) triplets. One also needs the charge
operator Q to make the assignment unique. In SU(5),
Q = diag(l/3, 1/3, 1/3, 0, —1), which takes the form

1
Q = —(Mi2+ M34+ M50) —M9ip.

3
(A13)

Putting all the above together one obtains

I+++++) =~', I+++ ) =e+,
+++) = ui I

—-+ --) = di,

I

—+-++&=~2,
I

+ & =d;,
I+ ++) = ~: I+- - --& = d3

(A15)
+

I++ —+-) = ui, I++
I+ —++ &=~2 I+ +

+++ &=us,
I

++

+) =e
+) =di,
+) =d2,
+) = ds.

Since we already know how to express the generators
M b as matrices, we can write the states as a single 32-
dimensional column vector which is projected into two
16-dimensional vectors of positive and negative chirality
by the operator P~ —= 2(l & g). We find

00 = (b' &i ii2 u3 d3 d2 dl e &3 &2 ul i e di d2 d3)L.

(A16)

In the SO(10) spinor representation,

1
QI&i'''&5& = —(&i+&2+&3) —— I&i' '&5&. (A14)

6 2

which satisfies the commutation relations

(y, r, ) =0, [y, M b] =0. (Alo)

In this paper, we studied two types of strings: string
r u, where r ~~ is given by Eq. (10), and string ri, where
ri can be any of the generators in Eq. (12). It is easy to
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see that in terms of M b, ~~~j is written as

1
Tall = —(M12 + M34 + M56 + M76 + M9 10) ~

5
(A17)

2a —1,2P —1 2n, 2P
)

1
7] — T

2

2n —1,2P + 2n, 2P —1)
1

71+ = 7
2

= I . Io.+o.3 o.3o.+I I
+I . ' ' Io o3 ' ' ' o3o I ' ' ' I (A18)

and
~
ei 65) is an eigenstate of r ll with eigenvalue

10 p,. 6, . For the left-handed fermions above, 110 p,. e, =

To study how ri act on the fermions, we write 71+ and
defined in Eq. (23) as a product of five Pauli matrices

using Eqs. (A4) and (A6), and then replace the matrices
o'1 and o2 by the usual raising and lowering operators
o'~ =

2 (cri + icr2). One obtains

—I- Io-+o3 . o.3o. I I
—I Io cr3 cr3o+I I (AIg)

where n, P = 1, . . . , 5, n ( P, and the two cr~ matrices
in each term occupy the nth and Pth positions from the
left. Now one can read off from the list of fermions above
which particles are mixed by a given ~&. For generators of
the form 71+, one immediately finds that except for the
case a = 4, P = 5, all mix leptons with quarks; when a =
4, p = 5, the generator mixes (e+, &'), (&1,&1), (&2, ~2)~

and (ucs, ds). For generators of the form 71, leptons are
mixed with quarks when n = 1, 2, or 3 and p = 4 or 5.

[1] V. Rubakov, Nucl. Phys. B203, 311 (1982); Pis'ma Zh.
Eksp. Teor. Fiz. 33, 658 (1981) [JETP Lett. 3$, 644
(1981)]; C. Callan, Phys. Rev. D 25, 2141 (1982); 26,
2058 (1982); Nucl. Phys. B212, 391 (1982).

[2] M. Alford, J. March-Russell, and F. Wilczek, Nucl. Phys.
B328, 140 (1989).

[3] W. Perkin, L. Perivolaropoulos, A.C. Davis, R. Branden-
berger, and A. Matheson, Nucl. Phys. B35$, 237 (1991),
and the papers referenced within.

[4] R. Brandenberger, A.C. Davis, and A. Matheson, Phys.
Lett. B 218, 304 (1989).

[5] L. Perivolaropoulos, A. Matheson, A.C. Davis, and R.
Brandenberger, Phys. Lett. B 245, 556 (1990).

[6] H. Georgi, in Particles and Fields lg74 (APS/—DPF
Williamsburg), Proceedings of the 1974 Meeting of the
APS Division of Particles and Fields, edited by C. A.
Garison, AIP Conf. Proc. No. 23 (AIP, New York, 1975);
H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.) 93, 193

(1975).

[7] T.W.B. Kibble, G. Lazarides, and Q. Shafi, Phys. Lett.
113B,237 (1982).

[8 M. Aryal and A. Everett, Phys. Rev. D 35, 3105 (1987).
[9] E. Witten, Nucl. Phys. B249, 557 (1985).

[10] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
[ll] R. Slansky, Phys. Rep. 79, 1 (1975); S. Rajpoot, Phys.

Rev. D 22, 2244 (1980).
[12] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling,

Numerical Recipes (Cambridge University Press, Cam-
bridge, England, 1989).

[13] Some examples are F. Wilczek and A. Zee, Phys. Rev. D
25, 553 (1982); G. Ross, Grand Unified Theories (Ben-
jamin Cummings, New York, 1985); H. Georgi, Lie Al-
gebras in Particle Physics (Benjamin Cummings, New
York, 1982).

[14] P. Gerbert, Phys. Rev. D 40, 1346 (1989); P. Gerbert
and R. Jackiw, Commun. Math. Phys. 124, 229 (1989).


