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We consider a model for the electroweak interactions with the SU(3).,®U(1)n gauge symmetry.
We show that the conservation of the quantum number F' = L + B forbids the appearance of massive
neutrinos and the neutrinoless double-3 decay (883)o.. Explicit or/and spontaneous breaking of F'

implies that the neutrinos have an arbitrary mass.

In addition the (38)o., decay also has some

channels that do not depend explicitly on the neutrino mass.

PACS number(s): 12.15.Cc, 12.15.Ji

I. INTRODUCTION

Recently extensions of the standard electroweak model
based on the SU(3),® U(1) y gauge symmetry have been
proposed [1-6]. This sort of model allows us to relate the
number of families with the number of colors obtaining an
anomaly-free model. Another interesting feature of these
models is that the weak mixing angle of the standard
model has an upper limit. For instance, in the model of
Refs. [1, 2] sin? Oy has to be smaller than 1/4. There-
fore, it is possible to compute an upper limit to the mass
scale of the SU(3) breaking of about 1.7 TeV [7]. In this
work we consider how the neutrinoless double-3 decay
(88)oy can occur in an SU(3),®U(1)y model with dou-
ble charged vector bosons [1, 2].

It is well known that the observation of the neutrino-
less double-3 decay would imply a new physics beyond
the standard model. Usually, two kinds of mechanisms
for this decay were independently considered: massive
Majorana neutrinos and right-handed currents [8]. In the
latter case, the neutrino is not required to have a mass.
However, if the right-handed currents are part of a gauge
theory, it has been argued that at least some neutrinos
must have a nonzero mass [9]. It is also well known that
whatever mechanism generates the neutrinoless double-3
decay, it also generates a Majorana mass term [10,11]. In
this sense, the fundamental requirement underlying that
decay is the existence of massive neutrinos. An important
point is to investigate the mechanism associated with the
(BB)o. process. In fact in these models, we will see that
there are contributions to the no-neutrino 33 decay that
do not depend explicitly on the neutrino mass.

We will see that it is possible to have (883)o, decay
assumming neutrinos with arbitrarily small mass in the
context of an SU(3) ,®U(1)y model. In order to empha-
size this fact, in most of this paper the neutrinos will be
considered as being massless. Notwithstanding, we will
show at the end that in order to maintain the naturalness
of the model, the neutrinos must be massive. Here, the
word natural is used in the technical sense [12]. It means
that the masses in a theory are finite and calculable if
there is a zeroth-order mass relation which is invariant
under arbitrary changes of parameters presented in the
theory. In fact, in renormalizable theories any particle
mass is either zero, due to some unbroken symmetry or,
arbitrary, due to the counterterm which is necessary in
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order to implement the renormalization program. Hence,
if a mass is zero at the tree level, and there is no respec-
tive counterterm, loop corrections cannot be divergent.
This is so because there would be no counterterm avail-
able to cancel the infinities.

However, the main point is that in this sort of model
(BB)o, decay requires less neutrino mass than it does
in most extensions of the standard electroweak model.
Our requirement of massive neutrinos has no relation
with the bad high energy behavior of processes such as
W~V~ — e"e” [9], since in these models the doubly
charged gauge boson U™~ cancels out the divergent part
of such a process.

If one wants the lepton number to be conserved, one
must assume that the V*, U** gauge bosons carry lep-
ton number. Notice that lepton number conservation can
be maintained in the Yukawa sector by assigning an ap-
propriate lepton number to the scalar fields as well.

This paper is organized as follows: A new quantum
number, i.e., the leptobaryon number F = L + B, is de-
fined in Sec. II. The conservation of this quantum num-
ber forbids the existence of massive neutrinos and (383)o, -
We add trilinear terms to the Higgs potential, which ex-
plicitly violate F', in Sec. III. In Sec. IV we consider
the (800.,) decay. Section V is devoted to showing that
explicit F' violation also implies the spontaneous break-
ing of this quantum number, and the raising of neutrinos
with arbitrary mass.

I1. SU(3),QU(1)y MODEL

Let us first recall some points of the SU(3)®U(1)
model [1]. The model of Ref. [2] has a slightly differ-
ent representation content. However, the main points
concerning (33)o, decay do not depend on this.

The representation content is the following: The lep-
tons transform as triplets,

Vq

d)aL = la

i

~ (3,0), (2.1)

L
with a = e, u, 7. In the quark sector we have the triplet

U1
Qir=1\|dy
J1 L

~ (3,+32), (2.2)
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for the left-handed fields, and singlets

Uir ~ (17 +%) ’le ~ (1’_%) aJIR ~ (17+§)3 (23)

for the respective right-handed fields (we have not intro-
duced right-handed neutrinos).

The second and third families of quarks are antitriplets
(3*a - %

J2 Js
Qar=|uz | , Qs = | us (2.4)

The respective right-handed quarks are also singlets. In
fact, every two of the three quark generations transform
identically in contrast with the third one. The model
is anomaly-free if we have an equal number of triplets
and antitriplets, by considering the color of SU(3).. Fur-
thermore, we require the sum of all fermion charges to
vanish. The anomaly cancellation occurs for the three
generations together, and not generation by generation.
In Egs. (2.2) and (2.4) all the quarks are linear combina-
tions of the mass eigenstates except the one with charge
+3.

%‘or the first generation of quarks we have the charged
current interactions

LoSw = —“9—2( apy*derW,f + Jipy'urV,!
+dor Y LU~ + H.c.), (2.5)
and for the second generation of quarks we have
LGow = —%( ey doLW,F — Sorv* JagLV,
+EL7”J2¢LU++ + H.c.). (2.6)

The charge-changing interactions for the third genera-
tion of quarks are obtained from those of the second
generation by making ¢ — t, s = b, and J, — Js.
We have mixing only in the Q = ——% and Q= —% sec-
J

tors. Thus in Egs. (2.5) and (2.6) dg, sg, and Jy, are
the Cabibbo-Kobayashi-Maskawa states in the three- and
two-dimensional flavor spaces d, s, b and J3, J3, respec-
tively. In the leptonic sector we have the charged cur-
rents

£ = 9 Dyl W
1 ﬁ;( viLYy LW,

+l_2’y“l/1LV“+ + l_i’yulLU:+ + HC)
(2.7)

In order to generate the quark masses, it is necessary
to introduce the Higgs scalars

n’ pt X~
n= ™ sy P = pO y X = X - ) (2'8)
ny ptt x°

which transform, under SU(3)®U(1), as (3,0), (3,1),
and (3, —1), respectively.

The lepton mass term transforms as (3®3) = 3* @ 6.
Thus we can introduce a triplet, such as 7, or a symmetric
antisextet S = (6%,0). In the former case one of the
charged leptons remains massless, and the other two are
mass degenerate. Hence, we choose the latter one [4] in
order to obtain an arbitrary mass for leptons.

The charge assignment for (6*,0) is

o} hy hy
S=|hifHt of
hy of Hy~

(2.9)

The quark-Higgs-boson interaction is

Ly = Q11(G¥Uarn + G{yDarp + G J1rX)
+Qir(FEUurp" + FEDorn® + Fi JxrX")
+H.c., (2.10)
where o = 1,2,3, i,k = 2,3, Uyr = u1R,U2r,UsRr,

Duar = dir,d2r,d3r, and all fields are still symmetry
eigenstates. Explicitly from Eq. (2.10) one has

—Loy = GYy(a127° + dirny + J1on3 )Var + Gl (@arp™t + dip® + J1pt ) Dar
+ G (aLx” +dix™ " + JinXO)Jir + FE(Jinp™ ™ + @ipp® + dirp” )uar

+ F (Jonmy + @ipny + dinn®)Dar + Fip (Lo x® + arx™™ + dipx ™) Jer + Hee. (2.11)
In the leptonic sector we have the interaction
1 7,C ]
Lis=—3 ij Gab¥laphior 57 (2-12)
with ¢ = C7. Here C is the charge conjugation matrix. Explicitly we have
2Ls = — Y Gap[Fepvero? + loplee HY * + Larli  Hy ~ + (F5plbe + Ioprer)hy
ab
+(I7;RIIC)L -+ l_aRVbL)hq— + (l_:ngL -+ l_aRlbL)Ug] + H.c. (2.13)
[
If we impose that (o) = 0, then the neutrinos remain 1 Te ijk
) - —_ . ; .C. 2.14
massless, at least at the tree level. Lin 2 Zb fav¥ainPon € m + He., (2.14)

In addition to (2.13) there is the additional Yukawa
coupling between leptons and the scalar triplet 7:

where a,b denote family indices, ¢,j denote SU(3) in-
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dices, and €* is the totally antisymmetric symbol. The
Yukawa coupling f,; must be antisymmetric, i.e., fop =
—fba, due to Fermi statistics, and the antisymmetry
of the charge conjugation matrix C. Thus, Eq. (2.14)
connects leptons of different families. Typical terms of
Eq. (2.14) read

(Zerny — €rvuL)ns » (Verkf —€rvur)ny-  (2.15)
As we have said in the last section, let us define the lepto-
baryon number, which is additively conserved as follows:

F=L+B, (2.16)

where L is the total lepton number, ie., L =3 Ly, a =
e,u, 7, and B is the baryon number. As usual, B(l) =0
for any lepton I, L(q) = 0 for any quark g,
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where a = 1,2,3 and ¢ = 2,3. From Egs. (2.17) and
(2.18) we see that if

F(V-)=FU™") = +2,

the interactions (2.5), (2.6), and (2.7) conserve F'.

In order to make F' a conserved quantum number in
the Yukawa sector [see Egs. (2.11) and (2.13)], we also
assign to the scalar fields the values

—F(H; ) =-F(p™") =F(x")=F(x ") =+2,

(2.19)

—F(H; ") =F(H{") = F(h3) = F(0]) = -2, (2.20)
and with all the other scalar fields carrying F' = 0.

Although the process W™V~ — e"e™ occurs in this
kind of model with the exchange of massless neutrinos,
it does not imply the (88)o. decay, since the vertex
dry*u LV: is forbidden by F' conservation. This symme-
try also forbids a mixing between W~ and V~. Hence,
we see that the F' symmetry must be broken in order to
allow the (88)o, to occur.

III. SCALAR SECTOR

F(l) = F(n) = +1, (2.17)
and
F(ua) = F(da) = %, F(J1)=-5%, F(Ji)=1, (218)
Let

V(n, 0% 8) = win'n + u3p’p + wixTx + piTr(STS) + A (n™n)? + A2 (o' p)?
+FAs(xMx)% + (™) Ma(pp) + As(xTx)] + As(p'0) (x"X)
+A7 [Tr(815)]” + AeTr(STSS1S) + Tr(STS) Do (n'm) + Aro(p'p) + Arr(x'x)]
+A12(p™) (0T p) + A1a(xIn) (1T x) + Aa(pTx) (xTp)

ij 1 ij ij 1 ijk _lmn
+ (f1€”k77inXk + EfzpinST” + famin; ST + 3—,f46 Tk etmn G Sim Skn + H-C-) .

This is the most general SU(3)®@U(1) gauge invariant
renormalizable Higgs potential for the three triplets and
the sextet. The constants f;, ¢ = 1,2, 3,4 have dimension
of mass. It is possible to show that the potential (3.1)
has a local minimum at the following vacuum expectation
values (VEV’s) for the scalar neutral fields [13]

vy 0 0
(77) = 0], (P) =1%])> <X> = 0 ) (3.2)
0 0 Uy
and
00 O
(§)=100 vy (3.3)
O’UH 0
Since we have chosen (o) = 0, the neutrinos do not

gain mass at the tree level. However, we can verify the
naturalness of this choice. The situation is similar when
a triplet is added to the standard model [14]. We will
return to this point in Sec. V.

Redefining all neutral scalars as ¢ = v, + @1 + ip2,
except for the case of 00, we can analyze the scalar spec-
trum. For simplicity we will not consider relative phases
in the vacuum expectation values. Requiring that the

(3.1)

r

shifted potential have no linear terms in any of the ¢,
components of all neutral scalars we obtain in the tree
approximation the constraint equations:

uf + 2/\111,2] + )\411’2, + /\51))2( + 2)\9v§{ + flv,jl'upvx =0,
ui + 2/\2112 + /\41),2, + /\611)2( + 2/\101/%{ + flvnv;lvx
+f2UxUHU;1 =0,
M§ + 2/\31))2( + /\5v,2, + )\Gvf, + 2/\111;?, + flv,,vpv;l
+f2vvav;1 =0,
(3.4)

y,i —+ 4/\7’(}?1 -+ 2/\8’11%1 —+ /\91)72, -+ /\10’U§ “+ /\11’!}72(
+%'vpvxv;{1 =0,
fsv,z, - f4”1211 =0,

Im ft =0,

and the mass matrix in the n;,p7,n5,x ™, h7,hy basis
is

i=1,2,3,4,



A]_ Az —F3c 0 0 —F3a
A, Az 0 0 -—-F, 0
2| —Fs¢c 0 By By —Fza 0
%| 0 0 By, By 0 -—Fp |’ (3.5)
0 —F, —Fza O C: (O
—Fza 0 0 —-Fb C; G,
where
A1 = Flba'l - /\12b2, Az = F1 - /\12ab,
Az = (Fla + cm)b—l — /\12a2, (36)
Bl = Flba_l - /\13, Bg = Flb - /\13&,
Bg = (Fla + cm)b - /\13&2, (3.7)
Cl = ngc_l, Cz = —Fgazc_l. (3.8)

Here we have defined the dimensionless constants F; =
fi/vx, @ = vy/vy, b = v,/vy, and ¢ = vg/vy. The
mass matrix in Eq. (3.5) has just two Goldstone bosons.
It implies a mixing among all charged scalars. Thus
the physical charged scalars are linear combinations of
n; »h; (i =1,2), p~, and x~ which have no well defined
value of F'. Since quarks u, d interact according Eq. (2.11)
with 7, p~, and the last fields are linear combinations
of mass eigenstates, we see that the diagram in Fig. 1 is
possible even if the neutrinos are massless.

IV. (88)o» DECAY

The F symmetry is softly broken by the f34 terms
in the scalar potential (3.1). As we have said in the
last section, the singly charged scalars are not eigenstates
of F. Then, if ] in Fig. 1 is one of the scalar mass
eigenstates, we have, in general,

b7 = a;®;, (4.1)
ij

with ¢, =07, 9y, p~, X, by, hy, and a;; the mixing
parameters.

We can estimate a lower bound on the mass of ¢]
by assuming that its contribution to (803)o, is less than

d. 44 G gy UR

o
_
D1y
1
Gee] €L

d Q24 Gdu UR

FIG. 1. Scalar contribution to the (88)ov. Gud,ee are
Yukawa couplings and a11,21 mixing parameters in the scalar
sector.
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the amplitude due to the massive Majorana neutrinos
and vector boson W~ exchange. The latter amplitude is
characterized by a strength which is proportional to

gt (4.2)
, .
miy (p?)
where mgf = |3 UZm;| is the “effective neutrino
mass” [8]. Here, (p?) is an average square four-

momentum carried by the virtual neutrino. Its value
is usually (10 MeV)?2 [10]. The experimental limit on
(BB)o. decay rate implies that mef < M, = (1-2)eV [9].
On the other hand, the amplitude of the process in Fig. 1
is proportional to

(auazl)zGﬁldGﬁe (4.3)
4/2\1
m¢(p E
Next, assuming that Eq. (4.3) is less than Eq. (4.2) when
me = M,,, we have

4 (a11021)2G2,GL.V2(p?) 5
Mgy > 32G2 M,
iy
~ (6.9 TeV)*(a11a21)2GoqGe..

(4.4)

The factors in Eq. (4.3) arise as follows. In Eq. (2.11) the
fields are symmetry eigenstates. It is possible to redefine
the quark fields as

ap =Via, dn=Vgar, (4.5)
with VI?R being unitary matrices in the flavor space,
and the unprimed fields denoting mass eigenstates for
the respective charge-Q sector. Equation (2.11) im-
plies interactions such as Guqdrugrn; with G.q =

(ng_%)GuVI(z%))ud and d, u are mass eigenstates. The co-
efficients G, appear in Eq. (2.13). Since these mixing
parameters in Eq. (4.4) can be very small, this does not
imply a strong lower bound on the mass of the scalar
fields.

There are not contributions to (88)e, from trilinear
Higgs interactions such as n; h; H+. In models in which
these contributions exist, they are negligible [10] unless
a neighboring mass scale (~ 10? GeV) exists [15].

V. CONCLUSIONS

We now consider the question of the neutrino masses.
First of all, notice that if we forbid the trilinear terms in
f3,4, say, by assuming a discrete symmetry [4], the mix-
ing that arises from Eq. (3.5) is among n; ,p~, h], and
separately among 7, ,x ", h, . Hence F is conserved and
(BB)ov is forbidden. In this context it is important that
the F' symmetry is softly broken by the trilinear terms
f3,4 in the scalar potential (3.1). Since we have made
(¢?) = 0, we can think that the neutrino masses vanish
at the tree level, but that they are finite and calculable,
in the sense of Sec. I. Let us consider this issue more in
detail.

From Egs. (2.13) and (2.15), it is easy to convince our-
selves that the neutrinos gain finite masses through loop
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diagrams as in Figs. 2(a) and 2(b). Now, joining the
neutrino lines in Fig. 2 by 0?2, we obtain the divergent
contribution to (¢¥) appearing in Figs. 3(a,b). This im-
plies a counterterm and makes it impossible to maintain
(09) = 0, at least in a natural way. Hence, neutrinos
gain an arbitrarily small mass, since we can always as-
sume that (o?) ~ 0.

If (69) # 0, there is a mixing in the charged vector
sector Wt-V+:

W* = aXE 4 8XE, VE=—pXE 4+ aXF,

o? 482 =1, (5.1)

where sz are mass eigenstates. Hence the (88)o, pro-
ceeds also as in Fig. 4, without a direct dependence on
the neutrino mass, but this contribution is suppressed by
the large mass of the vector boson X, , or by the mix- :

ing parameters since 3 ~ 0. If (¢9) # 0, and assuming ‘o
discrete symmetries to forbid the explicit violations in (T
Eq. (3.1), we have spontaneous breaking of the F' sym-
metry, since 0¥ carries F' = —2 [see Eq. (2.20)], implying
a Majoron-Goldstone-like boson. This is so because ¢?
belongs to a triplet under SU(2) together with A7 and
H; ™. The phenomenology of this Goldstone boson may
or may not be similar to that of the Majoron [16], and it - -~

; 0 - f3 ~N
deserves a more detailed study. As (o7) # 0 we expect - 7 _
.ﬂ1/ \T]2
[¢]
(G
!
i
4
-
P f ~
- 4 ~ h:
h1/ 2
\
[ !
H 3
Voo Gab  Lor ! Zo. Gab  Vbr
0
(G
(a) (b)
FIG. 3. Joining the neutrino lines by o? in Fig. 2 we ob-
(G g 3 tain divergent contributions to (o).
1
! do a UL
R AN _
m 1 N 112 X1 -
/ \ o
Cc
AV
[ , | R -
3
Var ab 2b!'@! i QpL fbc VR L
)
(T X4
(b) dp -B ug
FIG. 2. Finite contribution to the Majorana neutrino FIG. 4. Contribution to the (38)o. due the charged vector
mass due to the Yukawa couplings in Egs. (2.13) and (2.15) boson exchange if (o) # 0. X is a linear combination of

and the trilinear terms f3 and f4 in the scalar potential (3.1). Wt and V*. See Eq. (5.1).
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a deviation from the p = 1 value (p = cos? Oy M2 /MZ,).
From the experimental value p = 0.995 £ 0.013 [17] we
obtain (¢?) < 10 MeV which is the same obtained for
the VEV of the Gelmini-Roncadelli triplet coming from
astrophysical constraints [18].

Summarizing, we see that (88)o, proceeds in this
model also as a Higgs boson effect with almost massless
neutrinos. Recall that if we had forbidden all trilinears
in Eq. (3.1), except those with f;, f2, neutrinos could re-
main massless but the mixing in the charged scalar sector
would be only among n;,p ,h] and n;,x " ,h; sepa-

rately. Hence the (80)o, cannot occur as was shown in

Ref. [1].
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