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Linear and higher-order power corrections in semileptonic H decays
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In previous work we have developed a relativistic quark model of mesons which is consistent
with all @CD constraints at zeroth and first order in the heavy-quark expansion. Here we obtain
erst-order model predictions for the differential decay spectrum, the forward-backward asymmetry
ApB, and the D' polarization parameter o. in the decay B ~ D Ev. We compare these with the
predictions of @CD sum rules at first order. The model suggests why the corrections allowed at first
order are small, concurrently with substantial corrections at second order.

PACS number(s): 13.20.Jf, 12.40.Aa, 14.40.Jz

I. INTRODUCTION

We have recently developed a relativistic model for B-
meson semileptonic decays B —+ D(*)Ev, in which the
hadronic matrix elements are represented by quark loop
graphs with damping factors at the Qq-meson vertices [1,
2]. These have the form

where k is the momentum of the light quark and P and
V denote pseudoscalar and vector mesons. These ver-
tices together with standard quark propagators deter-
mine what we will call the "full model, " in which no
reference is made to any expansion in inverse powers of
heavy-quark masses. The only parameters of the full
model are the heavy- and light-quark masses, in terms
of which the constants A~~ and Z~~ are fully deter-
mined by requiring that the meson self-energy functions
vanish and have unit slope at the physically measured
meson masses.

We may expand all quantities in the model in inverse
powers of heavy-quark masses. Severe constraints on the
form of the expansion follow from QCD using the heavy-
quark efFective theory (HQET) [3]. In the heavy-quark
limit, four of the six form factors for B ~ D(*)/v become
equal to a single universal Isgur-Wise function, while the
others vanish [4]. The 12 a priori independent 1/vn, and
1/m& corrections to the form factors are given by specific
linear combinations of the Isgur-Wise function and four
additional universal functions [5,6]. The actual shapes of
these universal functions are model dependent, but some
have model-independent values at zero recoil. We have
shown in [1] that all such constraints are satisfied by our
model at first order.

The HQET restrictions arising at second order (1/m&)
are available in [7]. We have not yet demonstrated con-
sistency with these results, as our model for mesons is
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rather unwieldy at this order. On the other hand we
have developed a similar model for Ag baryons [8]. It is
more tractable than the meson case and is fully consis-
tent with the HQET constraints presented in [9] up to
and including second order. Our approach for mesons
follows the same principles and we thus conjecture that
it is also consistent at second order.

As was shown in [2], the main feature of the full model
before expansion is the presence of rather large deviations
from the heavy-quark limit predictions for the zero-recoil
values of the form factors 6+ and h~, , defined in Eqs.
(A5) and (A9) below. These quantities play a crucial
role in the determination of the Kobayashi-Maskawa ele-
ment V„&, as discussed in [10]. Both are equal to 1 in the
heavy-quark limit and neither receives corrections at or-
der 1/mg (Luke's theorem [5]). The corrections we found
were traced to the eKects of hyperfine mass splitting. For
the choice of quark masses in [2] we found values of 10—
15% for the corrections at all orders, with the corrections
occurring purely at second order making up about 2/3 of
these full corrections. This translates almost directly into
a 10—15% model dependence in Vb.

We believe that it is currently of interest to obtain es-
timates of the corrections beyond first order in 1/rag in
any model, such as ours, which is consistent with the
heavy-quark symmetries. Many of the previously popu-
lar models [11—13] cannot be used since they do not obey
the symmetry constraints, as described in [14]. Of course
the question remains as to how well our model resembles
QCD. Perhaps the main question has to do with confine-
ment; our representation of the efFects of confinement is
to simply ignore the imaginary parts arising from our free
quark loop calculations. We emphasize again, though,
that this procedure is consistent with Ward identities and
heavy-quark symmetries [1].

Another approach [7] has been to carefully study the
structure of the second-order corrections in the HQET.
Here the question boils down to the estimation of ma-
trix elements of various operators. Sum rules have been
applied to the first-order corrections, but the estimates
of the second-order corrections are much less sophisti-
cated. In [7] some matrix elements are estimated us-
ing the Isgur-Scora-Grinstein-Wise (ISGW) nonrelativis-
tic quark model [11],but this model does not include hy-
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II. THE FIRST-ORDER MODEL

The first-order model has three parameters, in addition
to the quark masses. The heavy-quark limit mg ~ oo is
characterized uniquely by the ratio A/m~, where m~ is
the light-quark mass and A is the common value of A~ ~
in the heavy-quark limit. The other two parameters g
and h. characterize the approach to the heavy-quark limit
via

Ap, v —A
[

1 (hp, vs + g)
A )

mg)
(2)

where bI ——3 and b~ ———1. The bulk of hyperfine mass
splitting is contained in h, , a positive value of which drives
the pseudoscalar mass down and the vector mass up by
amounts in the ratio of 3 to 1. But not all efFects of the
heavy-quark spin-symmetry breaking are described by 6;

perfine splitting effects. In fact when hyperfine splitting
effects are turned off in our model [i.e. , when g = h = 0
in (2) below] we find order 1jm& contributions to h+ and
h~, at zero recoil which are very similar to those of the
ISGW model.

Other matrix elements involve double insertions of the
chromomagnetic moment operator, and these are ne-
glected in [7] since the single insertions appearing at first
order are observed to be small. But these double in-
sertion matrix elements are precisely the ones which are
large in our model [2], and they are large concurrently
with small values for the single insertion matrix elements.
We will argue below that the small size of the first-order
corrections to semileptonic decay amplitudes is the ex-
ception rather than the rule. The suggested mechanism
that suppresses the first-order corrections does not ap-
ply to higher-order corrections. Even at first order large
corrections are possible; for example our model and sum
rules agree that the heavy meson decay constants receive
much larger first-order corrections than the semileptonic
decay amplitudes [1].

Until more reliable estimates of the second-order cor-
rections appear, our model gives some indication of the
possible theoretical uncertainty in the extraction of V b.
One of the objects of this paper is to provide a set of
model predictions to be compared to future data. In par-
ticular we will define a "first-order model" in which only
the first-order corrections are kept, and we consider quan-
tities which are fairly insensitive to the higher-order cor-
rections. We compare these results with @CD sum rules
[15] and find that the differences may be large enough
to make the two first-order models experimentally dis-
tinguishable. We will also see from the present data that
drastic modifi. cations to the model cannot be tolerated.

In the last part of the paper we shall develop more
understanding of the higher-order corrections found in
the full model. We will stress the consequences of holding
the physical meson masses fixed in the full model, in
particular constraints on I, and mb.

some breaking is intrinsic to the relativistic quark loop
and it is present when h, = 0. The three parameters of the
first-order model are free parameters, and the consistency
with heavy-quark symmetry is valid for any values of
these parameters.

For the purpose of computing physical predictions with
the first-order model, numerical values of its parameters
may be estimated as follows. As in [1,2], we choose mg =
4.8 GeV, m = 1.44 GeV, and mq ——250 MeV. The first-
order model then yields expressions for the B, B*, D,
and D* masses in terms of A, g, and h. These we adjust
to fit the four masses, yielding an optimal mass spectrum
when A = 667 MeV, g = —0.13, and h, = 0.19. In this
way the model is fixed once the quark masses are given,
and we find that changes in the first-order results are
minor for any reasonable choice of quark masses.

The mass difference between the meson and the heavy
quark in the heavy- quark limit is denoted by A [16]; it
is directly related to A [1]. With the above values of A
and mq, we have A = 504 MeV, which coincides with the
@CD sum rule estimate in [15]. In addition, the Isgur-
Wise function from this model is numerically very similar
to one given in a sum rule analysis [17]:

The slope at u = 1 is —1.28.
As mentioned above, four additional universal func-

tions yi, y2, ys, and (s appear at first order [5, 16]. Their
values are plotted for the above parameter values in Fig.
1. All are relatively small compared with the Isgur-Wise
function, which is 1 at zero recoil and approximately 0.6
at w = 1.5. In fact we can begin to see how it is that di-
mensionless quantities appearing at first order are small
compared to unity. y2 and (s are spin-symmetry violat-
ing and conserving, respectively, but they are both inde-
pendent of the parameters g and 6 for any ~ [1]. They are
therefore independent of the "wave function" distortions
described by g and 6 which are required to fit the phys-
ical meson masses. y~ is spin-symmetry conserving and
therefore depends only on g while y3 is spin-symmetry
violating and depends only on h. But both yq and y3 are
constrained to be zero at zero recoil by Luke's theorem,
and thus for the physical range of u they remain small.
There is thus no quantity at first order which is both sen-
sitive to "wave function" distortions and nonvanishing
at zero recoil. In contrast, there are such dimensionless
quantities appearing at second order in the heavy-quark
expansion [2]. Such quantities can be expected to be
of order unity, and they thereby give corrections which
appear to be large when compared to the first-order cor-
rections.

Since y2 and (s are independent of the parameters g
and 6 the following combinations of B + D* form factors
are especially interesting:

The definition of g and h here differs from that in [1].
More recent sum rule analyses favor a less negative slope

[14].
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FIG. 1. First-order model predictions for universal func-
tions (s and yr 2 3 for A = 667 MeV, ms = 250 MeV,
g = —0.13, and 6 = 0.19.
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FIG. 3. D* polarization parameter o. as a function of the
experimental lower lepton momentum cut p, „t,.
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These quantities have also been stressed elsewhere [15].
Both Ai and B2 are nearly constant across the spectrum.
The main difference with QCD sum rules is that our (s
is much smaller. Our result Bq —1.3 is still in agreement
with QCD sum rules due to the 1/mb suppression of the
second term. But B2 1.0 difFers somewhat from the
value of 0.8 found in QCD sum rules [14].

Indeed we find, in contrast to the Isgur-Wise function,
that all four universal functions arising at first order in
our model are rather different from those in QCD sum
rules, and that they lead to difFerent physical predictions.
For example, we may consider the difFerential B ~ D*
spectrum in w. In the heavy-quark limit this goes over
to IV bI g(u))((u)) where g(w) is a known function of the

meson masses and includes short distance QCD correc-
tions. (We include short-distance QCD corrections [15]
in all subsequent computations. ) Dividing the spectrum
by g(w) and taking the square root then yields IV,bI f (u))
where f (w) goes over to ((w) in the heavy-quark limit.
The first-order model predicts f (w), and we obtain ~V,b~

by fitting to the data.
This raises an important point. The normalization

f (1) = 1 at first order is model independent, so it would
be possible to obtain IV,b~ is a model-independent way if
there were data at zero recoil. But the difFerential spec-
trum vanishes at zero recoil, so we require an extrap-
olation. This extrapolation can only be accomplished
by fitting some functional form to the data; this func-
tional form is model dependent and hence so is ~V b~.

This model dependence will diminish only as the data
improves.

We plot in Fig. 2 the first-order model results together
with ARGUS [18] and CLEO [19] data for (IVeb( f(w). We
see that the shape of our curve is steeper than that pre-
dicted by QCD sum rules, and that the present data favor
the steeper curve. At first order f (1) = 1, so ~V bI may
simply be read ofF as the intercept of the curve. We find
~U, b~

= 0.042 in our model and ~Veb~ = 0.037 in QCD sum
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FIG. 2. Predictions for the B ~ D* spectrum ~V, b~ f(u))
[equal to ~V, b~((u)) in the heavy-quark limit]. The respective
values of ~V,b~ are 0.042 in our first order model, 0.037 in
first-order @CD sum rules, and 0.038 in our full model.
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FIG. 4. Forward-backward asymmetry AF& in the angle
O„as a function of the lepton momentum cut. The cut is
performed symmetrically as explained in the text.
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rules, a difFerence of 13%. This large discrepancy is due
entirely to the first-order corrections, since we have used
the same Isgur-Wise function for both cases.

We next present results for two integrated quantities
which directly sample the data away from zero recoil: the
D* polarization parameter o. and the forward-backward
asymmetry AFB. These are plotted versus the experi-
mental lepton momentum cut in Figs. 3 and 4. The
present experimental values [18,20, 21] of AFB and cr are
also displayed. In both cases, the predictions of our first-
order model diIFer from those of QCD sum rules; better
data would make it possible to distinguish between them.
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III. THE FULL MODEL

If we consider the same quark masses as above then the
full model yields [2] h+(1) = 1.107 and h~, (1) = 1.155,
in contrast with their model-independent values of 1 at
first order. The value of ~V,s~ is then no longer given by
the intercept of the full model curve shown in Fig. 2,
and ~V,g~ in this case is 0.38. In contrast, the eKects of
these higher-order corrections manifest themselves only
slightly in o. , as shown in Fig. 3. And as seen in Fig. 4
they cancel out almost completely in AFB.

We now turn to a discussion of the sensitivity of the
full model results to the heavy-quark masses. By fixing
the physical values of the meson masses, the quantities
Z~ v and A~ v of Eq. (1) are fully determined for each
meson, as mentioned at the outset. This points to a
fundamental difference in the interpretation of the full
model versus the heavy-quark expansion. In the latter,
the meson masses vary as the heavy-quark mass varies.
But in the full model the physical meson masses are held
fixed. Then the dependence of various quantities on the
heavy-quark mass has no connection with the standard
dependence in the heavy-quark expansion. In fact in the
full model it will only be possible to produce physical
meson masses when the quark masses are within some
range. This is a feature of any realistic model of QCD
for fixed hadron masses. In fact, the better the model,
the more the quark masses should be constrained to their
true values.

We can capitalize on this fact and use the full model
to constrain m, and mb. An easily measurable quantity
which has strong dependence on these masses is the ratio
of branching ratios B(B —

& D)/B(B ~ D*). We illus-
trate this by plotting this ratio in Fig. 5 as a function of
m at fixed ms = 4.8 GeV (with no lepton momentum
cut). As the data improve this mass dependence will
translate into a constraint on m as a function of mb.

In fact, constraints on the heavy-quark masses already
arise. We consider both B + D* and B ~ D processes
and we find that the allowed region in the m -mb plane
is defined by

FIG. 5. Full model prediction for B(B~ D)/B(B ~ D*)
as a function of the charm quark mass with bottom quark
mass fixed at 4.8 GeV.

tor in (1). They ensure that the D* is below threshold
to produce a free charm quark and an unphysical parti-
cle with mass A~, and that the B is below threshold to
produce a free bottom quark and an unphysical particle
with mass Aii. (Other conditions such as m +A~ ) MLi
and mg + A~. ) Mii are less restrictive. ) As we have
said, the existence of an allowed region is expected due
to the fact that the meson masses are fixed.

Our canonical choice m = 1.44 GeV and mb ——4.80
GeV lies close to a line running down the middle of the
allowed region. The corrections to the B ~ D* form
factors increase as the point (m„m~) gets closer to the
constraint (6) involving MD. , and the corrections to the
B ~ D form factors increase as the point gets closer to
the constraint (7) involving AD. This efFect manifests
itself as the anticorrelation in the full model predictions
for the branching ratios, as seen in Fig. 5. As another
illustration we show in Fig. 7 the corrections to h~, (1)
and h+(1) as functions of m, with mg = 4.8 GeV held
fixed. We again see the anticorrelation in the corrections.

It is of interest that for no reasonable choices of quark
masses are the corrections to h~, (1) and h+(1) small si-
multaneously. In [2] we associated these corrections with
hyperfine splitting effects. This may be rephrased in the
language of Fig. 6 with the aid of Table 1 in [2]. There
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quark mass mz ——250 MeV. These conditions may be
understood by considering the form of the damping fac-
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FIG. 6. Allowed region in the m, -m, b plane, for light-
quark mass mq ——250 MeV.
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FIG. 8. Full model prediction for fraction of leptons hav-

ing momentum greater than a given minimum value.

it is seen that both M~. —A~ and M~ —AD decrease
when hyperfine mass splitting is turned off. From (6) and
(7) this has the effect of enlarging the allowed region in
the m -mb plane, and the corrections are correspondingly
reduced.

It may seem most reasonable for the corrections to
h~, (1) and h+(1) to be of the same order of magnitude,
and thus both in the 10—15% range. A more precise
statement awaits more experimental input, as we have
described. The main point of this paper has been to
obtain definite predictions for other quantities, and how
these predictions fare will determine how seriously this
model should be taken.
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APPENDIX

We summarize in this appendix the definitions of all
relevant quantities. The full fourfold decay distribution
in the cascade decay Bo m D*+(m D7r) + E + vq may
be written as [22]

Z

U s2(1+ cos 0) sin 0*

L 8sin 0 cos 0*
T —

i6 sin 0 sin 0* cos 2y
I —

zz sin20 sin20* cosy
P &z cos 0 sin 0*

A —
8 sin0 sin20* cosy

H,
IH+ I' + IH- I'

Re(H+H' )
2Re(H+Ho + H Ho)

IH+ I' —IH- I'

2Re(H+Ho —H Ho)

(A2)

The partial helicity rates dI', /dw are given by

Gs I&-bl'
MtM2 /~2 —1(1+r —2r~)H, ((u),

d(u 48vr3

(A3)

0 is the polar angle of the lepton measured with respect
to the D* direction in the (EPg) c.m. system, 0* is the
polar angle of the D relative to the D* in the D* rest
kame, and y is the azimuthal angle between the two
decay planes spanned by (D7r) and (EvI). See [22, 18]
for diagrams. B(D*+ ~ D7r) is the branching ratio
1 ~.+~D /I'~*+~ t). The zero lepton mass approxima-
tion has been used. The angular functions f; are listed
in (A2):

dl [Bo ~ D*+(+ D~)E &,]-
du d cos 0 d cos 0* dy

).f;(0, 0*,y) dI';(cu)
2K d(d

(Al)

where Mq 2 are the B and D' masses and r = M2/Mz.
H, are bilinear expressions of the three helicity ampli-
tudes H+, H, and Ho describing the current-induced
transitions B ~ D*, and are listed in (A2). A set of four
form factors may be de6ned by

&'~l cPvh la )= /hchMvhvt~)cv v
cv'" vvvvr, (A4)

I
cpvpch I& ) = —v'V'M)Mv l(v'+ 1)hv, (v')cvv —(hc, (v)vvv + hv„tv')vvv) cv . vvl, (A5)

where z2 is the D polarization vector. The three helicity amplitudes are given in terms of the four form factors by
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H~ = QMiM2(ar + 1)(h~, ~ [((u —I)/(cu + 1)]' hv j,
Hp ——

QMgM2(ar + 1)
((ar —r)h~, —(ar —I)(h~, + rh~, ) j.1 + r2 —2rcd

The differential decay rate for Bo —+ D+ + E+ vt is given by [13]

dI'(Bo m D+Evt) 3 2
dI'

der dcos0 4 d~'

where

(A7)

MgM2 Q(u —l(l + r —2r(u)]HoD((u)] .

M2 is now the D mass. The standard pair of form factors are defined by

D~ cp t ~B ) = QM&M2 jh~(w)(vi+ ug)„+h (ru)(v| —uz)~].

(A8)

(A9)

hV, Ag, As, + (~ hAg, — (All)

The amplitude Hp is given in terms of h~ by

QMiMgv to —1
Hp f(I+r)h+ —(1 —r)h j.gl + r —2rLar

(Alo)
The total of six form factors have the following values

in the heavy-quark limit:
I p

AFB ———
4I +I ) (A15)

the events lost due to the cut must be restored. In order
to facilitate this we plot in Fig. 8 the full model predic-
tion for the fraction of leptons having momentum greater
than the cut, for B —+ D a,nd B ~ D*. This fraction is
quite insensitive to m .

In uncut form, the forward-backward asymmetry in
the angle 0 is given by

h;((u)~ = h;(~)" ~ + P, (ar)((cu). (A12)

In all of the model results quoted we include short dis-
tance @CD corrections P;(tu) [15] according to

where
dI',. = '+"'

&max =
2r (AI6)

—1 & cos 0 & min( cos 0(w; p,„t),1)
where

1 —rar —2p, „t/Mgcos 0(ld j @cut) r vv —1

(A13)

(A14)

When converting data into values for branching ratios,

We implement the momentum cut according to the
prescription set out in [22]; in our notation, this reads

(A17)

In uncut form, the D* polarization parameter is given by

I'L,0!=2
I'U (A18)

The lepton momentum cut excludes events in the extreme
backward direction cos0 ~ 1; following [22] we remove
this bias by symmetrizing the definition of AFB with the
forward hemisphere restricted by

—min( cos 0(cu; p,„t),1) & cos 0 & 0.
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