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Perturbative +CD predictions for the fragmentation functions of the P-wave mesons
with two heavy quarks
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The fragmentation functions for the heavy mesons of S and P waves are calculated in the frame-
work of perturbative +CD and the nonrelativistic quark model. The results are manifestly process
independent. As applications, the production ratios for P-wave bc mesons to the bb production at
high energy colliders are predicted. The spin dependence of the fragmentation functions for various
states is discussed and the predicted results for the D (D') mesons are consistent with the recent
experimental data.
PACS number(s): 13.87.Fh, 12.38.Bx, 13.88.+e, 14.40.Jz

I. INTRODUCTION

The fragmentation functions for heavy flavored mesons
have been intensively studied theoretically [1—13]. One
believes that kinematic factors govern the heavy me-
son fragmentation [1,3,4]. One of them is the PSSZ
(Peterson, Schlatter, Schmitt, and Zerwas) model [4]
parametrized by accounting for some kinematic factors
appearing in perturbative calculations, and it is proven
to describe well the fragmentation functions and is widely
adopted in experimental analysis. However, this model
cannot predict the spin dependence of the fragmentation
functions and the relative production ratios for various
states to that of bb production. The study of them is
very important to understand the hadron fragmentation
mechanism. In order to extract this kind of informa-
tion, one needs to build specific models to calculate the
dynamical details for the strong interactions. It is inter-
esting that for the fragmentation of mesons which consist
of two heavy quarks such as cc, cb, and bb, the dynamics
is considerably simplified, and can be easily calculated
by using perturbative QCD and the nonrelativistic wave
function of the meson. As a result, the spin dependence
of the fragmentation function and the relative production
ratios for various states can be predicted well.

The simple perturbative picture adopted here has been
depicted by some authors [5—11]. The process was first
calculated by the author of Ref. [5]. In Refs. [6] and
[7] the authors extract the fragmentation function by re-
taining only the so-called "lowest twist" term, for a pseu-
doscalar meson and vector meson, respectively. The au-
thors of Ref. [8] found that some higher twist terms have
the same order contributions. In their derivation, the
factorization property, i.e. , the process independence of
the fragmentation function, is not manifest. The authors
of Ref. [10] calculated them in the axial gauge for the S-
wave bc mesons and confirmed the results of Ref. [8]. In
their calculation, the factorization property is manifest.
The unpolarization fragmentation function for c ~ Jjg
was examined by the authors of Ref. [10]. The polar-
ization of it was considered by the authors of Ref. [11].
In Ref. [13], the authors did a full calculation of the
hadronic production of the B meson.

In addition to the S-wave states, some higher excited
states such as the P wave do not have tiny production
ratios as the experimental study indicated [14,15]. To
search and study these states is of special interest both
in theory and in experiment. For instance, discovering
higher excited bc mesons and measuring their spectra is
critical to testing heavy quark potential models. So it is
also important to calculate the fragmentation functions
of these states.

In this paper, based on a general consideration of the
singularities in the amplitude, we calculate the fragmen-
tation functions for the S- and P-wave mesons and their
spin-dependent properties and give an interpretation on
the process independence of the fragmentation functions
in the perturbative QCD framework in detail.

The higher order collinear gluon emission processes
contain terms such as [n, (~s) ln(~s/mg)], where ~s
and mg are the total energy and the heavy quark mass,
which violate the scaling behavior of the fragmentation
function. The contributions from these terms relate the
evolution of the fragmentation function and can be easily
summed up by solving the Altarelli-Parisi (AP) evolution
equation [16]. In this paper, we also calculate the evolu-
tion of the fragmentation.

The rest of this paper is organized as follows. In Sec.
II, we show that the amplitude can be factorized and
the fragmentation functions are process independent by
taking a special gauge in detail. The fragmentation func-
tions for the mesons with various spins are derived. In
Sec. III, we discuss the evolution of the fragmentation
functions by solving the AP equation [16]. In Sec. VI,
we apply these fragmentation functions to calculate the
production rates and the energy distributions for various
states.

II. DERIVATION OF THE FRAGMENTATION
FUNCTIONS

In this section, we derive the fragmentation functions
for both P- and S-wave mesons. According to the fac-
torization theorem, the heavy meson fragmentation func-
tions are independent of the hard processes by which the
heavy quark is created. However, if one wants to extract
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them in the perturbative picture, one needs to invoke
a specific process. Here we calculate a simple process
Z ~ JI + qi + q2, where II represents an S-wave ( Sp,
Si), or a P-wave ( Pi and Pg, J = 0, 1, 2) meson.

The lowest order @CD perturbative diagrams are
shown in Fig. 1. The process contains two steps. First,
a heavy-quark —antiquark pair is created from a virtue
gluon emitted by the heavy quark. Then, the heavy
quark and the heavy antiquark in the pair with almost
the same velocity combine to form a heavy meson which
is described by the meson wave function. The contribu-
tion &om the interference between the first two diagrams
and the last two is small and can be ignored. From now
on, we only focus on the first two diagrams while the oth-
ers can be easily obtained by symmetry. The amplitudes
corresponding to these two diagrams read

4 2

A,". = ' u, (qi) A ' v,. (q2), (1)
3 3'

where

d4q „1 g —)2+ m2
~4 WPXP(q)& l2 xk r 2 2 f& (9& + 'Ysg&) I

2'7t )

(2)
d q p2 —g+ m2 „1

(2 „V,X,(q)g. (g +Wsq-), ~270) (A: —P2)' —m,

where k» q» q2 are the four-momenta of the Z, quark 1
with mass mi, and quark 2 with mass m2, respectively;

m, ,
pi = nip+ q~pa = n2p q m, +m, )

are the momenta of two constituents of the bound state
with the total and the relative momenta p and q, re-
spectively; I = pi + qi, y„(q) is the BS (Bethe-Salpeter)
wave function of the produced bound state. In this pro-
cess, we have several energy scales: m„mi, m2, M (the
bound state mass), and IqI. In the weak binding limit,

they satisfy the inequality

m, » M, m„m, » Iq (4)

In the rest frame of the bound state, the wave function
y„(q) can be written as

x, (q) = . 4(q)
qp —Q+ —26 qp —G + 'lE

xv (q)u (—q)y"*, (ss;1/ JJ,),

where

a+ ——o,iM — m~ + q 2ml '

a = —o.2M+ m'+ q' =
2m2'

v (q) are the Dirac spinors of quark 1 and antiquark
2 which satisfy the free Dirac equation. y", and
(ss; Ll,

I

JJ ) are the Clebsch-Gordon coefiicients for the
S-S coupling and L Scoupli-ng; the order of Iq I

is the
same with that of Ia~ —a I; P(q) is the scalar part of
the wave function.

Equation (4) implies that in the rest frame of the
bound state P(q) drops fast when the relative momen-
tum is compatible with the quark mass. Therefore, if
we calculate the creation of S states, we can neglect the
q dependence in A' (i = 1, 2) except P(q). Integration
over the relative momentum q yields that the amplitude
is proportional to the wave function at the origin of the
bound state. However, for the creation of the P wave,
since the wave function at the origin vanishes, we need
to expand the A' (i = 1, 2) Iexcept P(q)] to linear terms
of q. Consequently, the amplitude is proportional to the
derivative of the wave function at the origin after inte-
grating over the relative momentum. In both cases, the
q dependence or higher order terms can be ignored. The
largest contribution of the process comes from the kine-
matic region in which the quark 1 and the formed meson
are almost collinear. To give a further interpretation, let
us introduce some kinematic variables:

P P 2p k 2q2 k

mz
)

mz

2qp -k
2mz

M2
m2z

They are constrained by x+y+ z = 2 and 0 ( x, y, z ( 1.
The denominators of the propagators of the gluon and

the fermion in Figs. 1(a) and 1(b) are (1 —x) and
ni(l —x)(1 —n2z), respectively. The x variable is con-
strained by the upper and lower integrals bound for a
fixed z [to O(r)]:

(1 —n2z) 2r
(1 x)min =

z(1 —z)

FIG. 1. Feynman diagrams responsible for Z ~ H + q2 +

(1 —niz) 2r
(1 —x) „=z-

z(1 —z)

Since (1 —x);„r,when performing the integration
for the absolute squared amplitude over the phase space
or, equivalently, x, y, it is easy to see that the total width
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is dominated by the region of x —+ 1, in which the quarks
and the meson are collinear. Calculating the squared am-
plitude of A, one finds that the singularities of the three
terms lAql, lAqA2l, and lA2l are of the same order. The
reason can be attributed to the use of a Feynman gauge
for the virtual gluon propagator in Aq and Aq. In fact,
in this gauge, Aq and A2 can be rewritten as

4a.'
~)3

4
im l LPj„(/, q)I.

where

is the colored current,

j' (l q) = u*(q~)»u-(») (9)

and

,(») = l, u (»)~", &.(g-+»g-) u&(q )2X
* 4(q),

Z

L2 ~j (p2) —
2 u~(p2)fs (ge +»ga) / v~ (q2)X~~i4(q) ~

1, P, —g+m,

When quark 1 and antiquark 2 are collinear, j„' (l, q)
l„. However, because of the current, conservation, one has

4
q, /„(I.", , + I.", , ) = o.

2 4" (12)

It means that there is a large cancellation between these
two diagrams. Therefore, if we subtract these terms
from j' (/, q), the contribution in Fig. 1(b) may be sup-
pressed. To this end, we decompose it generally into four
terms:

l k"j„' (l, q)

(k /)~

Here a™,b' are insensitive to the choice of vector A:,

as long as A: . l )) l'. The cz and c2 related to the
transverse parts of the current are suppressed by factors
of v'1 —z+ b or ' (h = ~; ). It originates from the
common requirements for the angular momentum con-
servation and the vector coupling of the quark and gluon.
Consequently, if we make a replacement

j™(/,q) = a' /„+ b' k„+cPtg„+ c2 t2„, j„' (/, q) (l, q) = j„' (l, q) — ' l„, (19)
(l, q) k

where t~, t2 are two linearly independent unit spacelike
transverse momenta which are chosen to satisfy

(14)

Multipling Eq. (13) by l" and k~, we have two equations:

the total amplitude will not change, but the second dia-
gram is suppressed by a factor of gl —z + h or ' . This
replacement of j„' (/, q) as Eq. (19) is equivalent to the
replacement of the gluon propagator in the amplitude

a' l +b' k. l =/~ j' (l q),

a' l k+6' k =k".j„' (l q),

gp~ 1 /' k„/„)
l' m D„(l)= l' I gv )

or in a symmetric form

(2o)

where
l" j' (l, q) = u;(qg) [(qg —mg) + (pg+ mg)] v (pg)
O(q ). It follows that

k"j„* (l, q)
k. l

m D (/) = I
lf k~/„+/~k

I ~ l ) (21)

It means that in the calculation, we can obtain the lead-
ing order contribution if we choose a gauge as Eq. (20)
or Eq. (21) for the virtual gluon. In this gauge, the
amplitude of the Fig. 1(a) can be rewritten as

A'~ =1
4g, g —II2+ m2

&~&~(q)&-D~-(/) 2 I/ (g-+»g-)u. (q2).
LA: q) m2

(22)

Now let us divide the fermion propagator into two parts (in the Z rest frame):

S= II2 + m2 70(ko q20) + q2 'y + m2 Yo(ko q20) q2 ' '7 ™2+
(k —q) 2 —m22 2Ld (mz —2LO) 2(d mz

(23)

with ur = gqz + m2 ———zm„q2p ——(1 —2z)m, . The
first term corresponds to the positive energy part with a

1
singularity of, while the second one corresponds to

1 —x
the negative energy part and can be ignored because it

ppld + q p + m2 u;(q2)u;(q2)
zm2(1 —z) zm2(1 —z) ' (24)

has no singularity. Thus the propagator can be approxi-
mately expressed as
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with q2
——xk —q2 satisfying q2

——m2. The factor 1 —x in
the denominator means that the virtual fermion is almost
on shell when x approachs to 1. Putting Eq. (24) irto
Eq. (22), A~ can be factorized as

4 2

(2s)
3 3'

In the nonrelativistic approximation, g„"*(q) can be writ-
ten as

—/2M 1
&,'"(q) = (P~ ™~)(~»+ &0(»+ m2)

4m, m,
(32)

where

T*- = u*(q~) 4~"~ (q)~-D, -(l)q

1

)
um(q2),

z

+-j = u-(q2)k. (g-+»g-)~j(q2)

(26)

(27)

where n = 1 (0), P = 0 (1) for an S = 0 (1) meson. This
form of the spinor wave function is correct up to O(q).
It is suKciently accurate for our cases of S- and P-wave
creation.

In the rest frame of the bound state, the scale part of
the wave function «(q) can be expressed as

Therefore, the squared amplitude can be written as

(4g.' l
Ay ji y ij / f

Fj mTmiTinFnj &

3J
(28)

1 1
«(q) = . . A(q).

qO
—G+ —'LE qO

—G + Z&

They satisfy the well-known intergal formula

(33)

where P~ I"
~ is proportional to the spin-density matrix

of the heavy quark before emitting the gluon which is pro-
portional to a unit matrix [12], i.e., Ij I"n~ = ~I"

~

Thus, the squared amplitude can be rewritten as

, 4o(q) = No(0),
q

(3s)

1 (4g,' )' m'.
dx~T ', (30)

where the matrix T, defined in Eq. (26) has a form

T;, = u, (qg) ,~~x„-*(q) 4i(q) D~-(l)~-ss

(ll„ss,
i
JJ, )

m2x(l —x)
(31)

Factorizing out the phase space factor, the fragmentation
function reads

where e (l, ) is the polarization vector related to the orbit
angular momentum. Thus, integrating over the relative
momentum q, for the S wave, approximately, one Ands

1
T,,= 8,, (q~)7„&„'"*(0)D„(lo)&uj(&2)go(0)

(36)

where lo ——o.qP + qq. For the P wave, expanding q and
retaining linear terms of q in y'"*(q) and D„(l), one
obtains

T'j = ~'(&~)~~ D~-(lo) +&,""(o)
q=O

(37)

Here, the spinor part of the wave function and its derivative can be easily calculated from Eq. (32):

1
(0) = (c"» + W) (8+ M)

2 M

~x„' '(q)
gqM

q=O

[P+ m2 —mg],
4mgm2

(39)

~x„'"*(q)
Bq

q=O

[p g(s )(P+ m, —m, ) —2(p, —m, )e (s )],4m, m2
(40)

while they were obtained in Ref. [17] for the equal mass case. Here the terms proportional to p have been ignored
due to the factor p. q which is of order O(q ). The derivative of the gluon propagator can be obtained from Eq. (20):

OD„(l)
Bq~ q=G

2lo~ ( kilo~ ) 1 k~kplov
lo4

" k lo ) l2 (k -lo)2
k„g
lo2k lo

(41)
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) (ll, ; ls, ~00)e (l, )eP (s, ) =
l, s

r'p pp

)
'

For the st states, one has the relations [17]
D(z) = 8 .'I@ (0)I'

27Mm2 (1 —n2z) 2

$2 $3
x 8 Wp(z) + —Wj (z) + —W2(z), (48)

2 3
(42)

) (Il, ; ls, ~l J,)e (l, )eP(s, ) = i
, s

appb
m

) (I/„. Is~i2J, )e (I )e (s, ) = e (J ).
l,s,

(43)

(44)

(45)

Here the polarization vector e"(J,) and tensor e~ (J,)
obey the projection relations

z(l —z)with b The W s are obtained from
1 —n2z 2

straightforward calculations on ~T~ in Eq. (36).
For the S-wave pseudoscalar meson, they read

Wp ——2(1+ zn, ) (1 —z),
Wz ———2(2z n2 —z n2 —4zn2 + 4zn22 2 2 2

—3z + 4n2 —2) (1 —zn2),
W2 ———8(1 —zn2) ngn2.

For the S-wave vector meson, they read

1 1) ~pv( Jz)cap (Js) = —[PpaPvp + PvaPpp] ——P~v Pap.

(46)

Wp —2((1+zn, ) + 2z )(1 —z),
Wg ———2(2z n2 —3z n2 +. 4zn2 + 4zn2

—9z —4n2 + 6) (1 —zn2),
W2 ———24nq n2 (1 —zn2)

(50)

Wp(z) r Wj (z) r W2(z)+ +
(1 —x)2 (1 —x)s (1 —x)'

l&p(o) I'

(1 —n2z) 2n2~Mm4
(47)

Inserting it into Eq. (30) and integrating over x by
using the integration bounds in Eq. (7), approximately,
one obtains the &agmentation functions for the S wave:

Using these relations, ~T~ can be calculated. (In
our calculation, the REDUCE computer program was em-
ployed. ) From the general arguments given in the previ-
ous section, the terms with the highest order singularity
in ~T~ when x approaches 1 can be expanded in terms of
the powers of the heavy meson mass, i.e. , for the S wave,

The expressions listed here confirm the results of Refs.
[8,10].

In addition, the longitudinal W; 's for the vector meson
also can be calculated by using the polarization vector
e'~ = p~/m —mk&/(p. k),

Wp = 2(1+ zni) (1 —z),
Wi = —2(2z n2 —z n2 + 4z n2 —3z

—8zn2 + 2z + 4) (1 —zn2)/z,
W2 ——8(2z n2 —z n2 —2zn2 + 1)(1—zn2) /z

(51)

The expressions listed here are consistent with the results
of Ref. [11] for the equal mass case.

The transverse W; = (W, —WP)/2 (i = 1, 2, 3) can
be obtained from the above formula.

Similarly, for the P wave, ~T~ can be generally written
as

Wp(z) r Wy (z) r W2(z) r Ws(z) r W4(z) M~@I (0)
~+ + + +

(1 —x)2 (1 —x)s (1 —x)4 (1 —x) (1 —x)s mzm4(l —n2z)4' (52)

where the last two terms in the square brackets originate from the derivative of the gluon propagator. In the same
way, substituting it into Eq. (37) and integrating over x, the fragmentation function of the P wave can be written as

8n.'I@',(0) I

$2 g3 g4 p5
D(z) = h Wp (z) + —W] (z) + —W2 + —W3 + —W4

27Mm f (1 —n2z) 4 2 3 4 5

We list each R'; for all P states as following.
For the Pq (h, ) state,

Wp ——(1 —3zn2 + z —z n2 + z n2 + 3z —5z n2 + 13z n2 —9z n2 —3z2 2 2 2 3 3 3 2 3 3

~z n2 —2z n2+ 3z n2)(1 —zn2)/(32n2),
Wi ———(8n2 —12n2 + 6 —16zn2 —16zn2 + 38zn2 —9z —8z n2 + 52z n2

—34z n2 —10z n2 —24z n2+ 38z n2 —13z n2)(l —zn2) /(32n2),
W2 ———(2[(2n2 —5)z —n2] n2 + 6n2 —1 + (2n2 —1)z n2 + 2zn&) (1 —zn2) n q/(4n2),
Ws ——2(1 —zn, )'n, n~»

TV4 ——0.

(53)

(54)
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For the longitudinal polarization of the Pq state,

Wp ——(1 —3zn2 + z —z n2 + z n2 + z —5z n2 + 13z n2 —7z n2L 2 2 2 2 3 3 3 2 3

—z + z n2 —2z n2+ z n2)(1 —zn2)/(32n2),
Wz ———(4+ 8zn2 —12zn2 + 2z —16z n2 —4z nz + Gz n2 —3z —8z a2 + 44z n2L 2 2 3 2 2 2 2 3 4 3 3

—Gz n2 —6z n2 —16z nz + 14z n2 —7z n2)(l —zn2) /(32zn2),
W2 ——[4(n2 —2z)z nz + 2(4a2 —z)zn2 + (1 —5zn2) —(4n2 —4n2 —25)z n2

—2(2a2 + 2n2 —1)z n2 —(16n2 + 1)z n2](1 —za2) /(8z n2),
Ws ———[2(2a2 —2n2 —1)zn2 + (2n2 —1) + (2n2 —1)z n2](1 —zn2) /(2z n2),
W4 = 2(1 —zn2) n2ng/z .

For the Pp (yp) state,

Wp ——(4n2 —3 —8zn2 + 10zn2 —3z + 4z a2 —5z n2 + z n2) (1 —z) j(96n2),
Wq ——(32nz —40n2 —12n2 + 18 —64zn2 + 176zn2 —152zn2 + 18zn2

+27z+ 32z o,'z —184z o.'z + 324z o.'z —206z o.'& + 30z o.'2

+32z n2 —80z n2 + 58z n2 —9z n2)(1 —zn2) /(96n2),
W2 ———[2(7a2 —6z) n2 —(10n2 + 3) —2(7a2 —12)zn2 —(2n2 —3)z n2] (1 —zn2) nq/(12n2),
Ws ——2(1 —zn2) n2ni/3,
tV4 ——0.

(55)

(56)

For the Pq (yq) state,

Wp = (1 —4za. 2 + 2z + 8z n2 —10z n2 + 3z —4z n2 + 6z n2
—2z n2 + z n2 —2z n2 + z n2) (1 —z) /(16n2),

Wi ——(4n2 —6 + Gzn2 —10zn2 + 9z + 8z n2 —22z n2 + 10z n2

+2z n2 —2z n2+ z n2)(1 —za.2) /(16n2),
W2 ——(2n2 —6n2 + 2 —2zn2 —6zn2 + llza2 —z n2)(1 —zn2) nq/(4n2),
Ws ——2(l —zn2) n2ni,
R'4 ——0.

(57)

For the longitudinal polarization of the Pi state,

Wp ——(1 + nqz) (1 —zn2) (1 —z)/(16a2),
Wj ———(4 —8zn2+ 2z+ 2z n2 —3z + Gz n2 —2z n2 —2z n2+ z a.2)(1 —zn2) /(16zn2),
W2' = [(1 —4z'n:) + 4(2n2 —1)z'n' —z'n21(1 —zn2)'/(4z'n')
Ws ———[(2 —zn2) + 4(2n2 —1)z n2 —4zn2 —z a2](1 —znq) /(4z a2),
W4 = (1 —zn2) nin2/z .

(58)

For the Pq and Pq state, we can also obtain the transverse polarization W, (i = 0 —4) by

(59)

For the P2 (y2) state,

Wp ——(2 —8za2 + 4z + 12z n2 —16z n2 + 9z —8z n2 + 20z n2
—28z n2+ 10z + 2z n2 —8z n2+ 24z n2 —20z n2+ 5z )(1 —z)/24,

Wq ——(16n2 —20 —32zn2 + 52zn2 —13z + 16z n2 + 4z n2 —30z n2

+8z + 4z n2 —7z n2 —28z n2 + 30z )(1 —zn2) /24,
W2 ——(26n2 —34 —26zn2 —18zn2 + 45z —8z n2 + 15z n2) (1 —zn2) nq/12,
W3 —10(1 —zn2) n2nz/3,
TV4 ——0.

(6o)

The symmetric traceless polarization tensor has five independent TV; with three difFerent, which correspond to the
helicity 0, +1, and +2 contributions. Denoting them by WP, W;~, and W2 (i = 0, 1, . . . , 4), we get
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Wo ——[(1+zni) —zni] (1 —z)/12,
Wi = —(12 —32znq + 4z + 28z n~ —14z nq + 2z —8z n~ + 4z n~

+18z nq —10z —2z nz —7z nz + 8z nq —3z )(1 —znq) /(12z),
Wz ——(24 —60znq —3z+ 52z nz —3z nq —z —16z nz + 7z nz0 2 2 2 2 3 3 3 2

+12z ng —6z —7z n~ + z n~)(1 —znp) /(6z ),
Ws ———[2(90nq + 6 —32znz + 10znq + z)z nq + 12(6 —z)

—3(4nq —1)z nz —192znq —9z ](1 —znq) /(12z ),
W4 ——[(4nq —1)z ns + 3 —6znq](l —znq) /z .

(61)

For helicity=l polarization of a P2 state,

(62)

Wo' = [(2ng —1)z —1] (1 —z)z /16,
Wi ——(8 —16znq —4z + 8z nz + Sz nz —7z + 4z ns + 2z nq + 4z —7z nz —4z nq + 4z )(1 —znq) /(16z),
Wz ———(20 —44znq —10z + 26z nz + 18z nq —4z —2z nz

+2z n~ —5z n~ + 7z —2z n~ —7z n~ + z n~)(l —zng) /(8z ),
Ws ——(32 —80znq —12z + 60z nz + 20z nq + 3z —8z nz

—12z nz + 2z nq —4z nz —z nz)(1 —znq) /(8z ),
W4 ——[(218nq + 6 —15znq)z nz + (204nz + 20 —15znq)z nz

+(32 —z)znp + 2(13np + 3)z nq —(3np + 1)z nq —4 —lllz nq —265z nq —97z nq]/(2z ),

while the W; 's can be obtained by

W, —TV,- —2R'-

2
(63)

Thus, the fragmentation functions for each of the S
and P waves are determined. It is easy to see that the
shapes of the fragmentation functions depend on the vari-
able z and the quark mass ratios, i.e., o.q or o.2. This
scaling behavior is the lowest order result and may be
violated as involving the higher order effects. The pro-
duction ratio of the 8 wave is proportional to a factor
~@o(0)~

/m&M while that of the P wave is proportional
to a factor ~gi(0) ~

/m&M. It means that the smaller mi

is, the larger the production ratios are, as expected.
It is interesting to compare the results with the PSSZ

model. It is easy to see that the kinematics factor x(1—
x) is contained in this model and the PSSZ model, which
was first derived by Bjorken [1].

Comparisons of the predictions for the fragmentation
functions with data for the D meson cases and the B
mesons are shown in Fig. 2. Here we take our param-
eters o.q to be 0.25 and 0.08 for the D and B mesons,
respectively; in the PSSZ model the parameters c, and
es defined in Ref. [4] are determinted by updated exper-
imental data as c, = 0.06 and cb ——0.006 in the PSSZ
model [18]. From Fig. 2, one can see that the results of
these two models are close.

/)

I

I

I'

0.2 0.6 0.8

PIC. 2. The normalized fragmentation functions pre-
dicted by this model for the D meson with the parameter
ni = 0.25 (dot-dashed line) and the B meson with ni ——0.08
(dotted line) compared with the PSSZ [4] model for the D
meson with the parameter r = 0.06 (solid line) and the B
meson with sq = 0.006 (dashed line), respectively.

III. EVOLUTION OF THE FRAGMENTATION
FUNCTIONS

dD (z, t)
dt

—D(., t)I'„ I

—I,
dy r'z l

qu)
(64)

The fragmentation functions derived in the previous
section are independent of the energy scale as the lowest
order perturbative results. If the energy scale of the pro-
cess is very large, the off-shell heavy quark produced by
a hard process may emit gluons. The collinear emission
will contribute large correction terms to the fragmenta-
tion function, such as [n, (S) 1n(S/m&)] . Here the heavy
quark mass mg provides a natural cutoff for the collinear
singularity. These terms can be summed up by employ-
ing the parton shower [19 Monte Carlo simulation or by
solving the AP equation [16]. Here we adopt the latter
approach. It is well known that the fragmentation func-
tion D(z, t) obeys the AP evolution equation [16]
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4 1+z 3-' =3 (1+.), '2"' (65)

(,)
D~(z) —D~(z)

DT(z)
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IV. APPLICATIONS

As the erst application, the formula
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Sp

Sg

Si (h = 0)
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'Pi (h = 0)

Pp
'Pl
Pr (h=o)

3P
Pg (h=o)
P2 (h=1)

0.35
0.21

16
5.0

0.64
0.69
1.4

0.36
1.6

0.53
0.44

0.25
0.13

3.4
1.4
0.8
1.8
2.0
0.56
0.78
0.025
0.021

0.66
0.57

2.6
2.6

0.83
0.1

0.058
0.13
0.14
0.040
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0.018
0.015

0.68
0.72
0.72

0.71
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0.73
0.66
0.76
0.79
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0.57
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0.61
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FIG. 4. Prediction for the fragmentation functions (all
times 10 ) of the unpolarized (solid line) P wave bc-mesons
and various polarization ones such as helicity h = 0 (dashed
line) and h = 2 (dotted line), respectively.

FIG. 5. Prediction for the Pv(z) (dashed line) and o.(z)
(solid line) of the D and D' mesons defined in the text.

pseudoscalar meson and the vector meson, respectively;
Dl. (z), Dz (z) are the longitudinal part and transverse
part of the fragmentation function, respectively. The
predicted fragmentation functions with o.y ——0.25 are
shown in Fig. 5. The average P~ is about 0.6 which is
consistent with the ALEPH Collaboration experimental
data Pv. = 0.60 + 0.08 + 0.05 [21]. n(z) is close to zero
(nearly unpolarized), which is consistent with the CLEO
results [22]. The relative production ratios of the P to-
the S-wave charmed mesons can also be predicted and
the results are close to that of the bc mesons because the
values of o.~ are very close for these two kinds of mesons.
These results need to be examined by future experiments.

model, the spin dependence of the fragmentation func-
tions for both the S and P waves is discussed. P~
Bv/(By + Bi ) 0.6 and n(z) 0 are obtained. Com-
paring with the experimental data, it is found that this
simple model well describes the fragmentation functions
of the D, D* and B,B* mesons. It may indicate that
the heavy meson fragmentation function is dominated by
perturbative effects. To improve these results, one needs
to consider higher order perturbative QCD corrections,
nonperturbative QCD correction such as the multigluon
exchange, quark and gluon condensates, and a better
treatment of the integral over the relative momentum
in the amplitude.
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