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Application of Monte Carlo simulation methods to quantum cosmology

Beverly K. Berger'
Physics Department, Oakland University, Rochester, Michigan 48309

(Received 25 February 1993)

Quantum Monte Carlo (MC) simulation methods used widely throughout physics to generate ground-
state wave functions are applied to the minisuperspace quantization of spatially homogeneous cosmolo-
gies. MC diffusion, MC path integral, and semiclassical MC path integral methods are applied to the de
Sitter model, the mixmaster universe (and its generalizations), and the Robertson-Walker scalar field

cosmology. All methods adequately reproduce the de Sitter model's wave function in the regime that
has an effective ground state. In other situations, the failure of the Hamiltonian constraint (i.e.,
Wheeler-DeWitt operator) to be bounded from below presents a severe obstacle to the simulations. If a
ground state is artificially forced, the various MC methods can be compared in more complicated mod-
els. The simulations can then be used to study issues such as the validity of the minisuperspace approxi-
mation, the choice of a time variable, the path space measure, and tunneling universe wave functions.

PACS number(s): 98.80.Bp, 04.60.+n

I. INTRODUCTION

The observed Universe on the largest scales can be un-
derstood as a Friedmann-Robertson-Walker (FRW) spa-
tially homogeneous, isotropic collisionless matter-filled
solution to Einstein's equations. Observations of the cos-
mic microwave background (CMB) and light element
abundances yield information about earlier radiation-
dominated and nucleosynthesis eras, respectively. Recent
observations from the Cosmic Background Explorer
(COBE) of CMB fiuctuations [1] may allow the study of
even earlier epochs associated with the properties of
grand unified theories. Yet, at some point in the past
direction, the FRW model must break down since it is ex-
pected that Einstein's equations are no longer valid at en-
ergies (or equivalently temperatures) above the Planck
scale. Even if hidden to the past of an inflationary era,
one expects that an era of quantum gravitational effects
will have occurred. (It is also possible to consider a more
speculative scenario in which the Universe itself is always
a quantum system with the classical world a creature of
the measurement process [2].) Unfortunately, no com-
plete theory of quantized gravitation yet exits. To allow
concrete study of possible effects in this regime, it has
often been useful to consider the better-defined quantum
mechanics of spatially homogeneous cosmologies [3].
Here we regard a spatially homogeneous cosmology to be
a finite degree of freedom (DF) dynamical system in its
own right. Quantum cosmology (QC) is defined here to
be the quantum mechanics of these systems. The impor-
tant technical advantage of QC over the quantum
mechanics of the gravitational field (QG) is that the com-
plications of quantum field theory may be neglected. The
construction of a framework for QC is still nontrivial,
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however, because many of the standard QG problems as-
sociated with the time DF remain in the truncated QC
paradigm [4].

As is well known [5,6], there is no guarantee that the
properties of a QC solution bear any relationship to those
of a QG that (classically) contains the QC since DF's
have been eliminated in violation of the uncertainty prin-
ciple. Recent studies of the validity of the QC "approxi-
mation" indicate (not unexpectedly) that the QC results
cannot be trusted if there is significant mixing between
the retained and neglected modes of the full QG theory
[7]. Nonetheless, the QC model serves a useful function
both as a theoretical laboratory, particularly for the
study of issues related to the choice of time variable, and
as a tractable system within which examples of possible
quantum effects in the early Universe might be construct-
ed.

Even within QC, systems with several DF's cannot be
solved analytically (although a semiclassical analysis can
be used as was done in, e.g., Refs. [8—11]). Certainly as a
prelude to QG, appropriate numerical methods must be
sought. A fruitful methodology used throughout physics
to study complicated many DF systems is quantum
Monte Carlo (MC) siinulation [12]. For example, in MC
path-integral (PI) simulations [13,14], the Feynman PI
forinulation of quantum mechanics [15] is used to con-
struct the quantum propagator (schematically) as

IC= g exp(iS), (1.1)
paths

where S is the (Lorentzian) action for the system. Bound-
ary conditions are impletnented by the choice of paths (in
the dynamical configuration space of the system) over
which the (formal) sum is to be taken. Schematically, one
formulation of an MCPI simulation [12] has a procedure
to select discretized paths in the configuration space and
to determine their contribution to the propagator using
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exp( —Sz) (where Sz is the Wick rotated Euclidean ac-
tion) to weight the paths. The actual algorithm must also
be constructed to correctly reproduce the path space
measure.

Application of quantum MC methods to QC is not
straightforward because the appropriate Euclidean action
(equivalent to some multiple of the integrated Hamiltoni-
an constraint of general relativity) is not generically
bounded from below. This is due to the Lorentzian sig-
nature of the (mini)superspace (MSS) metric [6] and the
fact that the spatial scalar curvature can be arbitrarily
negative. If the quantum theory is taken to be the
Wheeler-DeWitt (WD) equation [6]

&%'=0 (1.2)

II. THE WAVE FUNCTION IN MINISUPERSPACE

For the class A spatially homogeneous cosmologies
[27], the complete set of Einstein's equations may be ob-

(where gf is the operator form of the Hamiltonian con-
straint and 4 is the wave function of the Universe), we
see the additional problem that, regarded as a formal
Schrodinger equation in coordinate time, the solution at
zero energy is not (necessarily) a ground state. Although
proposals to solve (or at least correctly bypass) this dilem-
ma have been made, with several under active considera-
tion in the numerical simulations [16—19], it cannot yet
be said that the problem has been solved. Here we report
the results of a series of studies using an artificial Ansatz
to force the system to be well defined (see also Refs.
[20—23]). Within this Ansatz (i.e., although one cannot
directly reproduce solutions to the WD equations) com-
parisons of models with regard to path space measure,
choice of time variable, and DF s included in the model
can be made. The essence of the Ansatz (for MCPI simu-
lations) is to consider in some way the absolute value of
Hamiltonian constraint [20]. The qualitative results (e.g.,
the shape of the wave function) do not depend on the pre-
cise form of the Ansatz.

In Sec. II we shall describe the problem we are trying
to solve —to obtain the wave function in MSS (the finite-
dimensional configuration space for the dynamics of the
spatially homogeneous cosmology). In Sec. III, examples
of simulation methods with their strengths and
weaknesses shall be given. Section IV will contain a com-
parison among several methods for the de Sitter model
used as an example in many studies. We shall see that
most methods can correctly reproduce the exact solution
in the regime where there is an eftective ground state.
Section V will contain similar comparisons for the more
complicated mixmaster (vacuum, diagonal, Bianchi-type
IX) universe. Here we shall see that different methods
yield qualitatively diff'erent results. Section VI will con-
tain examples of studies of path space measure (the
Arnowitt-Deser-Misner [24] (ADM) reduction), choice of
time variable (the Wald-Unruh proposal [25]), tunneling
origin of the Universe (in the de Sitter model) (see, for ex-
ample, Refs. [11,26]), and the validity of the MSS approx-
imation (scalar field coupled to mixmaster) [7,23]. Sec-
tion VII will contain a summary and a discussion of fu-
ture directions.

tained by variation of aM where a(t) is the lapse function
and M is the (integrated) Hamiltonian constraint. In gen-
eral, for these models, one can transform from the metric
to some convenient set of variables [q"],
3 =0, . . . , X —1 that describe the X DF's of the
Universe. In terms of the q and their conjugate mo-
menta p„after rescaling the lapse via a =&g (with g the
determinant of the induced metric on the spacelike hy-
persurfaces determined by homogeneity), H typically
takes the form [28] (where fi=c =167rG =1)

H =6" (q)p~ pii+ V(q) . (2.1)

Here G~~ is the Lorentzian MSS metric while
V(q) =g R for R the spatial scalar curvature. The
reduction to MSS of the Dirac method for canonical
quantization of constrained systems leads to the WD
equation [6]

H q ",p„~ i —„qI(q )=0, (2.2)

where u is the operator form of (2.1) and 4'(q") is the
wave function on the MSS with axes [q ]. Here we shall
note the following features of (2.2).

(1) Even in MSS, classical general relativity is invariant
under a time reparametrization [4]. (The foliation of the
spacetime has been fixed by the requirements of spatial
homogeneity. ) This means that one of the DF's of the
system is not dynamical but is used up by the time vari-
able [24]. This is the MSS projection of the more general,
severe problems for quantization of gravity due to the ar-
bitrariness of time in the classical theory. Extensive dis-
cussion of these issues appears in the literature [4].

(2) The interpretation of the wave function is prob-
lematical since the standard formalism presupposes an
external (classical) measuring apparatus. Extensive work
has been performed to develop a modification of the usual
interpretation of quantum mechanics to allow its applica-
tion to the Universe as a single self-contained quantum
system [2]. This work has the further goal to explain the
classical macroscopic world as a manifestation of
decoherence that is inevitable in our interactions with the
rest of the quantum Universe. Here we shall assume that
an acceptable interpretation of %(q ) exists so that (2.2)
is meaningful.

(3) The formal appearance of the WD equation as a
zero energy Schrodinger equation suggests that the
Universe is in its ground state [8]. It further implies that
standard numerical simulation methods used to find
ground states of quantum systems might be applied to
QC [20]. Unfortunately, the WD operator A' is not, in
general, bounded from below due both to the Lorentzian
signature of the MSS metric and to the fact that the spa-
tial scalar curvature may be arbitrarily negative. The ac-
tual structure of (2.2) is therefore that of a Klein-Gordon
equation on MSS. This has led to proposals for third
quantization [29].

(4) One needs more than a differential equation to ob-
tain the wave function of the Universe; boundary condi-
tions are required [8,30]. As originally emphasized by
Hartle and Hawking [8], other areas of physics impose
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boundary conditions consistent with experience. For the
wave function of the Universe, the boundary (actually ini-
tial) conditions must be imposed beyond the realm of pos-
sible experiment. Hartle and Hawking therefore pro-
posed one (among many later proposed by others) of the
possible boundary-condition formulations. For example,
Hartle and Hawking proposed to restrict the wave func-
tion expressed as a PI: The amplitude for a given three-
geometry is to be obtained as the sum over regular Eu-
clidean four-geometries bounded by that three-geometry.
In the trivial single DF de Sitter model with scale factor
a, this condition selects a solution that is real at large a
and exponentially decreasing toward a ~0. Alternative-
ly, one might consider Vilenkin s boundary condition [11]
that there be no incoming radiation at the boundary of
superspace. In the de Sitter model, this condition
chooses the solution that has the form of a traveling wave
at large a while exponentially increasing toward a ~0 (so
that it tunnels through the barrier between the two re-
gions). Many other boundary-condition proposals have
been made [31,32]. Unfortunately, the application of all
these boundary conditions to models with many DF's is
nontrivial and may be problematical [33].

(5) At a more technical level, the quadratic form of the
momentum dependence of the Hamiltonian constraint
with q-dependent coefBcients causes essentially unresolv-
able factor ordering problems [4,34]. It is possible to in-
terpret any factor ordering as that defined for a particular
choice of variables with a q-independent MSS metric [28].

It is often possible (for popular models) to further sim-
plify (2.1) by choosing variables for which the MSS
metric is fiat [28]. (This is a subset of the process of im-
position of a particular factor ordering. ) For the
Bianchi-type cosmologies, this can be achieved by the
variable choice [Q,P+,P j leading to a Hamiltonian
constraint

(q, t ~q', t') = f2)[q(t)]exp(iS), (2.4)

f(q, t)= fdq'(q, t~q', t')P(q', t') (2.6)

so that (2.4} is the expression for the propagator. The
relevance of the PI to numerical simulations arises from
the following properties [15,28].

(1}If a quantum system (with a single DF for conveni-
ence) possesses a ground state with energy EQ and a com-
plete set of states yz(q) with energies Ez, X=0, . . . , ~,
then, in Euclidean time ~=it,

[q,(q)J'= lim (q, ~[q, o) .

using (2.4) since, for this system,

(2.7)

( q, ~
~ q, 0) = g qr~(q)y~(q)e (2.8)

(2) The PI for this simple system can also be found
directly in a discrete (skeletonized) form as [for, e.g., the
Euclidean phase space form of (2.4)] with the measure
given by

n n —1

&[q(~)]= »m (2~) '" g dp / dqJ
n —+ oo k=1 j=1

(2.9)

and the action by

where 2)[q(t)] is the measure in the space of all paths
which start at q'(t') and end at q(t) and

S=f dt" L(q, q, t")
t'

is the action for the Lagrangian L. The wave function
may be found from (2.4) with the standard expression
[15]

2H= —pn+p+ +p +pe V(P+,P ), (2.3)
s = g [p(q" q" '} ~ [—,'pk-

where g is an arbitrary constant.
Simulations often require the Feynman PI (here given

conveniently for a single DF) denoted schematically by
[15,35]

k=1

The Gaussian integrations over mornenta can be per-
formed to yield the Lagrangian form [15]

n —1
( j j —

&)2
(q, ~~q', 0) = lim (2~) " f g dq exp

n —+ oo j=1 2S~
6~~0

hr V(qj ')— (2.1 1)

Expression (2.11) is easy to simulate on the computer
[13,14,20]. One constructs a discrete path with points
q;(~i) subject to the appropriate boundary conditions.
The path weight is just the integrand in (2.11) easily
found from the path points. The integral Qdq is found
by summing over many paths using some algorithm to
yield the correct measure in path space. (Other schemes

work directly with the Euclideanized Schrodinger equa-
tion regarded to be a diffusion equation [22,36].)

Of course, the time reparametrization invariance in the
Hamiltonian constraint requires a modification of the PI
since one DF is nondynamical [4,28,35,37]. The path in-
tegral must include integration over the lapse and takes
the schematic (e.g., Lorentzian) form

(q", t~q'", 0) = lim f

dad�

"p d"q exp i f dt pz —aM
n~oo dt

(2.12)
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XIC~y2(2V ds ) (2.13)

where V is the potential term in the action (2.1), IC is a
modified Bessel function, and ds is MSS proper time for a
system with N DF's. To simulate this model we need
only weight the paths with the unusual expression in
(2.13) rather than that in (2.11).

where H is given by (2.1) for a fiat MSS. It is clear that
the a integration yields (to the extent that anything is
defined) a 5 functional of the Hamiltonian constraint.
The addition, e.g., of ghost fields to enforce some gauge
condition can lead to a Faddeev-Popov determinant (for
quantum mechanics rather than quantum field theory)
which, in effect, implements the ADM reduction in the
path integral. Alternatively, one may just fix the lapse to
impose a=0 as a gauge condition. Extensive discussion
(though not real resolution) of these matters is given in
the literature [4,28,35,37,38].

In most of the following we shall fix the lapse and re-
gard the Hamiltonian constraint to be a true Hamiltonian
(albeit with "wrong" signs). We shall give one example
[28] of a measure choice to yield the ADM reduction for
the de Sitter model containing a conformally coupled sca-
lar field. The momentum and lapse integrals may be per-
formed for the ADM measure with intrinsic time gauge
condition q =r to yield (schematically)

V (q )
1/2

&q "lq'&= lim g~""arJ

a q such that V(q) ) V„i, it is likely that the psip will be
destroyed. If V(q) ( V„f an additional psip will probably
be created at that location. Throughout the simulation,
the time step is regularly decreased to obtain greater
resolution in the psip distribution. As ~~ ~, the psip dis-
tribution yields ~$0(q)~. It is possible to obtain excited
states by restricting the simulation to a range in q with
nodes at the boundary —e.g. , if V(q) is even in q, the first
excited state can be found by requiring a ps' to be des-
troyed if it has q ~ 0. Extension to more DF's is straight-
forward.

This method is very easy to use although its advantage
over MCPI methods (discussed next) is not apparent for
larger numbers of DF's. MCD has obvious disadvan-
tages in its application to QC. There appears to be no ob-
vious way to implement the Lorentzian signature of the
MSS metric by some sort of antidiffusion in one direction.
The only realistic option appears to be conformal rota-
tion [40]. Furthermore, if the potential V has a "hole, "
i.e., if it can be arbitrarily negative for some value of q,
the psips will fall into the hole. One can in an ad hoc
manner avoid this problem (which is common in popular
cosmological models) by taking

~
V(q) ~. Examples will be

given later. The nature of the rule for destroying psips at
V = ~ walls leads to an ability of MCD to handle poten-
tials such as the infinite square well correctly.

B. Monte Carlo path integral (MCPI) [13,14,20,21]

III. SIMUI.ATION METHODS

Here we shall describe three major methods widely
used in other areas of physics to obtain ground-state
wave functions. We shall consider their operation in a
well-behaved single DF quantum system described by a
Euclidean action of the form (2.10). We shall then out-
line for each method how it might be made to apply to a
system described by the Hamiltonian constraint (2.1).

A. Monte Carlo difFusion (MCD) [36,22,39]

In Euclidean time ~=it, Schrodinger s equation be-
comes the diffusion equation

a
(q, r) =-,'V'P(q, r) V(q)g(q, r) . — (3.1)

If (3.1) is regarded to be in diff'erential form (i.e.,
Br~br), multiplication by b,r yields a stochastic equa-
tion. The wave function lt(q, r) becomes the (necessarily
non-negative) density of fictitious probability particles
(psips) In the ab.sence of the potential term, the diffusion
equation is simulated as follows: Some initial number of
psips is started at the origin with each undergoing a ran-
dom walk with stepsize b,x ~(b,r)' . [Actually one al-
lows the stepsize to be drawn from a Gaussian random
distribution with zero mean and standard deviation
(b,r)' .] The potential V(q) is treated as a source term
creating or destroying psips according to a probability
~ [ V(q) —V„r]hr (where V„r is chosen to keep the @sip
number constant). The idea is that if the psip is located at

MCPI appears to be among the most widely used
methods to simulate quantum systems. A discretized
path is constructed in the configuration space of the sys-
tem subject to the appropriate boundary conditions. For
example, closed paths or paths with one point fixed (say
at the singularity in QC) could be chosen. Given a path,
its discretized Euclidean action (2.10) can be computed.
At this stage one could proceed by choosing paths at ran-
dom in the configuration space and adding exp( —Sz ) (for
Sz the Euclidean action) to the PI. However, this is
ineScient and computationally wasteful since most paths
contribute little to the PI. Most schemes take advantage
of some version of the Metropolis importance sampling
algorithm [41] (MA) to preferentially select paths which
contribute significantly to the PI. In its simplest version
[13], one moves a single point on the original path to
define a new path. The Euclidean actions of the two
paths are compared. If the action of the new path is
lower, the new path is kept. This drives the system to the
least (Euclidean) action (i.e., lowest-energy) path. If the
new path's action is the greater, but a call to a random
number generator yields a (pseudo)random number in
[0,1) less than exp( —Sz „,„+Sz„d), the new path is still
kept to avoid trapping the simulation in a local
minimum. Otherwise one reverts to the original path.
The probability for acceptance of a move is controlled by
the Euclidean time ~ which acts as an inverse tempera-
ture and by the maximum stepsize in a move (usually
chosen so that =—,

' the moves are accepted for a given r).
Eventually, the system relaxes to fIuctuations about the
classical (Euclidean) path. The algorithm selects paths
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with the correct exponential weighting. If closed paths
were used, any point on the path can be regarded to be its
starting point. For both these reasons and Eq. (2.8) one
obtains ~go(q)~ as the distribution function of (moved)
path points.

A variation of this method we have used is that due to
Takehashi and Imada [14]. If there are M points on each
path, the entire path is moved after M moves involving
single points. The large move (MC step) is accented or
rejected based on the MA. After each MC step, the dis-
tribution of path points is accumulated to eventually
yield ~go(q)~ . This version of MA improves conver-
gence. Several simulations are usually averaged to re-
move history dependence due to the MA, i.e., the paths
are not strictly independent of each other since the simu-
lation is a Markov process. Averaging independent simu-
lations will remove unwanted correlations in sequential
paths. The method is easily extended to many DF's at
relatively little additional computation cost (particularly
on a vector machine such as the Cray Y-MP).

MCPI simulations are sensitive to the "wrong sign"
properties of the Hamiltonian constraint (2.1). In partic-
ular, the presence of a "hole" in the potential quickly
causes the MA to drive the paths irrevocably into the
hole. In order to obtain a well-defined simulation with
this method, it is necessary to force the system to have a
ground state either by inserting floors and walls as
modifications of the potential or by driving essentially
~Sz ~

rather than Sz to a minimum. MCPI does not han-
dle walls correctly if the potential is discontinuous. For
example, the infinite square well does not yield the
correct answer (the paths never relax since interior points
do not "feel" the walls) although its approximation by a
steep [e.g. , V(q) ooq ] potential does. If the potential
vanishes throughout some region, the system never re-
laxes there.

I

C. Semiclassical Monte Carlo (SCMC) path integral

exp ——Jx (t)dt
2

(3.2)

is correctly generated when

exp — Vq t dt

is averaged over the set of paths. This method can con-
verge very slowly since most paths will contribute little to
the PI. Wandzura's scheme replaces the free particle
measure with the semiclassical one including the semi-
classical part of exp( —Sz). This will converge much fas-
ter if the semiclassical approximation is reasonably valid.

We find that with the semiclassical propagator [42]

(q, riq', 0&„=
a's,

2& Bq Bg

1/2

exp( —Sz ), (3.3)

the full propagator becomes

This method, due to Wandzura [42], attempts to im-
prove convergence by separately constructing the semi-
classical (Euclidean) propagator which is then used as the
basis for Auctuations generated by a MC simulation.
Wandzura essentially bases his method on that of discrete
PI (DPI) simulation. The DPI does not employ the MA.
Instead, totally uncorrelated paths are generated point by
point using a distribution of Gaussian random variables
with adjustable mean and standard deviation chosen to
reproduce the correct conditional probabilities. These
are such that the Euclidean free particle measure

r

&q, rlq', o&=&q, rlq', o&„(exp —1 [ qv, ]t)+&y] v, &t) —yv, '&t) —,'y~v&t)]d)—,"
0

(3.4)

where the subscript sc refers to evaluation at the classical
Euclidean path and y is the fluctuating variable. Wand-
zura uses a generalization of DPI for the averaging
denoted by angular brackets. The generalization to many
DF s is given in Ref. [42] and represents non-negligible
additional effort. There are several problems with this
scheme particularly for more than one DF. The primary
problem is that the classical Euclidean path is required
for the simulation. This path is unique for fixed ~ and
V(q) strictly a potential well since the Euclidean classical
problem becomes a single scattering off a barrier. This
scattering problem is numerically unstable for many
DF's. (For convenience, the discussion will be in terms of
closed paths. ) The slightest error will cause the path to
head ofF in the wrong direction rather than to double
back on itself. Even shooting to the classical turning
point is not consistently accurate for steep potentials
such as that for the mixmaster cosmology. An approach
that does appear to work starts from an arbitrary point

defined to be the classical turning point and then in-
tegrates outward for the required r. This procedure ap-
pears to be stable. Care is required, however, to generate
path end points that are more or less uniformly distribut-
ed through configuration space. Recall that the desired
wave function is to be evaluated at these path end points
since they are really the initial points for the paths.

However, the need to use the classical path means that
the simulation about it must be associated with a particu-
lar value of q —viz. , the classical path's start and/or end
point. This makes the SCMC method much less efBcient
than the MCPI (or MCD) since one can only find the
wave function at a single point from each simulation.
This becomes a very serious problem as the dimension of
the configuration space increases. The computational
effort for many DF's increases unreasonably since the ar-
ray of simulations is not easily vectorizable. On the other
hand, the totally independent simulations are ideally suit-
ed to massively parallel processing.
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The possible advantage to QC simulations for the
SCMC method is related to the fact that most of the
"wrong sign" behavior can be traced to the DF associat-
ed with the volume expansion. In principle, ( q, r ~ q ', 0 )„
could be found separately "by hand" and defined to in-
clude the "wrong sign" DF's. It is to be noted that semi-
classical analysis to obtain the wave function has been
performed on models as sophisticated as scalar field cou-
pled to mixmaster [10]. It is to be hoped that this "fac-
torization" of the bad behavior can leave a well-defined
simulation in the residual DF's. It is also possible to
modify Wandzura's version of the SCMC method to in-
corporate MA. This makes less use of the classical path,
but is much easier to implement and appears to be more
stable numerically.

(Cl)
4

IV. THK DK SITTER EXAMPLE

Perhaps the simplest cosmological model is the closed
empty FRW universe with cosmological constant de-
scribed by the Hamiltonian constraint [8]

p2+Ka 2 gg 4 (4.1)

where a is the cosmological scale factor and p, its conju-
gate momentum. To obtain this form, the lapse has been
chosen to yield Einstein's equations in conformal rather
than comoving proper time. The potential terms in (4.1)
are displayed in Fig. 1(a) for «'=1 and A, =0.06. [The
mixmaster equipotentials shown in Fig. 1(b) will be dis-
cussed in the next section. ] Note that in contrast with
(2.3), 0 has been multiplied by an overall factor of —1.
Although the potential V(a) ~—ao for large a, the small
value of A, allows the system to behave as if it had a true
ground state. Equivalently, the barrier is sufficiently high
that for the unobserved Euclidean coordinate time ~ large
enough (in the simulations) the tunneling probability be-
comes extremely small.

To compare the methods discussed in Sec. III, a series
of simulations was performed designed to be as similar as
possible for the different methods. For convenience, the
boundary condition imposed is that all paths be closed in
a (i.e., a~=a, for all paths). The results are shown in
Fig. 2. The de Sitter model with K=1 and X=0.06 was
used in all cases. To obtain some idea of accuracy (or at
least reproducibility), four simulations of each type that
differed only in the initial seed for the random number
generator were averaged. The error bars display the
dispersion among the independent simulations. (The
correlations of MA and within MCD prevent internal
computations of errors. The DPI and SCMC methods
are uncorrelated but the internal error is misleadingly
large, determined by the negligible contribution paths. )
The simulations represent roughly the same computa-
tional effort.

From Fig. 2, the SCMC method appears to yield the
most accurate wave function with MCPI a close second.
We should note, however, that (4.1) with small A, is very
close to the harmonic-oscillator Hamiltonian for which
the semiclassical propagator is exact. The main con-
clusion to be drawn from this example is that all methods
used elsewhere in physics to yield ground-state wave

FIG. 1. Potential functions for Secs. IV and V. (a) V(a) for
the de Sitter model from Eq. (4.1) with A, =0.06 and ~=1. (b)
Anisotropy plane equipotentials for the Bianchi-type IX poten-
tial given by Eq. (5.1).

V. THE MIXMASTER EXAMPLE

The mixmaster model is described by the Hamiltonian
constraint (2.3) with

—8p+ 4p+V(P+, P ) =e "+2e +[cosh(4&3 P ) —1]
—4e +cosh(2V3P ) . (5.1)

Equipotentials of V are shown in Fig. 1(b). Recently, Ko-
dama [43], Ryan and Moncrief [44], and Graham [45]
have independently found a single exact quantum state

functions can also produce them for those QC models
which have (effective) ground states.

For large values of A, , the tunneling probability be-
comes large (actually larger than the true tunneling prob-
ability since the original path configuration is not, in gen-
eral, relaxed) and the system quickly leaks out. This will
be discussed in some detail in Sec. VI.
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FIG. 2. A comparison of MC methods for the de Sitter model H =p +a —0.06a . In all cases, the horizontal axis is 0
d th t' I 0~ ~4 ~2&1.2. The triangles are from the simulation and the solid line usmg the shooting method to

S h o"di ation for the given H. (a) MCD; (b) MCPI; (c) DPI; (d) SCMC method. In each case, error bars are generated from
the standard deviation for each simulation point with four simulations that dier only in the initial seed of the random e g
erator.

for this system. A particular factor ordering is required.
However, the characteristics of the state are reasonable
and consistent with what would be expected on the basis
of the classical solution. Their wave functions 611 the tri-
angular potential well uniformly near the singularity and
peak at isotropy (P+ =0) for large Q. (Semiclassical anal-

yses, computer solutions, and numerical simulations also
exist [10,21,46].)

The simulations to be described here are not well
defined as given so that some Ansatz must be imposed to
obtain any result. For the MCD method, it is necessary
to perform a conformal rotation [ —

gati

—++@ii in H from
(2.3)] and to take

~
V(Q, P+,P ) ~. For the MCPI method,

there are several options. (1) The MA can be modified so
that ~Sz ~

~0 rather than Sz. This should yield a ground
state in which (H) =0. No conformal rotation is re-
quired so that the correct sign relationship among a11 the
terms in H is preserved. (2) Each segment in the

skeletonized action (2.10) is replaced by its absolute
value, i.e., if Sz =gkSz k use ISz, p I

in the MA. (3) Place
a Hoor under the action, e.g., require SE k &0. The same
simulation was performed using the three separate
Ansatze. The results for a single (Q= —3) anisotropy
plane wave-function cross section are shown in Fig. 3.
The wave functions are qualitatively similar although the
visible differences are real. Ansatz (1) is perhaps the most
realistic and was used in [20,21]. In all cases, we shall as-
sume the MSS paths to be closed.

The MSS wave functions for simulations of comparable
computational e6ort are shown in Fig. 4. The MCD
simulation in Fig. 4(a) shows rough qualitative agreement
with the known exact solutions. The MCPI wave func-
tion shown in Fig. 4(b) "breaks up" at large Q with
significant probability for large anisotropy. Figure 4(c)
shows the expectation values of P+ using the simulation
wave function. Near the singularity ( Q —+ —ae ), the
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wave function is symmetric. At large 0 we should still
have (P+ ) =0 since the potential is still symmetric about
the origin. This has been discussed elsewhere [21]. The
differences between the two simulations can easily be un-
derstood in terms of the two simulation algorithms. The
MSS equipotential for large 0 has narrow V ~0 channels
with steep walls. The MCD algorithm will destroy any
psip that wanders into a channel since almost any move in
its random walk will bring it under the steep walls. Con-
versely, the MCPI algorithm causes the path points to get
stuck in the channel. Almost all moves will bring the
point under the steep walls greatly increasing the action
so that the move will be rejected. It is not possible to
choose between the methods without additional informa-
tion.

An alternative version of the comparison between the
MCD and MCPI methods is shown in Fig. 5. The MCD
wave function is shown in Fig. 5(a). The simulation in
Fig. 5(b) is the MCPI method designed to be as similar as
possible to the MCD method. It includes the conformal
rotation and the absolute value of the MSS potential re-
quired by the MCD method and starts the simulation
with all path points at zero anisotropy. The resultant
wave function is qualitatively similar to the MCD one. A
more realistic (no conformal rotation, ~SE~ ~0 rather
than

~ V~) simulation with initial path points at zero an-
isotropy is more like Fig. 5(a) than 4(b) in appearance

We also consider simulations for the MCPI, DPI, and
MCD methods made as close as possible to each other.
The same cross section of the MSS wave function is com-
pared in Fig. 6. There are clear qualitative differences.

The numerical difhculty of obtaining the classical paths
for the SCMC method is particularly severe for the mix-
master model. Even a slight deviation from the harmonic
oscillator —e.g. , the model (4.1) regarded to be a spheri-
cal potential (but simulated in three-dimensional Carte-
sian coordinates) for a=0.5, A, =0.06 required extensive
effort. Shooting to the classical turning point [47] even-
tually proved sufficiently accurate (with Cray double pre-
cision and Biilirsch-Stoer integration [48]). The results
are shown in Fig. 7. A simplified version of the SCMC
method using MA rather than Wandzura's generalized
DPI [42] was used.

Direct application of this simulation computer code to
mixmaster failed. The classical paths could not be stably
generated. It was therefore decided to select points at
random near the MSS origin evolving them outward for
Euclidean time r regarding the starting point to be the
classical turning point. The points at which the wave
function could be evaluated became uncontrollable—
they were wherever the trajectory might end. The distri-
bution of path end points thus obtained is shown in Fig.
8(a). To increase the number of end points and enforce
wave-function symmetry, the data set was replicated after
120' and 240' rotations. The pattern of points rejects the
shape of the MSS potential (acting as a barrier for the Eu-
clidean path). The (initial) classical turning points will
have to be carefully adjusted to cover the entire region of
the anisotropy plane (as desired). In the region with no
end points in Fig. 8(a), the barrier falls away exponential-
ly. The outward moving classical paths have approxi-

FIG. 5. Comparison of the MCD and MCPI with paths
starting from zero anisotropy. (a) MCD for Bianchi-type IX
vacuum; (b) MCPI with paths starting at Q= —3, P+=0, con-
formal rotation and the absolute value of V(P+,P ); (c) MCPI
with paths starting at f1= —3, P+=0, no conformal rotation,
and the Ansatz of Fig. 3(a). In all cases, ~= 10.
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(a) mately zero energy (and thus begin near the top of the
barrier). Thus they tend either to end before reaching
this region or to overshoot it in the fixed available time ~.
The 0 values are correlated with the anisotropy plane
values as shown in Fig. 8(b). The large 0 (contour peaks)
end points lie preferentially in the corners of the potential
while low 0 values prefer the region near isotropy. At
large Q, the steepness of the potential is emphasized so
that only the corners with V=O are accessible.

The classical path associated with each end point was
used to compute the wave function at that end point.
The results were binned with each bin normalized by the
number of end points falling within it. This yielded
correct relative values of ~%'o~ in the region of MSS

I I I I I I I I

(~)

(c)

~yg i

' ~

I

1~
~ ~

0 ~
,--s ~ t 4 ~ea e ~

FIG. 6. The same MSS wave-function cross section for three
simulation methods. (a) MCPI, (b) DPI, and (c) MCD.
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FIG. 7. The "spherical de Sitter" model test case for the

SCMC method. The potential of Fig. 1(a) with v=0. 5, A, =0.06

is interpreted as a spherical potential with O~a «2 a radial

coordinate. A three-dimensional Cartesian coordinate SCMC

simulation is performed. The horizontal axis is a and the verti-

cal 0 & ~%0~ & l. The crosses denote simulation values projected

onto the radial direction. The solid line is the exact soluti:on. A

5X5X5 grid of initial path points was used.

Lx

FIG. 8. Distribution of path end points. The horizontal axis

is P+ and the vertical f3 with ~Py~ &2.5. (a) The data set for

the anisotropy plane projection has been replicated to enforce

120 symmetry. Paths were started (randomly) near the origin

with zero velocity (classical turning point boundary conditions)

and evolved outward for fixed Euclidean time. (b) Distribution

of 0 values are indicated by contours in the anisotropy plane

with larger 0 as the peaks of the contour plot for the same data

as (a).
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where end points existed. Unfortunately, there were
sufticiently few points that only three bins in Q were
used. The wave function for the three bins in 0, is shown
in Fig. 9. The shape evidently rejects the distribution of
path end points with Q. This SCMC procedure is com-
putationally wasteful on a vector machine. Future pro-
gress awaits its removal to a massively parallel processing
computer.

VI. OTHER STUDIES

the Ansiitze required to obtain a well-defined problem) by
comparing the wave function for an XDF problem to the
N-dimensional projection of an M+N DF problem (that
classically contains the smaller problem). This has been
discussed elsewhere [23]. The analysis is in the spirit of
that of Kuchar" and Ryan [7] since we consider a "micro-
superspace" subspace of MSS. Here we shall present
only one example —the addition of a scalar field to the
mixmaster model. The Hamiltonian constraint for this
model is

Here we shall consider a variety of analyses using pri-
marily the MCPI Inethod.

2H= —p'„+p++p' +p~+e "V(P+,P )

+e "[A+A,(P —p ) ], (6.1)
A. The validity of the MSS approximation

Since it is easy to add DF's to the MCPI method, one
can test the validity of the MSS "approximation" (within

FIG. 9. Constant 0 cross sections of the SCMC mixmaster
wave function ~4o~ . The paths attached to the end points
shown in Fig. 8 are used individually to compute the wave-
function value for that path. The results are binned with a
weighting to remove the uneven end-point distribution. The
wave function is set to zero in the regions of MSS where no path
end point resulted.

where V is given by (5.1). Here A is a true cosmological
constant and k is the coupling constant for the self-
interacting scalar field with "mass" parameter p . The
form chosen for the scalar field is one commonly used in

inflationary models. It is clear that the scalar field cou-
ples as an efFective cosmological constant to the back-
ground spacetime. If the P DF is removed, the vacuum
mixmaster model (with or without A) is regained. If the
P+ DF's are removed, the model becomes RWP (scalar
field in a FRW universe). Several cases are considered
with the boundary condition that the MSS paths be
closed. The projection of the wave function into the sub-
space of interest is performed by computing the path
point distribution (in the MCPI method) only binning in
the variables associated with the subspace of interest
without regard to the values of the remaining DF's for
each path point. Results are shown in Fig. 10. For com-
pleteness, Fig. 10(a) shows the RWP potential. Figures
10(b) and 10(c) show the projected mixmaster+scalar
field and RWP wave functions, respectively, in the
II-P plane. [The models use A=O, A, =@=1, and, for
the RWP model, the constant curvature term that sur-
vives in (6.1) when P+=0.] The wave functions are
qualitatively quite similar. This is not too surprising
since the scalar field and anisotropy DF's couple only
through the volume DF. Figure 10(d) shows the MSS
wave function for the vacuum mixmaster model. In Fig.
10(e), we see the (0,/3+, p ) MSS projection of the same
mixmaster+scalar field model shown in Fig. 10(b). Fig-
ure 10(f) is again a vacuum mixmaster model but with
A & 0 to illustrate difFerences between a true cosmological
constant and the efFective one due to the scalar field.
Again the wave functions are similar particularly at small
values of Q. The possibly spurious "breakup" regions at
large II are model dependent [21]. This is due to the fact
that the breakup does not appear if the paths cannot
reach large Q. The e dependence of the cosmological
constant and scalar field terms greatly increases the ac-
tion for path points at large Q (unless $2=@ ) confining
the paths primarily to small 0 values if these terms are
present.

B. Two studies involving the choice of time coordinate

In Fig. 10(d), the MCPI vacuum mixmaster model is
run assuming the 3 DF's 0, /3+ to be on an equal footing.
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(a)

FIG. 11. Restrictions on 0 values in the mixmaster MCPI
simulations. The parameters for the simulation are the same as
those in Fig. 10(d). (a) The MSS wave function for a fixed value
of 0 associated with each path point. The values are ordered
and linear in the range —3 ~ 0 & 3. (b) The MSS wave function
for ordered but otherwise unrestricted 0 values. The ordering
begins from a minimum Q value to a maximum at the path mid-
point and back to close the path in O.

ternative in the RWP simulation [see Fig. 10(a)], by add-
ing a variable cosmological constant to the action for the
model [Eq. (6.1) with the P+ DF zeroed out]. The wave
function with A=O (the first interpretation) is shown in
Fig. 12(a). Figures 12(b) and 12(c) show the wave func-
tion obtained with variable A restricted to be non-
negative and completely arbitrary respectively.

FIG. 12. Time choice in the RWP model with cosmological
constant A. (a) The wave function for a self-interacting
minimally coupled scalar field is shown in the (a, P) MSS where
a is the scale factor and P the scalar field amplitude for A=0.
(b) The same model is shown for A determined by the simula-
tion but restricted to be non-negative. (c) The same model for
arbitrary A determined by the simulation.

[28]. We consider the conformal scalar field added to the
de Sitter model of Sec. IV. The Hamiltonian constraint
(in conformal coordinate time) is [8]

C. The ADM reduction
H= —p +p —KQ +Aa +g (6.2)

In a related manner we perform the ADM reduction
by changing the weighting function in the MCPI method

I

Note that we have reverted to the original signs in H.
The path integral (2.4) can implement the ADM reduc-
tion with the measure

2)[p„pr, a,y]= lirn (2~) " g dpi' kdp, kda "dy"da"~p, 1, ~5(a"—a' —kb, )5(a"—a )5(y"—yf)
pg —+ oo k=1

for the action

(6.3)

n k
S = g pr k(g —g" ')+p, k(a"—a" ') — ( —p, +pz —Isa +Ra +y )

k=1
(6.4)

where a is the scale factor, g is conformally related to the
scalar field amplitude, i and f refer to initial and final
values, and the absolute value in (2.13a) is the quantum-
mechanical relic of the Faddeev-Popov determinant. The
first 5 function in the measure is the gauge condition for

6, a fixed interval of the scale factor a chosen to be the
intrinsic time coordinate. The propagator can be exactly
evaluated to yield, for a chosen to be the intrinsic time
coordinate and y the remaining dynamical DF associated
with the conformal scalar field and closed paths,
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oo af
(x,aoIx, af)= g yz(x)exp —I daIAa x—a +2N+1I'~

N=0 0
(6.5)

v'"( a)
&x, .Ix, f&= &

paths

where

(6.6)

The absolute value in the intergrand is required for con-
vergence. An equivalent form for this propagator is [see
(2.13) for N =2 DF's]

to match the peaks. We must also not forget that N has
nothing to do with time in the MCPI although it mea-
sures Euclidean time in MCD. The exponential tails in
Fig. 14(c) are suggestive of a decaying metastable state
[50].

VII. DISCUSSION

and

v = I«' —«'+x'I

5$ =
I

—(ha ) + ( b,x ) I

'

(6.7)

(6.g)

Well-known quantum MC simulation methods have
been applied to QC. Each of the methods considered—
MCD, MCPI, and SCMC simulations —can yield the
correct wave function for systems such as the de Sitter

The absolute values are required to ensure that (6.6) is
real since K& is a modified Bessel function. In the simula-

tions, the weight function e in MCPI is replaced by
that on the right-hand side of (6.6). The exact solution is
computed directly from (6.5) (including the first few
modes). The results are shown in Fig. 13 for ~=+l.

(a)

D. Tunneling in a modified

de Sitter-like potential

Finally, we consider tunneling [48] in a modified de
Sitter-like potential [shown in Fig. 14(a)] given by [49]

1
V(a) = 1 —2 exp

2b
1—exp
a

1 —a 2

2

+2 exp
(a —2) —1

2b
(6.9)

for b =0.297 85. This is smoother than the de Sitter po-
tential, but has the same features. Figure 14(a) shows the
wave function for an MCPI simulation evaluated after in-
creasing numbers of MC steps. The shape of the wave
function changes from an initial confinement in the well
portion of the potential to one with significant probability
to be at large a. A series of 100 simulations was run for
up to 22 500 MC steps. Of these, 33 never tunneled. A
simulation was defined to have tunneled if the expecta-
tion value of a reached the value of a at which V(a) be-
comes negative. Figure 14(b) displays (a) versus the
MC step number N for two simulations, one of which
tunneled and other did not. The differences are apparent
very early in the simulation. The simulations that did in
fact tunnel did so at different values of ¹ A histogram of
the number of simulations tunneling at a given N vs N is
shown in Fig. 14(c) (with triangles). For comparison, a
similar study with MCD simulations was plotted on the
same graph (with diamonds). Early in the simulation, the
two methods yield very different results. MCPI simula-
tions show approximately constant tunneling likelihood
while MCD shows a steep rise. Both then show very
similar exponential decays in the tunneling likelihood.
We must emphasize here that both the horizontal and
vertical axes have been adjusted for the two simulations

~ 2

FICi. 13. A.DM reduction in MCPI: I+oI vs X. The model
from (6.2) is evaluated using the Bessel function weighting of
(6.6} to generate the open squares. The solid line is the solution
obtained by evaluation of (6.5). (a) sc = —1, ap =0. 1, af =8.0,
A=0.01. (b) K= + 1 ap = 1.0 af = 10.0, A=0. 1.
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(c)
I

a P

FIG. 14. Tunneling in the modified de Sitter potential. (a)
The simple solid line is V(a) from (6.9) vs a with 0~ a ~4 (and
V on its own scale). The remaining curves are ~%o~ vs a for
difFerent numbers of MC steps (as indicated). (b) (a ) computed
during the simulation vs MC step number for a simulation that
never tunnels (1) and one that does (2). The wave function is as-
sumed to tunnel if (a ) & 2.640 817, the value at which V(a) be-
cornes negative. (c) Histogram of the number of simulations, JV,

which tunnel at the Nth MC step or Nth hw step vs N for MCPI
(triangles) or MCD (diamonds), respectively. The vertical and
horizontal axis scales were adjusted to yield the best match at
the peaks (with eight bins). The dotted lines to the right of the
peak are best-fit exponentials. Error bars represent &JV' in all
cases.

universe for small cosmological constant, which in effect
have a ground state. On the other hand, the solution to
the WD equation for this model [8,11,32] becomes oscil-
latory for large a for any boundary condition that keeps
the overall sign for the Hamiltonian constraint in (4.1).
This oscillatory behavior is physically consistent with an
expanding universe that can reach arbitrarily large a.
For the de Sitter model with large cosmological constant
[or the qualitatively similar potential (6.7)], the path or
psip distribution initial1y localized near the origin quickly
tunnels out to large a. Unfortunately but not unphysical-
ly, the system never relaxes in the "free" region so that a
wave function cannot be constructed. It is also not yet
clear how correctly the tunneling in, e.g., Fig. 14 models
the actual tunneling process.

For more complicated models, such as mixmaster and
its generalizations, different MC methods yield qualita-
tively different results. Although these differences can be
understood in terms of each method's algorithm, it is not
clear on what basis one should decide which method to
prefer. If the model is forced to have a ground state,
various studies can be made. So far, we have considered
the validity of the MSS approximation by ignoring M
DF's of an %+M DF system. The results of Fig. 10 ap-
pear to confirm the conclusions of Kuchar and Ryan [7]
that the MSS approximation can be trusted if the neglect-
ed DF's do not interact significantly with those that are
kept. We also have shown that it is easy to study various
proposals for choice of time variable. Even the ADM
reduction within the PI can be achieved with a change of
path weighting function. Although the wave function it-
self has been of primary interest here, it requires little ex-
tra effort to generate expectation values of observables as
their simulation averages.

Still, the problem of the Hamiltonian constraint's un-
boundedness from below remains a serious obstacle to the
entire MC approach. It might be possible to use some
version of Wandzura's SCMC method to isolate the
volume DF primarily responsible for the bad behavior.
So far, numerical difFiculties have impeded progress in
implementation of this approach. We are about to begin
study of this method on the massively parallel Connec-
tion Machine. Other proposals to deal with "bottomless
actions" [16—19] are currently under investigation. Fi-
nally, it should be mentioned that similar issues involving
quantum MC simulations are being addressed at the
more sophisticated level of quantum field theory of the
nonlinear 0 model (as a nonrenormalizable test case for
quantum gravity) by DeWitt and co-workers [51].
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