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We study the dynamics of a Bat multidimensional anisotropic cosmological model filled with an
anisotropic Ruidlike medium. By an appropriate choice of variables, the dynamical equations reduce
to a two-dimensional dynamical system. We present a detailed analysis of the time evolution of this
system and the conditions of the existence of spacetime singularities. We investigate the conditions
under which violent, exponential, and power-law inffation is possible. We show that dimensional
reduction cannot proceed by anti-inflation (rapid contraction of internal space). Our modei indicates
that it is very difficult to achieve dimensional reduction by classical means.
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I. INTRODUCTION

Recently considered theories of the unification of all
elementary interactions including gravitational interac-
tions are based on the concept of multidimensional space-
time. It is usually assumed that at very high energy,
higher than the grand unified theory (GUT) energy scale
~ 10is GeV, spacetime is multidimensional and all in-
teractions are indistinguishable. At lower energies ad-
ditional dimensions are "compactified, " and they form
a compact manifold of a typical size comparable to the
Planck length (~ 10 ss cm), and therefore at present, the
additional dimensions are not observable [1, 2]. The pro-
cess of reduction of multidimensional spacetime to the
product of physical spacetime M and a compact man-
ifold B of appropriate dimensionality is called sponta-
neous compactiGcation.

In 1980 Chodos and Detweiler [3] pointed out that the
dynamics of a gravitational field might provide a natural
mechanism of dimensional reduction. This paper cre-
ated a surge of interest in multidimensional cosmological
models (see reviews and collections of papers [1, 2]). In
this paper we consider a simple multidimensional model
which has a topological structure of M x T", where
M is a (k+ 1)-dimensional spacetime and T" is a &'-

dimensional torus. We study the simplest case when M
is a homogeneous, isotropic and flat space. Some aspects
of such models have been investigated before by several
authors [3—5]. Here we would like to present the general
properties of such models.

In Sec. II we present our model and describe its quali-
tative behavior. In Sec. III we describe the time evolution
of our model. Section IV is devoted to the discussion of

singular solutions. The special case of one-dimensional
internal space is treated in Sec. V. In Sec. VI we discuss
our results and present conclusions.

II. MULTIDIMENSIONAL COSMOLOGICAL
MODEL, SPECIAL SOLUTIONS

I,et us consider an (n+1)-dimensional spacetime which
is a product of a (k+ 1)-dimensional spacetime M and a
(k' = n —k)-dimensional torus. The line element of this
spacetime assumes the form

ds2 = dt —g b(x, t) dx dx —g,, (x, t)dx'dx', (2 1)

where u, b = 1,2, . . . , k, i, j = k + 1, . . . , n, and we set
the velocity of light c = 1. %"e take the Einstein Geld

equations in the form

R„„=8vrG
i T„„— 1

n —1
(2.2)

where p, v = 0, 1, 2, . . . , n,

T„"= Diag ~s, —p, . . . , —p, —p', . . . , —p'[ (2 3)

is the hydrodynamical energy-momentum tensor, e is the
energy density, p and p' are respectively pressures in the
physical space and in the internal space, G' is the gen-
eralized gravitational constant, and T is the trace of the
energy-momentum tensor. We assume that matter Glling
the multidimensional spacetime is described by a simple
equation of state

(2 4)
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where cr and n' are constant parameters such that Io.
l

&

1, ln'I &1.
We restrict our consideration to the simplest model,

and we assume that the multidimensional spacetime is
homogeneous and the line element reduces to ——= (1+n)kH+ (1+n')k'h. (2 9)

If the expansion of the Universe is adiabatic (what is im-
plied by our choice of the perfect Quid energy-momentum
tensor) then

ds = dt —R (t)dL —r (t)dt, (2.5)

where dL~ and dt2 are Euclidean elements of appropriate
dimensions. In general, this multidimensional spacetime
is homogeneous but anisotropic.

The Einstein field equations are conveniently written
down in terms of the Hubble parameters

H= —, h= —,R r'

R' r' (2.6)

and they assume the form [4]

H + H(kH + k'h) = [n(k' —1) + 1 —k'~'], (2.7a)
n —1

h+ h(kH + k'h) = [1 —kn+ (k —l)n'], (2.7b)
n —1

where ~ = 8+0. H, h and e are related by the constraint
equation

When o. and o,' are constant, which we assume,
Eqs. (2.7a), (2.7b), and (2.8) describe a two-dimensional
dynamical system. We are interested in the general prop-
erties of this dynamical system in the physical region of
the parameter space, where the energy density z is not
negative.

The dynamical system (2.7a), (2.7b), and (2.8) is
very simple, but because the pressures in the internal
space and in the physical space could be difFerent, it de-
scribes quite a large variety of interesting cases which
are parametrized by o. and o.' In .particular, when
n = —1, o," = —1+ (k —1)/k', the system mimics curva-
ture in the internal space, and when a; = —1/k, o," = —1,
it mimics curvature in the physical space.

In the physical region of the parameter space the dyna-
mical system (2.7a), (2.7b), and (2.8) possesses critical
points at H = h = 0, and when o. = o.' = —1 also at
H=h.

In order to simplify the dynamical equations we intro-
duce a new variable s by

(2.1o)

(kH + k'h) —kH —k'h2 = 2Ks. (2.8)
The dynamical equations can be rewritten in the form [4]
(we assume that k' g 1)

d lnH, k'(k' —1)+ (k+ k's) = [1+(k' —1)o, —k'a'](s —s+)(s —s ),dlnR 2(n —1)
(2.11)

ds k'(k' —1) [1+(k' —1)n —k'n'](s —so)(s —s+)(s —s ) = 0,
d ln R 2(n —1)

(2.12)

and

where

2vs = H k'(k' —l)(s —s+)(s —s ),

1 —k n' —p2
so =

k' o," —Pi

(2.13)

(2.14)

Let us note that the value of s~ depends only on the
dimensions of the physical space and the internal space,
but does not depend on the equation of state while the
value of so depends also on the equation of state.

The region s & s ( s+ is unphysical since there e ( 0,
and we exclude this region from our consideration.

The dynamical system (2.11) and (2.12) is almost ex-
plicitly integrable. From Eq. (2.12) we obtain

where

1+ (k' —1)n ko. —1
Pi —

k, , P2 —
k

k
s~ = —, (1+ y),

(n —1)
kk'

(2.15)

(2.16)

where

R = &Is —s+I" ls —s-I' ls —sol"

1 +p
2(o,' —Pg)

'

(~' —&+)(~' —P)'-
&+Pi
7+1'

(2.17)

(2.18)

(2.19)

(2.2o)
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H = +&'ls —sol"'Is —s+I"'fs —s-I" (2.21)

where C' is an integration constant and

and C is a constant of integration. Let us observe that
because qp + q+ + q = 0, then when s ~ koo, R tends
to a finite value.

Combining (2.11) and (2.12) we obtain

that s = sy and s = sp are the only solutions of the
form s = const. In fact, the special solutions s = s~ and
s = sp are separatrixes of the dynamical system (2.11)
and (2.12). The solutions s = s~ describe multidimen-
sional generalization of the empty (s = 0) Kasner uni-
verse. When s = sy the dynamical system is completely
integrable and we obtain

(k'p ~ 1)
k'h(n' —1) + (n' —&i)]

' (2.22)

where

(2.25)

2[k(1 —n) y k'(1 —n')]
k(1 —n) 2 + k'(1 —n') 2 —kk'(n —n') 2 '

(2.23)

Prom (2.22) and (2.23) it follows that pp+p++p = —1,
so when s —+ +oo, H ~ 1/s.

One can easily check that the dynamical system (2.7a)
and (2.7b) possesses a first integral

(2.26)

and t, is a constant determined by the initial conditions.
From (2.25) we have [5]

(2.27)

and the total volume element

HV(s —sp) = const, (2.24) V ft —t, l. (2.28)

where V = R"r" is the volume element. From (2.24) it
follows that when HV ~ oo, s —+ so. Let us point out
that even when the physical space expands (H ) 0) the
total volume element V contracts when s ( —k/k'.

From the general form of Eq. (2.12) it is apparent

The solution s = so can be represented in the form

(2.29)

where

ao ——

(k+ k'sp) —"z((„",')) [1+(k' —1)n —k'n'](sp —s+)(sp —s )
(2.30)

so

and

(2.31)

From Eq. (3.1) it follows that during the evolution s
never changes sign.

The dynamical equations (2.7a) and (2.7b) possess a
discrete symmetry

t l(&+&'Bo)« (2.32)
H ~ h, k ~ k', n ~n', (3.3)

where sp is given by (2.14). This solution is physically
acceptable only when sp ) s+ or sp ( s (only in regions
II, III, and IV of the parameter space, see Fig. 1).

III. TIME EVOLUTION OF THE MODEI

Let us now concentrate on the time evolution of our
model described by two quantities s and H. The evolu-
tion equation for s has the form

s = ACls —spl('+"' ls —s+l '+"+ ls —s
l

'+"- (3.l)

where C is a constant and

1 1) ( 11-sh
I

s ——
I
s-

s+) & s-i (3.4)

From this equation it follows that when sp g Boo, s =
0 is not a solution. It means that s = koo is not an
asymptote for s(t).

The general behavior of the dynamical system (2.11)
and (2.12) depends on relations between sp and sy which
are determined by relations between Pi, P2, and P~ [4].
From definitions of these parameters it follows that, for
(k' & 1),

which also replaces sp ~ 1/sp and s~ ~ 1/s+. Equation
(3.1) transforms into

k (k' —1)
2(n —1)

and H is given by (2.21).

(3 2) P, =P, =P+=P =1 when n=1,

and, for all lnl & 1,

(3.5)
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a' The general solution of these equations is given by

s= —,H = — (t —t, ),
a 1

a'

a

FIG. 1. Division of the physically acceptable parameter
space ~o.

~

& 1, ~n'~ & 1 into regions corresponding to
diferent behavior of the dynamical system (2.11), (2.12).
The intersection points a+, n„n'„and n+ are given by

(
(n —1}k )1/2~+= t -i

A; —2 I k' —2
AQ

Q ) A+ I I

(
(n, —1}A:I)1/g+2 ~j

Jc+
(

(n —1}k~ )1/g+I p

It turns out that for k' ) 1 always o.+ ) a~ and a+ & o.', .

(3.6)

(3.7)

where a is a constant determined by initial conditions.
Let us consider the case when a & 0 and note that in the
region I, A & 0. When t —+ t~ but t & t~, s grows to
plus infinity, at t = t~ it possesses typical 1jx disconti-
nuity, and for t & t~, s is negative. At t = t~, H is zero
and in the vicinity of t~, it changes sign being positive for
t & t~. In the vicinity of t~, h is positive and constant.
When a & 0, for t ~ tz (t & tz), s tends to minus infinity
with H decreasing to zero through positive values. For
t & t~, s decreases from plus infinity with H becoming
more and more negative while 6 is positive and constant.
So we have the following general picture: there are solu-
tions s(t) which in the past start from s+, then s grows
to infinity and at t = t~ passes through discontinuity,
and later starts to grow from minus infinity to s at the
future. Another class of solutions starts from s in the
past with s(t) decreasing to minus infinity at t = t~ At.
tz, 8 jumps from minus infinity to plus infinity and later
decreases asymptotically to s+ in the future. It is clear
that the second class can be obtained from the first by
changing t ~ —t and H ~ —H. Remembering about
this possibility of obtaining the second class of solutions
we will present only one class of solutions.

In region II (Pi & n' & P ),

so (8 (8+ (0, (3.14)

(3.8)

p2 —p+ —— (1 —n) & 0,y

k —1
(3.9)

so we have

P+ &P2&A &P (3.1o)

I et us now discuss qualitative behavior of solutions of
Eq. (2.12) for diKerent values of n and n'. In region I in
Fig. 1(n'&P ),

and the qualitative behavior of Eq. (2.12) is shown in
Fig. 2(b). In this region there are two diferent types of
physically acceptable solutions. Solutions with discon-
tinuous trajectories s(t) which in the past start from s+,
and when t ~ t~ (t & t~) grow to infinity, and at t~ jump
from plus infinity to minus infinity, and in the future ap-
proach se. Before t = t~, H(t) is positive, H(t~) = 0,
and H is negative for t & t~ In the vic. inity of t~, h is
positive and constant. There are also smooth trajectories
s(t) which start from s in the past and asymptotically
tend to so in the future.

In region III (P2 & a' & Pi),

s (so&8+ &0, (3.11)
8 &8+ (0&so, (3.15)

s=AH8, H= —AH s (3.12)

and the behavior of solutions of Eq. (2.12) is shown in
Fig. 2(a).

I et us consider a typical physically acceptable (e & 0)
solution of the dynamical equations. From the previ-
ous discussion it follows that this solution possesses two
asymptotes: one in the future, when s ~ s+, and one in
the past, when s ~ s . At some intermediate moment

s becomes discontinuous, and in the vicinity of
t~ it tends to + infinity, Let us investigate the behavior
of s(t) and H(t) in the vicinity of t = t~. When s —+ +oo
the dynamical equations (3.1) and (2.11) reduce to

and the qualitative behavior of solutions of Eq. (2.12) is
shown in Fig. 2(c). The general behavior of solutions is
similar to the previous case but now the relative position
of separatrixes is different and in this region the constant
A appearing in Eq. (3.1) is negative. There are discon-
tinuous trajectories s(t) which in the past start from s
and when t + t~ tend to minus infinity, becoming discon-
tinuous at t~. For t & t~, s(t) decreases from plus infinity
and asymptotically tends to se in the future. Along these
discontinuous trajectories H is initially negative but de-
creases to zero at t = t~, and becomes positive for t ) t~.
In the vicinity of tz, h is positive and constant. The con-
tinuous trajectory s(t) begins in the past at s+ and tends
asymptotically to 8o in the future.
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Behavior of the dynamical system (3.1) and (2.21) in
regions IV and V can be inferred from the above discus-
sion and the already mentioned symmetry of the system.

IV'. SINC ULARITIES

Let us study the behavior of s(t) close to separatrixes.
From Eq. (3.1) it follows that

s(t) = s, + C, it —t,
i (4.1)

where s, = s~, so, C„and t, are constants. It is clear
that when p„& 0, the separatrix is attained asymptoti-
cally for t ~ plus or minus infinity and when p, ( 0 the
separatrix is attained after a finite time. From (3.1) and
(2.10) we obtain

ykL. yak:

—s=o

0 lnt S=OO 0 lnt S=OO

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

(s)

~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 0 ~ ~ ~ ~ ~ ~ ~

(b)

. . . S=S
~ ~ ~ ~ ~

yAk;

S=S+

—S=O

S=S+
S=+—s=o

lnt S=SO

0 lnt
S=OO

S=S S=S

(c) (d)

. . S=+

—s=o

1nt
~ S=OO

S=S

(e)

FIG. 2. Trajectories y(t) = I/[a(t) —s ] where s = (a~ + 8 )/2 for a multidimensional model with k = 3, k' = 7 and
differen g.xed equation of state. We show only trajectories representing solutions without singularities in the future. Such
trajectories can start from s~ with H & 0 or from s with H ( 0. In the dotted region e & 0. (a) n and n' are confined to
region I in Fig. 1. s(t) is at a certain time discontinuous. Dimensional reduction is not possible. (b) n and n' are cfiondne
to region II. There are two different types of trajectories. The trajectory starting from s+ is discontinuous and asymptotically
tends to ao. The other trajectory begins from 8 and smoothly tends to so. (c) n and n' are confined to region III. In this
region ao & s+ and se & 0. We show typical trajectories. (d) n and n' are confined to region IV. The behavior of trajectories
is similar to the previous case but now s+ & so ( 0. In this region there are trajectories representing dimensional reduction.
(e) n and n' are confined to region V. Behavior of trajectories depends on the equation of state. Drawing these curves we used
the following equations of state: (a) n = —1, n' = 1; (b) n = —1/2, n' = —1; (c) n = n' = 0; (d) n = 0, n' = —1; (e) n = 1,
A = —1.I
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H(t) =, ', , h(t) =, ',', (4.2)

where a„=ag, ao and 8, = s~, so. When the separatrix
is attained after an infinite time the Hubble parameters
H and h tend to zero. However, when the separatrix
is attained, after a finite time H and h become infinite
and the Riemann tensor tends to infinity (see Appendix).
Since s~ ( 0, when H —+ +oo, h ~ —oo and vice versa.
After Hawking and Ellis [6] we call this type of singularity
cigarlike.

From (4.2) it follows that if for a given solution there
exists an epoch when Ha, & 0, then at that epoch t & t„
so H and h tend to infinity while t —+ t„. Similarly, when
there exists an epoch when Ha„) 0, then t ) t„and
there is a singularity in the past (when t ~ t, ). To in-
vestigate singularities of the Riemann tensor for different
separatrixes we note that it is sufficient to consider only
singularities appearing in the future since singularities
in the past can be obtained by changing t ~ —t and
H —+ —H.

The Riemann tensor is regular when s ~ so. This
conclusion follows from the fact that ao ) 0 in regions
III and IV, and ap & 0 in region II, but, for all solutions
which tend to so in regions III and IV, H & 0, while
H & 0 in region II. Therefore, in regions II—IV, Hao & 0
for all solutions which tend to se in the future. This also
follows from the fact that po & 0 in regions II, III, and
IV. In regions I and V there are no physically acceptable
solutions with 8 ~ so.

From the definition of a+ it follows that a+ & 0 for
all k and k'. Thus all the solutions approaching s+ with
H & 0 are singular in the future. Such solutions exist
in regions I—IV, since p+ ( 0 in these regions. Similarly,
a is negative for all k and k' therefore all solutions ap-
proaching s with H ) 0 are singular in the future [7].
These singular solutions exist in the regions II—V since
p & 0 there. In these regions there are of course corre-
sponding singularities in the past.

The Riemann tensor becomes singular only when s —+

8y, therefore all singular solutions are vacuum like 0
s/H2 ~ 0. However the energy density can grow to
infinity too. From Eqs. (2.13) and (2.21) we obtain

above when H and h tend to infinity and A.
" & 1.

Our discussion of the singularities can be summarized
in the following way: (1) any physically acceptable solu-
tion of our model is singular either in the past and then
it is regular in the future or vice versa; (2) though 0 ~ 0
for all singular solutions the behavior of energy density s
depends on n and n'. Also the behavior of s depends on
o. and a'. From (3.1) it follows that s tends to infinity
only when p~ ( —1 [see Figs. 4(a) and 4(b)].

a''
+I

a,'

s = Cis —s
)
"'[s —s

i

"++'is —s [
"-+', (4.3)

where C is a constant. For 8 —+ s~ the energy density
e tends to infinity when py & —

z and to zero when

p~ & —2. There exists a region in the parameter space
describing a situation when components of the Riemann
tensor and also energy density tend to infinity with 8 ~
sy [see Figs. 3(a) and 3(b)].

We identify spacetime singularities with places where
at least one of the invariants of the Riemann tensor
becomes infinite. We have explicitly calculated 'R =
Rpv per B~ P and

7Z, = 4(k(H + H')'+ k'(h+ h')' + kk'H'h'

+k(k —1)H' + k'(k' —1)h'). (4.4)

It is clear that 'R becomes singular in all the cases listed

a'

I IG. 3. Dotted region represents equations of state which
allow singularities of the energy density in a multidimensional
space with k = 3, k' = 7; (a) when s —+ s+, (b) when s -+ s
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As in the previous case we introduce a new variable s =
h/H and with this substitution the dynamical equations
assume the form

H = —H2[k+ s+ (n' —l)(s —s+)], (5.4)

s = (n' —1)H(s —s+)(s —sp), (5.5)

a'
—1—A:—1where s+ ——(1 —k)/2, sp =,(

i ), and

Ks = kH (s —s+). (5.6)

a,'
The dynamical equations can be integrated and we ob-

tain

a, a+
where

H = Cfs —spi"'is —s~]"+ (5.7)

sp+ k
pp 1

(n' —1)(sp —s~) ' (5 8)

s++ k

(n' —1)(sp —si) ' (5.S)

a'

R

a,

FIG. 4. Dotted region represents equations of state which
allow singularities of s (k = 3, k' = 7); (a) when s —+ s~, (b)
when s —+ s

and C is constant.
The most important difference between the case k' = 1

and k' ) 1 is the absence of the third separatrix. From
(5.6) we see that the energy density is negative for s (
s+. The general behavior of solutions of the dynamical
system (5.4), (5.5) depends on relations between n and
n'. The parameter space ~n~ & 1, ]n'~ & 1 can be divided
into three regions.

From (5.5) we see that when sp ) 0 and H ) 0 then sp
is an attractive and s+ is a repulsive separatrix. When
0 & sp & s+ the general behavior is similar but now with
s ~ sp the internal space contracts. In both cases sp is
an attractive separatrix and general trajectories in the
past tend to s+ or to infinity. When s+ & sp we have
only one type of solutions with positive energy density.
Corresponding trajectories tend to s+ in the future and
to Sp in the past. (Cf. Fig. 5.)

After the transformation H —+ Hattractive a—symp-
totes become repulsive and vice versa.

While s tends to sp or s+, H and h assume the
asymptotic form

V. ONE-DIMENSIONAL INTERNAL SPACE
a, s,a,

(5.10)

1 —kH+ H(kH+ h) = Ks
i
n+

h+ h(kH+ h) = ~s
i
n'+

k )'

(5 1)

(5 2)

The case k' = 1 is degenerate and requires special con-
sideration. When k' = 1 the dynamical equations (2.7a),
(2.7b), and (2.8) reduce to

where s, = s+, sp and ap = 1/[k+ sp+ (n' —1)(SQ $+)],
a+ ——2/(k + 1). From (5.10) we see that the behavior
of solutions s —+ s+ and s —+ sp is analogous to the case
k'& l.

If s tends to infinity the situation is quite different than
in the case k' & 1. To see this let us make a conformal
transformation s = 1/s, then (5.5) becomes

(5.11)

2K' = (kH + h) —kH —h . (5.3) We see that s never changes sign in the course of evo-
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lution; therefore, s cannot cross infinity and H never
changes sign as well. We see from (2.16) that s ~ oo
when k' —+ 1, and we may formally consider infinity as
a third asymptote of the dynamical system (5.1)—(5.3).
When s ~ oo we get H - /t —t.[- (5.14)

From (5.12) and (5.13) we see that s and s ~ oo when
t ~ t„since —po —p+ —1 = 1/(n' —1) & 0. s reaches
infinity in a finite time with infinite derivative, while

(t t )
—il(PO+P++i)

(5.12)

(5.13)
h=sH

and the energy density

(5.15)

s" e- /t —t,
/

(5.16)

0 lnt

When t —+ t, the energy density tends to infinity and the
metric tends to degenerate Kasner-type metric. Thus
when s reaches infinity we obtain strong singularity.

I et us emphasize the peculiarities of the k' = 1 case:
(1) s inevitably tends to infinity in the past or in the
future creating a pancakelike singularity [7] (when a' &

0) or balloonlike singularity (when n' ) 0), or s —+ s+
creating a cigarlike singularity; (2) H never changes sign
during the evolution.

Other properties of the system are similar to the pre-
vious case k' & 1.

S

S
S+

1nt

VI. DISCUSSION AND CONCLUSIONS

It is interesting to find out under what conditions infla-
tion is possible in multidimensional models and to check
if the process of dimensional reduction of the internal
space can be achieved by inflationary contraction. In the
multidimensional case there are three different types of
inflation in physical space.

(1) Power law (or extended) inflation:

R t" with p) 1.

(2) Exponential inflation:

R exp(Ht), with H ) 0.

S (3) Violent inflation:

R ~t
—t.

~

~, with q ) 0.

lnt

S+

~ ~ ~ ~ ~ ~ ~

(c)
FIG. 5. Trajectories s(t) for a multidimensional model with

k = 3 and A.
" = 1. The physically acceptable parameter

space divides in this case into three regions. We show only
trajectories which do not represent future singularities. (a)
s —+ so ) 0, (b) s ~ so & 0, (c) s ~ s+. We used the follow-
ing equations of state (a) n = o.' = 0; (b) n = 0, a' = —1; (c)
6k=1, A = —1.

The violent inflation occurs at the Gnal singularity and
it can be realized only in multidimensional cosmological
models. From the discussion in Sec. IV it follows that
when H ) 0 the final singularity appears when s —+ s
Close to the singularity H = a /(t —t, ), R ~t —t,

~

and h = s a /(t —t, ), so r ~t —t, ~'- —,where
a ( 0. The physical space expands while the inter-
nal space contracts so the dimensional reduction takes
place. The expansion of the physical space is inflationary
(R ) 0), while the multidimensional volume (U = R"r" )
decreases (U & 0).

This scenario was discussed by several authors [8, 9].
Sahdev [8] was the first to notice this possibility of dimen-
sional reduction but he did not specify a mechanism to
stabilize contraction of the internal space at the Planck
scale. Kolb et aL [9] pointed out that even if one can find
some satisfactory mechanism of stabilizing the internal
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space the entropy produced in this scenario is less than
the observed entropy of the universe. Kolb et aL [9] sug-
gested that the problem encountered in this model might
be solved by allowing the equation of state to change. Fi-
nally Maeda [10] showed that when V & 0 even rapidly
changing equation of state cannot stabilize contraction

of the internal space. The process of quantum particle
creation poses another problem. This process tends to
isotropize the initially anisotropic evolution and counter-
acts the process of compactification [ll). Therefore the
violent inflation does not provide an eKcient mechanism
of dimensional reduction.

From the dynamical equations (2.7) it follows that the
exponential inflation is possible only when n = n' = —1.
The exponential inflation of the physical space implies
inflation of the internal space. Therefore dimensional
reduction is not compatible with exponential inflation.

The power law inflation is possible in the region of pa-
rameter space shown in Fig. 6(a). The power law infla-
tion is not compatible with dimensional reduction which
can occur only in regions IV and V of the parameter
space.

When o, and o,' are conflned to regions IV and V of
the parameter space and initially the physical and the
internal spaces are expanding then after some time the
internal space begins to contract. The contraction to
appropriate small scale takes too much time to be com-
patible with subsequent three-dimensional evolution of
the Universe [12].

Finally let us discuss the effects of curvature in the
physical or the internal space on the behavior of our
model. In order to take into account the curvature it is
necessary to modify the dynamical equations by adding
to (2.7a) a term proportional to 1/R2 or to (2.7b) a term
proportional to 1/r [5]. If ~RH~ (~rh~) increases then
the influence of curvature of the physical (internal) space
decreases and asymptotically the curvature is not impor-
tant. This condition is always satisfied close to a singu-
larity. Therefore all singularities present in spatially flat
multidimensional models appear also in general models
with curvature. When we consider nonsingular situation
t - koo, the condition ~BH[ —+ oo is satisfied in the
same region of the parameter space where the power law
inflation is possible [see Fig. 6(b)].

When the internal space is more than one dimensional
all singularities are vacuumlike (cigarlike). It is interest-
ing to note that in the one-dimensional internal space the
behavior of spacetime near singularity which occurs when
s —+ oo does depend on the equation of state. There-
fore in this case there are three types of singularities:
cigarlike, balloonlike, and pancakelike. This conclusion
is also relevant in the case of standard three-dimensional
Bianchi type I cosmology (k = 2, k' = 1) contrary to the
previous claims [7].
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APPENDIX

The nonzero components of the Riemann tensor for the metric (2.5) are

Roe ———Re o (s —s+) "+(s —s ) "-(s —so) ~'[1+(A:+Iq's) —A(s —s+)(s —s )],

RQ Ro ( )2q +P
( )2q +y

( )2q+P
x [1 —(k + k's) —A(s —s+) (s —s )],

R;., = —R;,.- (s —s )'(q++~+&(s —s )'( -+~-) (s —sc)'( '+~'

(A1)

(A3)

Raia = —Ra~i = sRgag)

where a, b = 1, 2, . . . , k; i,j = k + 1, . . . , k + k' = n and

a+ —1
q++p+ =

A.a+ (s+ —so) (s+ —se)

(A4)

(A5)

G —1
q —+p—=

Aa (s —so) (s —s+)
(A6)

Gp —1
qp+pp =

Aao(so —s )(so —s+)

All other nonzero components of the Riemann tensor can be obtained from (Al) —(A4) by substituting a ~ i, A: +-+ k',
sy ~ 1/s~, and so ~ 1/so everywhere including the exponents po, py, qe, q~ and the constant A.

Using the relations pp+ p+ + p = —1 and qp+ q+ + q = 0 we see that the components of the Riemann tensor
can become infinite only when 8 approaches one of the three separatrixes sp, sg.
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