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We consider (1+1)-dimensional QCD coupled to Majorana fermions in the adjoint representation of
the gauge group SU(N). Pair creation of partons (fermion quanta) is not suppressed in the large-N limit,
where the glueball-like bound states become free. In this limit the spectrum is given by a linear light-
cone Schrodinger equation, which we study numerically using the discretized light-cone quantization.
%e find a discrete spectrum of bound states, with the logarithm of the level density growing approxi-
mately linearly with the mass. The wave function of a typical excited state is a complicated mixture of
components with diIterent parton numbers. A few low-lying states, however, are surprisingly close to
being eigenstates of the parton number, and their masses can be accurately calculated by truncated diag-
onalizations.

PACS number(s): 11.15.Pg, 11.15.Th, 11.17.+y

I. INTRQDUCTI(ON

QCD has become universally accepted as the correct
theory of strong interactions, on the basis of a large body
of experimental and theoretical evidence. However, there
are few reliable nonperturbative calculations that can be
carried out starting from erst principles. One of the most
explored approaches to nonperturbative QCD has been
lattice gauge theory [1]. In fact, numerical studies of
pure glue theory appear to be close to the continuum lim-
it, and significant progress is being made on various ver-
sions of lattice QCD with quarks. It is important, howev-
er, to look for other nonperturbative methods, in the
hope that they will lead to new qualitative and quantita-
tive insight. One such approach makes use of the light-
cone quantization and subsequent numerical diagonaliza-
tion of the light-cone Hamiltonian [2]. It may provide
tools for calculating the hadron spectrum, as well as the
wave functions in the infinite momentum frame„ the de-
cay amplitudes, and the interaction cross sections.
Among its other advantages is the ability to introduce
chiral fermions without obvious complications. This ap-
proach has been successfully applied to QCD and other
model field theories in 1+1 dimensions [3], and is
currently being generalized to (3+ 1)-dimensional
theories [4]. In this paper we consider an application of
the light-cone approach to a new type of models [5]
where, we feel, it is particularly well suited.

As proposed by 't Hooft, QCD simplifies when general-
ized to a large number of colors, N [6]. When combined
with the light-cone quantization, this simplification be-

comes particularly striking: in the X—+~ limit meson
and glueball wave functions are solutions of linear light-
cone Schrodinger equations [7,8]. This is related to the
fact that mesons and glueballs become free in the large-N
limit. The linearity of the equations, however, is a special
property of the light-cone quantization. Recall, for corn-
parison, that the loop equations remain nonlinear in the
large-X limit [9].

In this paper we will study the spectrum of such linear
light-cone Schrodinger equation for a particular model,
(1+1)-dimensional large-N QCD coupled to matter in the
adjoint representation of SU(N) [5]. This model is far
more complex than the large-X QCD coupled to quarks
in the fundamental representation, where 't Hooft de-
rived and numerically solved the bound-state equation for
mesons [7]. The quanta of the adjoint matter resemble
gluons in that there are two color Aux tubes attached to
each quantum. The resulting glueball-like bound states
may contain any number of quanta connected into a
closed string by the color Aux tubes (see Fig. 1). As we
will see, the eigenstates are generally complex mixtures of
such strings with di6'erent numbers of partons. This
should be contrasted with the 't Hooft model where, due
to the absence of transverse gluons, all the meson bound
states have the structure of a quark and an antiquark
connected by a color Aux tube. Our introduction of ad-
joint matter has the purpose of imitating some transverse
gluon eff'ects. In fact, if we dimensionally reduce (2+1)-
dimensional gauge theory, the zero mode of the trans-
verse gluon field acts as the adjoint matter field coupled

*On leave of absence from the Ruder Boskovic Institute, Za-
greb, Croatia. FIG. 1. A glueball-like bound state of six partons.
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to (1+1)-dimensional QCD. Therefore, this model seems
to be the simplest setting where one can study some
genuine QCD effects, such as the pair creation of partons.
We will argue that the light-cone quantization supple-
mented with a regulator in the form of discretized 1ongi-
tudinal momenta [3,10] allows one to extract significant
amount of physical information about the large-N theory.

Consider the pure glue SU(N) gauge theory in 2+ 1 di-
mensions:

S=— x TrF F"1
2 P+

If one of the spatial dimensions is made compact,
y -y +L, then as L —+0 we may ignore the dependence of
fields on y, i.e., B A "/By =0. The action then reduces to

S„=f dx dx'Tr DPD—P F—j3F ~1 1

4g 2

where g =g3/I. and P(x,x ') = A~/g is a traceless
N XN Hermitian matrix field, whose covariant derivative
is given byD Q=B /+i[A, P]. Therefore, P represents
the remnants of the transverse gluon degrees of freedom.
If we choose the light-cone gauge 3 =0 and add a mass
term for P, we obtain

of this theory, and began a numerical investigation of the
low-lying spectrum. Here we continue this program with
further analytical and numerical results.

II. LIGHT-CONE QUANTIZATION

Consider N —1 Majorana (real) fermions which trans-
form in the adjoint representation of SU(N). They can be
combined into a traceless Hermitian matrix O'; . Upon
gauging the SU(N) symmetry we obtain the action

S&=f d x Tr i% y y D 4 m%—y 4— F &F PT O

4g2

(4)

where the transposition acts only on the Dirac indices,
and the covariant derivative is defined by
D %=d 4'+i [A,%]. The fermion field ~P,"=2 ' "(r")—i/4 &;.

V

is a two-component spinor, where y and g are traceless
Hermitian N XN matrices of Grassmann variables.
Choosing the light-cone gauge 3 =0, and the represen-
tation y =o.z, y

' = io, we find the action

S/ fdx+dx Tr iPd /+i' d g i&2m—yg

S„=fdx+dx Tr 8 QB P ——m $ + (8 A+) +A+J+
2g

(5)

+ (8 A ) +A J+, (3)
2g

where x +—=(x +x')/&2, and the longitudinal momen-
tum current Jj+=i [Q, B P];j. The mass term for
which does not destroy the (1+1)-dimensional gauge in-
variance, is necessary to absorb the logarithmically diver-
gent mass renormalization. The light-cone quantization
and the spectrum of the theory (3) were considered in
Ref. [5]. However, in the numerical diagonalization no
proper account was taken of the divergent mass renor-
malization. ' The bare mass was held fixed, and hence all
the bound-state masses were diverging in the continuum
limit. A proper numerical diagonalization, where the re-
normalized mass is held fixed, is in progress, and we hope
to report on it in the future.

In this paper we will examine, instead, a simpler model
where the adjoint scalar is replaced by an adjoint Majora-
na fermion [5]. Thus, we obtain a (1+1)-dimensional
gauge theory coupled to the zero mode of a transverse
gluino. The bound states again are built of any number of
partons connected into a closed string by color Aux tubes.
The new feature is that the bound states are fermions or
bosons depending on whether the number of partons is
even or odd. This theory has the advantage of being per-
fectly finite; moreover, it is supersymmetric for a special
value of the fermion mass [11]. In Ref. [5], Dalley and
one of the authors carried out the light-cone quantization

We thank D. Kutasov for helpful discussions on this issue.

where the longitudinal momentum current is now of the
form J'j 20jk /kj '

In light-cone quantization x+ is treated as time, and
the canonical anticommutation relations are imposed at
equal x+:

1= —5(x —y ) 5 5 ——5"5
2 I jk N Ij kl ~

The action does not contain time derivatives of 3+ and
g, and these nondynamical fields can be eliminated by
their constraint equations. As a result, the light-cone
components of total momentum can be expressed in
terms of P only:

P+= f dx Tr igB

P = dx Tr — g tP
——g J z Jim 1 1 2+ 1 +

2 a 2 B2

Our goal is to solve the eigenvalue problem

Since [P+,P ]=0, l@) is a simultaneous eigenstate of
P+ and P . In practice, it is easy to ensure that

l
@)

carries a definite P+, but the subsequent solution of Eq.
(8) is highly nontrivial. All the physical states must also
satisfy the zero-charge constraint

f dx J+le&=-0, (9)
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arising from integration over the zero mode of 3+,
which acts as a Lagrange multiplier.

In order to make Eq. (8) explicit we introduce the
mode expansion

g,"(x ) = —f dk+ [b;~(k+ )e

From Eq. (6) it follows that

{bij (k )~blk(k )] '|~(k k ) ~il~jk ~ij bklJ ~ ~J

+bt(k+) ik+x

P+= f dk kb; (k)b; (k),

(10) In terms of the oscillators, Eq. (7) assumes the form
I

(12)

2'P —= ~ f" b tj(k)b,,(k)+ g f C(k)b,t(k)b, , (k)

2

f "dk, dk, dk3dk, {A(k; )6(ki+kz —k3 —kp)bkj(k3)bj', (k4)bki(ki)bk(k2)
2K 0

+B(k, )5(k, +.k2+k3 —k4)[b„~(k4)b„,(k, )bi;(k2)b J(k3)

bq&(k, —)b~((k2)be~i(k3)bk;(k4)]], (13)

where

A(k;)= 1

(k4 —k~)

B(k;)= 1

(k2+k3)

C(k)= f dp
(p —k)

1

(k, +k2)2

1

(k, +k2)
(14)

I

mind, however, that C is not a physical quantity because
it enters in the mass of a colored object. The physical
quantities are the masses of the colorless bound states,
and they must be independent of which consistent
prescription is used to define P . This was the case for
the 't Hooft model [12], and we expect the same to be
true here.

An important advantage of the light-cone quantization
is that the oscillator vacuum satisfies

and we have dropped the superscript plus on k; for brevi-
ty. The mass renormalization proportional to C arises
from the normal ordering of the quartic term in P . If
one uses 't Hooft's principal value prescription, then
C(k)= —1, so that the mass renormalization is finite.
Other prescriptions, however, such as the one we will use,
render C(k) linearly divergent. It is important to keep in

I

p+~0)=o, p 0)=o. -
(15)

Other states in the Fock space are constructed by acting
with creation operators b;. on the vacuum. The zero-
charge condition (9) requires that all the color indices be
contracted. Therefore, we look for bosonic eigenstates of
Eq. (8) in the form

oo p+ 2J
~@i(P+))= g f dk, . dk~ 6 g k, P+ f2 (k„k—2, . . . , k2 )N Tr[b (k, ) b (k2 )] 0) .

j=1 i=1
(16)

This state is trivially an eigenstate of P, and the problem is to ensure that it is an eigenstate of P . Similarly, the fer-
mionic states are of the form

oo p+ 2j+1
~@~(P+))= g f dki . dk2 +i5 g k, P f2.+i(ki,—k~, . . . , k~ +i)N ~ '~ Tr[bt(ki). . . bt(k2, +, )]~0) . .

j=1 i=1

(17)

Because of the fermionic statistics of the oscillators, the
wave functions have cyclic symmetry:

f (k~, k3, . . . , k;, k, )=(—1)' 'f;(ki, k2, . . . , k;) .

(18)

The increased complexity of the coupling to adjoint
matter arises mainly from the fact that the eigenstates are
mixtures of states with di6'erent numbers of partons.
This can be traced to the presence of pair production and
pair annihilation terms in P . One easily checks that

these appear in the leading order of 1/X expansion, pro-
vided that g N is kept fixed in the large-X limit. Indeed,
for the model with adjoint matter an extra pair of partons
can be produced inside a color singlet. Furthermore, the
terms in P that take one color singlet into two are
suppressed by 1/N. Therefore, our bound states are
stable in the large-N limit, and their wave functions satis-
fy linear eigenvalue equations [8,5]. These equations are
not hard to write down explicitly. Upon introducing lon-
gitudinal momentum fractions x, =k;+/P+, we find the
following set of coupled integral equations by acting on
states (16) and (17) with P
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Pl g 2+ X1 +X2
Mzf, {x,,xz, . . . , x;)= f;(x„x2, . . . , x;)+ dy f;{y,x, +x2 —y, x, , . . . , x, &

~(x, +x, )'

gN &+2 dy+ [f;( i, x2, x3, . . . , x;) f;—(y, x, +x2 —y, x3, x')]
vr 0 (xi —y)2

+ dy dz f;+2(y, z, x, —y —z, xz, . . . , x,. )
0 0 (y +z)' (x, —y)

g 2+ 1+ f; z(x, +x2+x3,x4, . . . , x;)
7T (xi+xi)

+cyclic permutations of (xi,x2, . . . , x;) .

1

(x2+x3 )

(19)

For odd i all cyclic permutations enter with positive sign,
while for even i they enter with alternating signs. This is
related to the cyclic symmetry (18). In the second line of
Eq. (19) the Coulomb double pole is partly compensated
by the zero of the numerator at y =x &. Therefore, the in-
tegral is finite in the principal value sense, and the equa-
tion contains no ambiguity. The same holds true for the
't Hooft equation (33)

Equation (19) possesses a Z2 symmetry T [11]. For any
fermionic (odd i) eigenstate,

f, (x„x2, . . . , x, )=T( —1)' " f;(x;, . . . , x2, x, ),
(20)

while for any bosonic (even i) eigenstate,

f;(x„x~, . . . , x;)= T( —1)'/2f, (x, , . . . , x2, xi ) .

(21)

The Z2 quantum number T has two possible values: 1

and —l. In terms of the original field, T: P;.~g.;, which
obviously leaves P* invariant [11]. Physically, every
bound state can be thought of as a superposition of
oriented closed strings, and the quantum number T de-
scribes the transformation property under a reversal of
orientation.

III. THE DISCRKTIZED APPROXIMATION

The system of equations (19) involves an infinite num-
ber of multivariable functions. The complexity of the ad-
joint matter model is evidently much greater than that of
the 't Hooft model, where each bound state is specified by
a single function of one variable. Even there, however,
one needs to resort to numerical methods to find the ei-
genvalues of the linear light-cone Schrodinger equation.
Here we follow a similar strategy and replace the contin-
uum equations (19) by a sequence of discretized approxi-
mations, such that the eigenvalues of the discretized
problems eventually converge to the eigenvalues of (19).
In the light-cone quantization, a simple discretized ap-
proximation is obtained by replacing the continuous
momentum fractions x by a discrete set n /K, where n are
odd positive integers, and the positive integer E is sent to
infinity as the cutoff is removed [10,3]. Thus, the func-
tions f, (x„x2, . . . , x;) are replaced by finite collections

I

of numbers which specify their values at the discrete set
ofx, and

EI Zx
odd n &0

Moreover, the constraint g', x =1 eliminates all states
with over E partons, so that the discretized eigenvalue
problem becomes finite dimensional. Any given eigen-
state of the continuous problem should be well approxi-
mated by the discretizations with large enough K, al-
though in practice the convergence may be very slow for
highly excited states.

An equivalent way to describe our cuto6'is in terms of
the discretized light-cone quantization [3]. There one
makes x compact and imposes antiperiodic boundary
conditions:

)e iP nx /K—1

4~ odd n )0
rP nx /K] (22)

with the oscillator algebra

1
PTII I J ~ IJ (23)

2In Ref. [5] periodic boundary conditions were used instead.
Although for either choice of the boundary conditions the
theory eventually converges to the limit of continuous k+, we
find that the convergence is appreciably faster for the an-
tiperiodic boundary conditions.

tt;, (x )= —g, (x +2m.L) .

Therefore, k+ is restricted to discrete values n/(2L)
where n are odd positive integers. The total light-cone
momentum is P+ =K/(2L), where IC is odd for the fer-
mionic bound states whose wave functions are antiperiod-
ic in x, and E is even for the bosonic bound states
which are periodic in x . The mode expansion can now
be written as
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The matrix that has to be diagonalized can be construct-
ed in terms of the oscillators:

where x =em /g % is the dimensionless parameter. The
mass term is

2P+P = K(x V+ T),
V = g —8; (n)B, (n),1

(24
while the term generated by the gauge interaction is

(25)

Pl 2 1T=4 +BJ(n)B~(n) g-
(n —m)

2 1+—~ 6X n1+n2'n3+n4
( )&

n,. 774 Pl p

Bkj (n 3 )8/; (n4 )Bki (n i )Bi; (nq )
(n, +nz)

1 1

X [Bi, (n~)Bki(n, )Bi;(n~)8,"(n3)—Bk (n, )Bji(n~)Bi;(n3)Bk, (n4)] (26)

All the summations above are restricted to positive odd
integers.

In order to perform the diagonalizations, we may con-
sider a basis of states normalized to 1 in the large-X limit:

1 E

Tr[8 (n, ) . . 8 (n;)]~0&, g n~=E .
j=1

(27)

The states are defined by ordered partitions of A into i
positive odd integers, modulo cyclic permutations. If
(n „nz„.. . , n; ) is taken into itself by s out of i possible
cyclic permutations, then the corresponding state re-
ceives a normalization factor I/&s. In the absence of
special symmetries, s = 1. For even i, however, some such
states vanish due to the fermionic statistics of the oscilla-
tors: all partitions of K where i /s is odd do not give rise
to states.

In actual calculations it is advantageous to consider
se~~arately the even and odd sectors under T:
8, (n)~8 ;(n). The s.tates that carry a definite quantum
number T are in general hnear combinations of the states

I

(27). Construction and proper normalization of such
states is a combinatorial problem that is easily solved
with a computer program. %'e will show the solution for
a simple example, setting K = 10.

In the T = 1 sector the normalized states are

Tr[8 (5)8 (1)8 (1)8 (1)8 (1)8 (I)]10&,+3

~2& = Tr[8 (3)Bt(l)Bt(3)8"(1)Bt(1)Bt(1)]~0&,+3

~3 &
= [Tr[Bt(5)B"(3)B (t1) B(t1)]x'&z

+Tr[Bt(1)Bt(1)B(3)Bt(5)]]~0&, (2g)

4& =—Tr[B (9)8 (l)l0&=1

I5& =—Tr[8'(7)8'(3)]~0& .1

Here the matrix to be diagonalized is

26x 7
5 2

14x 73+2

17
72&2

4&v
9

17
72&2

10x 107
9 72

8

9

4v'Z

9
8

9

10x 47
21 18

(29)

In the T = —1 sector the normalized states are
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~1& = Tr[8 (3)Bt(1)8 (1)B (1)8 (1)B (1)8 (1)8 (1)]~0&,

~2& = Tr[Bt(3)Bt(3)B"(1)Bt(1)Bt(1)Bt(1)]~0&,+3

~3&= Tr[8 (7)8 (l)B (1)B (1)]~0&,
pf 2

—[Tr[8 (5)B (3)8 (1)Bt(1)]—Tr[B (1)Bt(1)Bt(3)Bt(5)]]10&1

x'&z

(30)

~5&= Tr[8 (5)Bt(1)8 (3)8 (1)]~0&,+2

Tr[8'(3)8'(3)8'(3)8'(1)] I0 &,+2

and the matrix to be diagonalized is

22x3+'
14x 1373+36

5

36

3

4&v

5

36

22x 89
7 +36

3

4&3
3

4v'Z

38x 247
15+ 72

11
18+2

4&v
9

11
18&2

38x 47
15 18

4&v
9

2 +37
9

(31)

The calculations above were repeated for higher values of E with the help of a computer program. The number of
states increases rapidly with E. Our biggest diagonalization in the fermionic sector was carried out for E =25, where
there are 3312 states in the Z2 odd sector and 3400 states in the Zz even sector. In the bosonic sector we reached E =24
where there are 2197 Z2 even states and 2141 Zz odd states.

IV. THE NUMERICAL RESULTS

A good numerical procedure is to calculate the spec-
trum for a fixed x and a range of values of E, and then to
extrapolate the results to infinite E, the continuum limit.
We will also assume that some bulk properties of the
spectrum can be estimated from the results at a fixed
large E. We will be most interested in two special values
of x, x =0, which corresponds to the limit of massless
quanta, and x = 1 (m =g %In. ), where the theory is su-
persymmetric [11].

In Fig. 2(a) we show the spectrum of fermionic states
for x =0 and E =25, with the mass plotted vs the expec-
tation value of the number of partons, n. It is immediate-
ly obvious that the density of states increases rapidly with
the mass, and that almost all the states lie within a band
bounded by two (n &-M lines. Below we will try to
quantify these effects.

One interesting feature of our results, already noted in
Ref. [5] for smaller IC, is that for a few low-lying eigen-

states the wave functions are strongly peaked on states
with a definite number of partons. For example, for
E =25 the ground state has probability 0.99993 to can-
sist of three partons, and the first excited state has proba-
bility 0.99443 to consist of five partons. As the excita-
tion number increases, however, the wave functions typi-
cally become quantum superpositions of states with
different parton numbers. It is physically plausible that a
typical excited state contains some number of virtual
pairs, and our data support this expectation. In order to
quantify this effect, we will call a state pure if it has prob-
ability &0.9 to be in one of the number sectors. Table I
shows the total number of states and the number of pure
states in each mass interval of Fig. 2(a). We also show
the expectation value of the number of partons averaged
over all states in each mass interval. Evidently, a few
low-lying states are pure, while there are no pure states
among the high excitations.

As the mass of the quantum increases we expect the
pair creation to become somewhat suppressed. In order
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10 I-

I I I I I

(a)

(n)
10

I I I I I I I I ~ I

(b)

demonstrate that for the bosonic bound states the qUali-
tative picture is the same. Table III shows the numerical
data for x =0. In Ref. [11]the spectrum of highly excit-
ed states was found in the approximation where the num-
ber changing processes were ignored, i.e., all such states
were assumed to be pure. The observed tendency of the
excited states to be quantum superpositions of many
number sectors, as well as the distributions of states in
Figs. 2 and 3, do noi seem to support this approximation.
In principle, it is possible that we have not reached a high
enough value of K for our discretized approximations to
detect these pure highly excited states. We are inclined
to believe, however, that a typical highly excited state
does contain a number of virtual pairs of partons. More
discussion of this issue will follow in Sec. V.

We note a di6'erence in the distribution of states for
x =0 and 1. For x =-0, Figs. 2(a) and 3(a), states are dis-
tributed within a band almost uniformly. For x =1,
however, we see an increase in the number of fermionic
states with an average parton number near 5,7,9,11, . . . ,
Fig. 2(b), and a similar increase in the number of bosonic
states with an average parton number near 4,6,8, 10, . . . ,
Fig. 3(b). We believe this effect to be related to the turn-
ing on of the mass, and that it gets stronger as the mass
increases. It would be interesting to investigate this fur-
ther.

A striking property of Figs. 2 and 3 is the rapid growth
of the density of states with increasing mass. In Fig. 4 we
plot the logarithm of the number of states vs the mass for
the data in Table I. For a certain range of masses the
graph is approximately linear. The deviation from linear-
ity for large enough mass is clearly due to the e6'ects of
the cutoK Our results indicate that the density of states
grows roughly exponentially with the mass, exhibiting
the Hagedorn behavior

p(m)-m e™, (32)

FIG. 2. The spectrum of fermionic states for K=25: (a)
x =0, M & 14; (b) b = 1, M & 20; mass M is measured in units of
Vg N/m and plotted vs the expectation value of the parton
number.

to study this effect, we plot in Fig. 2(b) the spectrum of
fermionic states for x =1 and K =25, and in Table II we
quantify their purity. We And that, indeed, there are
more pure states for low excitation numbers, but for
highly excited states the pair creation again becomes im-
portant. In Figs. 3(a) and 3(b) we show the results for
K =24 and for x =0 and 1, respectively, in order to

as suggested in Ref. Il 1]. Thus, although the mass spec-
trum is discrete, it rapidly becomes virtually indistin-
guishable from a continuum. From our data we estimate
that the inverse Hagedorn temperature is
P=(0.7 —0.75)+rr/(g X).

Another physical eAect that is pronounced in our re-
sults (Tables I—III) is that the mass increases roughly
linearly with the average number of partons. In Fig. 5 we
plot these results for x =0 and K =24 (Table III). We
will attempt to give a simple heuristic explanation of this
e6ect. Suppose that the light-cone Hamiltonian of a
glueball-like state containing on the average n partons is
replaced by that of n nonrelativistic particles connected
into a closed string by harmonic springs. It is not hard to
see that the ground state energy of such a system, to be

TABLE I. Numerical data for K =25, x =0, shown in Fig. 2(a); the 3.0 bin includes all states whose
masses are 1.5—3.0, etc.

3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5

Number of states 1 1 9
Number of pure states 1 1 0
Average length 3.00 5.00 5.70

37
0
6.63

104
0
7.31

362
0
8.27

897
0
9.38

1668
0

10.50

2040
0

11.73
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TABLE II. Numerical data for K =25, x = 1 plotted in Fig. 2(b).

6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5

Number of states 1 1 5 17 56
Number of pure states 1 1 3 1 0
Average length 3.00 3.06 3.63 3.99 5.05

131 296 580 942 1230
0 0 0 0 0
5.84 6.87 7.88 9.07 10.36

identified with M, indeed behaves as -n for sufficiently
large n [13). Perhaps such a heuristic picture can indeed
help one in a qualitative description of a typical bound
state.

Now we need to address the question of convergence
towards the continuum limit. In Fig. 6(a) we show the
fermionic and bosonic ground states for x =0, as well as
their extrapolation towards infinite A; in Fig. 6(b) we re-
peat the plot for x =1. We have used the Bulirsch-Stoer
algorithm which has proved to be particularly efficient
for extrapolating short series [14]. The supersymmetry of
the spectrum for x =1 guarantees that the continuum
values of the fermionic and bosonic ground states are
equal, and our extrapolations indeed agree very well. The
numerical values are shown in Tables IV and V.

Since the low-lying states are very pure, they can be
well approximated by truncating the diagonalization to a
single parton number sector. For instance, for x =0 and
L =24 the ground state has probability 0.973 66 to con-
sist of two partons. We can, therefore, obtain a good
upper bound on its energy by truncating the eigenvalue
equations (19) to the two-parton sector. The resulting ei-
genvalue problem is

truncated diagonalization all the 2-, 4-, and 6-bit states.
For x =0 and K =24 the ground state has probability
0.999 98 to be in this sector. Extrapolating to infinite E,
we find 0.99995, and therefore this truncation is highly
reliable. In Table IV we compare the full and truncated
calculations. We have performed the truncated diagonal-
izations up to E =34, and extrapolating these results to

I T T ~ ~ T

(a)—

M P(x) =m P(x) —+1 1

x 1 —x

2g 1V & g(x) —P(y)
o (y —x)~

(33)
10

where P(x)=f2(x, 1 —x). Equation (33) is the 't Hooft
equation v ith g —+2g . The doubling of the strength of
the interaction term is due to the presence of two color
fiux tubes connecting a pair of partons (in a meson there
is only one). Another important new efFect is that, be-
cause of the fermionic statistics, P(x)= —P(1 —x). This
forbids half of the eigenstates of the 't Hooft problem, in-
cluding the ground state. In particular, for m =0 the
M=O solution P(x)=1 is excluded. This provides a
heuristic argument for the absence of massless bound
states, even as the parton mass m is taken to zero. A
more precise argument will be given in Sec. V. An ap-
proximation to the bosonic ground state of the adjoint
fermion model is provided by the lowest antisymmetric
wave function, whose eigenvalue is M =11.76g X/~.
This upper bound is quite close to the extrapolated value
from Fig. 6(a), which is M = 10.7g X/m. The lowest an-
tisymmetric eigenstate of Eq. (3) for m =g K/vr (x =1)
has M =26.56g X/~, which is a good upper bound on
the extrapolated value from Fig. 6(b), M =25.9g X/m. .

Since the bosonic ground state is not perfectly pure,
the upper bounds can be improved by including in the

20—
I

(b)

10

L l

10

FIG-. 3. The spectrum of bosonic states for K =24: (a) x =0,
m & 14; (b) & =1,m & 20.
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TABLE III. Numerical data for K =24, x =0, shown in Fig. 3(a).

4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

Number of states
Number of pure states
Average length

9
1

5.36

35
0
6.43

108
0
7.21

315
0
8.23

767
0
9.32

1229
0

10.48

1257
0

11.74

infinite K, we find the upper bounds M =10.75g X/vr
for x =0 and M =25.90g X/~ for x = I. These are ex-
tremely close to the extrapolations from Figs. 6(a) and
6(b). This shows that, by judiciously truncating the space
of states, certain eigenvalues can be determined to a good
accuracy with relatively small diagonalizations.

Similar approximations work even better for the fer-
mionic ground state because it is purer than the bosonic
ground state: for x =0 and X =25 this state has proba-
bility 0.999 932 to consist of three partons, and probabili-
ty 0.999 997 to consist of three or five partons. Extrapo-
lating these probabilities to infinite E, we find 0.99983
and 0.999993, respectively. With the three-parton trun-
cation and E up to 75, we find that the fermionic ground
state has the extrapolated eigenvalue M =5.72g X/m
for x =0, and M =26.05g N/m for x =1. These values
provide good upper bounds on the extrapolations from
Figs. 6(a) and 6(b). Furthermore, the truncation that in-
volves three- and five-parton states is almost exact for the
lowest fermionic eigenvalue, for all accessible values of E.
The advantage of this truncation is that we can access
higher value of K (up to 49) than in the full diagonaliza-
tion and extrapolate more reliably. We find that the
lowest fermionic eigenvalue extrapolated in this fashion is
M =5.70g N/mfor x =0, .and M =25.94g X/~ for
x =1. Good agreement of these values with Figs. 6(a)
and 6(b) gives us some confidence that our methods are
consistent.

V. DISCUSSIQN

One interesting property of our model is that, even in
the limit m —+0, there are no massless bound states. This
result was found numerically in Ref. [5] and can easily be

explained analytically [15]. For m =0 all the bound state
masses are measured in units of g. If we are interested
only in the massless states, we can send g —+ ~ so that the
relevant action is

S=JdxTr(i+yyBV+& J ). (34)

c =c —(X —1)
K

m

where c is the central charge before gauging, and K is
the level of the current algebra. In the theory with an ad-
joint Majorana fermion c = (X —1 ) /2, and we find
c =0. This establishes the absence of massless bound
states. Similarly, in a gauge theory coupled to a funda-
mental Dirac fermion, we have c =X and K =1, so
that c =1. This proves the existence of one massless
meson. In the large-X limit this phenomenon can be at-
tributed to the breaking of te U(1) chiral symmetry [17].
For comparison, note that the m =0 version of the
theory (4) has no chiral symmetry because we are consid-
ering Majorana fermions. This provides another physical
reason for the absence of massless bound states.

One of the motivations for coupling (1+1)-dimensional
QCD to the adjoint matter is that the parton pair
creation is not suppressed by a power of N. This situa-
tion resembles large-X QCD in higher dimensions, where

The left-moving currents J;+ and the right-moving
currents J; generate two independent level-X Kac-
Moody algebras. The gauge fields act as Lagrange multi-
pliers that enforce the zero-current conditions. Calcula-
tion of the central charge of the Virasoro algebra in such
theories is well known (see, for instance, Ref. [16]). For
SU(X) the result is

p

I

10 12 14

FIG. 4. Logarithm of the density of states and a linear fit for
E =25 and x =0.

FIG. S. Average number of partons as a function of mass for
K =24 and x =-0.



(1+1)-DIMENSIONAL LARGE-N QCD COUPLED TO ADJOINT. . . 4989

10
~ ~ ~

6

0.04 1/K0. 1

26 &r

4~ ~

0.02 0. 04

(b)

I

0. 06
I

0. 08 1/K0. 1

FIG. 6. Fermionic and bosonic ground states and their extra-
polation toward infinite E: (a) x =0, (b) x = 1.

the quark creation is suppressed, but the gluon creation is
not. We find, however, that in the low-lying states the
pair creation is suppressed for dynamical reasons.
Roughly speaking, in the low-lying states the color Aux
tubes are not highly stretched, and it is not energetically
favorable for a Aux to divide into three Aux tubes by
creating a pair of partons in the middle. Indeed, even as
m is taken to zero, it costs some energy to create a pair of
quanta together with the associated fIux tubes. This is
why the first fermionic excited state, which contains five
partons, is considerably heavier than the fermionic
ground state, which contains three partons. However, as
we pump vibrational energy into a bound state, the pair

creation should become more favored. This is confirmed
by our computations. It is remarkable, though, that the
lowest states are so pure that completely ignoring pair
creation is an excellent approximation for them. It is
tempting to speculate that this is somehow connected
with the success of the "valence approximation" in
(3+ 1)-dimensional QCD [18].

Another important point concerns the rich structure of
the excited states found in (1+1)-dimensional QCD with
adjoint matter. This may be the simplest class of models
to exhibit a spectrum of Hagedorn type, with an ex-
ponentially growing density of states. Since we have tak-
en N to infinity, all these glueball-like states are stable
and can be found as solutions of the linear equation (19).
For comparison, the 't Hooft model has only one state
per unit mass squared. These features are related to the
presence of a deconfining phase transition in the adjoint
matter model, and its absence in the 't Hooft model [11].

Recently (1+1)-dimensional large-S QCD was con-
nected with closed string theory in a very precise fashion
[19]. This was accomplished for the pure glue theory,
which is almost topological. It is an interesting question,
whether a continuum closed string description exists for
the more complicated adjoint matter model, with its rich
structure of physical states. The appearance of the ex-
ponentially growing density of levels suggests that such a
theory should have a hidden transverse dimension. In
our light-cone description this dimension manifests itself
in the fluctuations of the longitudinal momenta and of
the number of partons.

Clearly, a lot remains to be understood about the
(1+1)-dimensional large-X QCD coupled to adjoint
matter. We hope that this class of models bears som. e
physical similarity with higher-dimensional gauge
theories. It may also serve as a good test of the light-
cone quantization methods that are promising to become
a useful tool for studying the nonperturbative structure of
the strong interactions.
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TABLE IV. Numerical values for the bosonic ground state for x =0 and x = 1, as shown in Figs. 6(a)
and 6(b).

12
14
16
1&

20
22
24

M (full)

9.9710
10.1034
10.2004
10.2742
10.3320
10.3783
10.4162

10.7

x=0
M' (2+4+6-bit)

9.9711
10.1036
10.2008
10.2747
10.3326
10.3791
10.4171

10.75

M (full)

19.7985
20.4120
20.8972
21.2923
21.6214
21.9004
22. 1406

0

25.9

x —1

M (2+4+ 6-bit)

19.7985
20.4120
20.8972
21.2923
21.6214
21.9004
22. 1406

4

25.90
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TABLE V. Numerical values for the fermionic ground state for x =0 and x =1, as shown in Figs.
6(a) and 6{b).

K M (full)

x=0
M (3 bit) M (3+5 bit) M (full)

x —1

M (3 bit) M (3+5 bit)

15
17
19
21
23
25

5.5111
5.5388
5.5602
5.5771
5 ~ 5908
5.6021

5.7

5.5119
5.5399
5.5617
5.5790
5.5930
5.6046

4

5.72

5.5112
5.5389
5.5603
5.5772
5.5910
5.6022

e
e

5.70

21.16S8
21.5335
21.8397
22.0996
22.3234
22.5187

25.9

21.1722
21.5427
21.8517
22. 1143
22.3408
22.5385

26.05

21.1659
21.5337
21.8400
22.0999
22.3238
22.5189

25.94
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