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We examine several resummation methods for computing higher order corrections to the finite
temperature efFective potential, in the context of a scalar P theory. We show by explicit calculation
to four loops that dressing the propagator, not the vertex, of the one-loop tadpole correctly counts
"daisy" and "superdaisy" diagrams.
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I. INTRODUCTION:
RESUMMATION OF DAISIES

Recent interest in the electroweak phase transition
(EWPT) has led to attempts to improve the finite tem-
perature effective potential by resummation of leading
infrared divergent graphs [1—9]. There is some contro-
versy over the correct resummation procedure, particu-
larly how "daisy" and "superdaisy" [10] graphs are ac-
counted for by dressing the propagator andior vertex in
one-loop tadpole graphs. Espinosa, Quiros, and Zwirner

[5] advocate a method which at the tadpole level amounts
to dressing both propagator and vertex ("full dressing"),
while we claim [4] that dressing the tadpole's propagator
alone ("partial dressing") accurately counts higher-loop
graphs. In this paper we show by explicit calculation
to four loops in a scalar theory that partial dressing re-
produces the correct combinatorics, while full dressing
overcounts an infinite set of diagrams.

We also discuss other methods in the literature.
Arnold and Espinosa [8] have reported that resumma-
tion corrections make the EWPT more strongly first or-
der. We verify that their counting scheme, applied to
the scalar theory, is equivalent to partial dressing; and
unlike either superdaisy resummation scheme, it handles
overlapping momenta correctly.

In Sec. II, after introducing our notation, we compare
full to partial dressing (graphically and algebraically) in
a region of parameter space where trilinear couplings
are small, and calculate the higher-loop diagrams explic-
itly. Trilinear couplings are considered in more detail in
Sec. III, some earlier approximations are eliminated, and
questions of overlapping momenta are addressed. Our

result for the effective potential is then presented. In
Sec. IV we examine the Cornwall, Jackiw, and Tomboulis
procedure [11,12], the Arnold-Espinosa loop expansion
[8], and the two-point method of Buchmuller et al. [13],
and suggest a hybrid method with the best features of
the others. We summarize our findings in Sec. V.

II. VACUUM OR TADPOLE?

Consider a real scalar Geld theory with tree-level po-
2

tential Vo ——4P —~z P . The effective potential is given
by minus the sum of all vacuum-to-vacuum graphs; the
one-loop contribution is

( vr2T4 T m—2 ) Tm
90 24 ) 12m

We have separated the n g 0 modes (small loop) and
the n = 0 mode (dotted loop), displayed symmetry fac-
tors explicitly, and kept only terms O(T) or higher. Here
m = Vo' = 3AQ —p, and n is the Matsubara frequency
index. Over regions of P where m ~ 0, in&ared diver-
gences appearing in the zero-mode contribution must be
compensated by including higher-loop "daisy" and "su-
perdaisy" diagrams [10],which give the scalar an effective
"plasma mass. "

An alternative approach [1, 14] is to calculate the
derivative V'(P), given by the sum of all tadpole graphs,
and then integrate with respect to P. The tadpoles are
given correctly, including symmetry factors, by attach-
ing a (p= 0 truncated) external line to each part of each
vacuum graph, e.g. ,
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When we discuss a method from the literature which uses
vacuum graphs (e.g. , [5, 6, 8, 11, 12]), we will usually con-
vert it to tadpoles (take d/dP) to facilitate a comparison.

While hard thermal loops (daisies) can be included by
shifting the mass with a temperature-dependent term in
either vacuum or tadpole graphs, higher order corrections
(superdaisies) require a field-dependent mass shift which
gives different results if inserted into the vacuum rather
than tadpole diagrams. There has been confusion in the
literature over which method properly incorporates the
important higher-loop superdaisy diagrams. It is known,
for example, that a simple shift m ~ rn +II(P, T) in the
one-loop contribution to the efFective potential Eq. (1),
where II is the scalar self-energy, results in an overcount-

ing of the two-loop figure-eight vacuum diagram on the
left side of Eq. (2). Shifting m in the vacuum dia-
gram is equivalent to dressing the propagator and three-
point vertex of the one-loop tadpole, so this "full dress-
ing" overcounts the two-loop figure-eight tadpole on the
right side of Eq. (2) [4, 7]. We will show, by explicit cal-
culation to 4 loops, that dressing only the propagator in
a one-loop tadpole ("partial dressing") correctly courits
the relevant graphs.

A. Dressing up

In both full and partial dressing procedures, the prop-
agator is first improved by solving a gap equation:2

= m —-'c4I, (M ) —2csI2(M )

c and c4 are the 3- and 4-point vertices, respectively, with dcs/dp = c4. We have defined

Io(m')—:T)—p ln (2~nT)'+ p'+ m',
(2vr) s

f (2irnT) + p + m(2~)'- (I &0) (4)

e dressed vertex is found by differentiating the mass gap equation and solving for the improved three-point function:

(5)

dM 2

+3 = — —cs + Csc4I2 (M —) + csc4I2 (M ) + CscsI3 (M ) .2 2 2 2

The prescription in [4] is to equate V with a one-loop-improved propagator tadpole (partial dressing):

I
VPD = + 0 ~ ~

This contrasts with the procedure in [5], which consists of substituting M into the one-loop potential V = 2Io(M2),
expanding and replacing M by m in all terms except the cubic M . Since the M term arises precisely f'rom the
zero mode in the the one-loop tadpole, difFerentiating this expression by P and expanding the vertex gives

I
VFD

+ 0 ~ ~ (8)

In [5], when their equation (33) is substituted in (21) and expanded, the result for V includes a term 3AT m /32m', which
is twice the correct result.

In all diagrammatic mass gap equations, we display only the one particle irreducible (IPI) diagrams from the usual infinite
series.
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A dot inside a loop means only zero modes are contained. in that loop variable, although nonzero modes can run
through shared propagators.

Although we have expanded the improved vertex and propagators graphically, the algebraic expansion is equally
simple by repeated use of the recursion relation equation (6) and

'& [Ii(M )] = ~z[Ii(m ) + zc4I2(m )Ii(M ) + 4c4Ii(M )Is(m ) + sc4Ii(M )I4(m ) +. ],

(10)

where the ellipsis refers to terms with powers of t-3 and
higher powers of c4. The result can then be compared to
a Feynman graph computation of the one-point function
to examine the validity of the two methods. In practice,
gap equation solutions and loop integrals can only be
approximated. However, as long as the same approxima-
tions are made in the Feynman diagram expansion, the
results can still be consistently and explicitly compared.

Note that in this approximation (which we will fix in
Sec. III B), higher-loop diagrams made by attaching bub-
bles to this one vanish, due to the zeros in the erst line
of Table I.

Diagrams are categorized as being O(n~ p~sp~~) with
respect to Eq. (11), where [5]

o = ATz/m' —1, p—:AT/m & 1, p
—= p'/T' &( 1,

(12)
B. Rules of the game

We now calculate the algebraic expressions and the
Feynman diagrams for a real scalar theory, under some
simplifying rules. All diagrams are preceded by an over-
all minus sign, to give V or its derivatives, and a sym-
metry factor. The vertices are cs ———Vo"' = —6AQ andc4: Vo: 6A We ignore for now the ellipsis in
Eq. (1); we will discuss the missing terms in Sec. IIIB.
Temperature-dependent parts of loop integrals are then
given by Table I (our cornbinatoric analysis will not hinge
on zero temperature results, or on renormalization pre-
scriptions). The leading-order result comes from a single
hard (nonzero made) thermal loop

T2= (6Ay)

in the region of interest to us. To keep things tractable
(and minimize distractions from issues of overlapping mo-
mentum), we will first look only at O(p ), meaning only
one three-point vertex; higher orders are discussed in
Sec. III. A scheme is called "accurate to O(P~)" if it cor-
rectly reproduces all diagrams with jp & j and j~ = 0.
In [4] we call O(P) "daisy order, " and O(P ) "superdaisy
order. " While the schemes described in this paper are not
accurate to O(P ), we find it instructive here to analyze
"daisy-type" graphs to O(P4). For illustrative purposes,
we will display terms and diagrams only to O(A ), which
for j~ = 0 means 4 loops.

C. Partial- and full-dressing results

To the order we are working, the gap equation is

M =m+ AT2

4
3ATM

4a
9AQT

4vrM

Although the last term is O(np) compared to the previous one, we retain it because their derivatives are the same
order We need n. ot dress the nonzero-mode loop at this level of approximation, as discussed below Eq. (11).

The solution of the gap equation, expanded to O(Asp ), is

AT 2 SAT A'T4 9A'T' A' T' 9A'T4
M=m+

8m 8' 128m 128vr m 1024m 1024m m3+ + + O(A', p') (14)

TABLE I. Loop integrals.

Integral

Nonzero modes

Zero modes

Ip

m'T' T'm'

—Tm
4m

I2

T
8~m

T
327rm3

T
64~m~

In [5] diagrams are compared instead to the leading zero-mode loop, so their "O(P)" corresponds to our O(P ).
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and the improved three-point coupling is

9AT 9A T 27A T 81A T
1024vrm5 1024vr3m3

Exactly 1/3 of the expression in curly brackets arises from the penultimate term in Eq. (13), and 2/3 from the last
term, as can be seen by careful inspection of Eq. (5).

The partially dressed one-loop tadpole is then

—1
2

—Tm

+ (6Ay)
™

+ (6AQ)

AT' 3AT' A' T'
64vrm 64m2 1024vrm3

+ +
9A~T~ A3T7 9A3T5

1024vr3m 8192vrm5 8192vr m
+ +0 A', q' (i6)

where the leading piece was given in Eq. (11). The fully dressed one-loop tadpole is

2

dM2 —TM
dp st

The difFerence is

+ (6AQ)

AT3 3AT A2T
+ +

64~m 16+2 10247rm3

63A T3
1024a3m

A T7 63A T 4

9AT 27k T 27AsT 4
647r 2 512vr 3m 4096m3m3

The interpretation of L as a miscounting of graphs will
become apparent after we compute the relevant Feynman
diagrams.

Let us review the approximations implicit in the equa-
tions above. The hard figure-eight tadpole, Eq. (36), was
lost when we dropped the ellipsis in Eq. (1); we will re-
store its O(P ) contribution in Sec. III8. We have (as did
the authors of Refs. [5, 6]) ignored overlapping momenta
in the last diagram of Eq. (13), introducing an error in
Eq. (15) and thus in Eq. (17). With our judicious choice
of p (( 1 we have avoided this error in Eqs. (14) and
(16), but we will see in Sec. III C that overlapping mo-
menta spoil our results, too, at O(p ). None of these
afFect the counting arguments which are the main point
of this section.

1
16

O(n p'1 ),

A2T5= (6&y), O(n'p'~'),

—A3T~= (6&&)

(20)

(21)

(22)

D. The diagraxns

In addition to the leading result Eq. (11), the diagrams
explicitly give

—1
4

3AT2= (6AQ) O(n 'P'p ), (23)

= (6&y) O(n-'p'~0), (19)
—1+ 4 =0 O(nPp), (24)
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—1
16 + 16 + 8 + 8 =0 O(nPp),

—1
8

—9A2T3= (6AQ)
—1ps 0) (26)

+ 8 + 8
—1+ 8

—1+ 16

9A'T'
~) 8192~sos (27)

—1
16 + 16 + 8 + 16

M - P' + P /1 + P'. (29)

Note that the order in P is the number of zero-mode
loops, and the order in o. is the number of nonzero-mode
loops minus one.

A somewhat surprising result is that, except for the
figure-eight daisy graph in Eq. (23), all O(P2) contribu-
tions sum to zero. That all O(P2) contributions from
daisy and superdaisy diagrams cancel for any number of
loops can be seen by schematically writing the solution
to the quadratic gap equation [i.e., ignoring the last term
in Eq. (13)] as

I

be approximated by a quadratic [4].
Comparing the individual diagrams with the expansion

equations (16) and (17) we see that the partially dressed
tadpole gives precisely the correct results. Full dressing,
Eq. (17), leads to 3 erroneous terms, starting at O(P2).
Graphical and algebraic iteration of the gap equations
show that one third of 4 in Eq. (18) arises froin an over-
counting of diagrams in Eqs. (23), (26), and (27) by two,
three, and three, respectively. Full dressing overcounts
the individual superdaisies and subleading daisies by a
common factor, so that the sum still vanishes. However,
this cancellation is no longer possible when trilinear cou-
pllngs are reintroduced.

E. Lollipops

The first term of O(P2) corresponds to the subleading
daisy graph of Eq. (23), which cannot cancel with a su-
perdaisy because superdaisies 6rst occur at three loops.
Since all other terms in M are odd in P, the O(P2) contri-
butions to the effective potential arising &om zero modes
(which at the tadpole level are proportional to M) must
cancel. This remains true only while the trilinear cou-
pling can be ignored. When they are included, M is the
solution of a cubic equation containing both even and
odd powers of P. This result has implications for the
electroweak theory, where gauge boson gap equations can

The other two-thirds of 4 arise from an attempt to
include the lollipop (and its dressed cousins), which is

Subsequent works have explored the electroweak gap equa-
tions in more detail [6, 13], and are in agreement with [4]
up to, but not including, the P-independent magnetic mass
which is g T. The effect of the magnetic mass term on
the potential is O(g ) for P T, and hence subleading in a
consistent O(P ) calculation. However, at smaller values of P
the magnetic mass becomes increasingly important.



4968 C. GLENN BOYD, DAVID E. BRAHM, AND STEPHEN D. H. HSU

also superdaisy order [4, 8, 15]:

AT2 M~= (6AQ) ln
~ ~

+ 1.65
T&)

O(~-'P'~'), (30)

III. TYING UP LOOSE ENDS

Many approximations were made in the previous sec-
tion in order to facilitate an explicit counting of diagrams.
Here we will reexamine them and develop a general O(P )
procedure for calculating VpD+I, .

where p is a renormalization scale, often taken to be T;
and M is the improved znass of Eq. (14). The infrared
behavior is calculable just from the zero modes. Recall
that m, /T ~A, so for any reasonable Higgs boson znass
the log term is near unity.

In the partial dressing method the lollipop is not con-
sidered a "daisy-type" diagram; the result Eq. (30) is just
added to Vpo to give VpD+I .

The full-dressing method sees this diagram as an
improved-propagator main loop attached to a vertex
dressed with an improved-propagator bubble. Alge-
braically, it arises from

Ii(M ) 9 2 csc4I2(M ) Ii(M ). (31)

Symmetry factors of 2 ft. om the main loop and 2 from
the vertex loop combine with a factor of 2 ways to at-
tach the external line to the four-point vertex, giving an
overall factor of 2 instead of the correct 6. Overlapping
momenta and nonzero modes are ignored. Then

3AT2

V,
'

b ——(6AQ)
—7AT2

(33)

which is the leading term of A. Because overlapping
momenta are ignored, the logs of the true calculation
are not reproduced. In principle, using the momentum-
dependent self-energy in the gap equations would result
in inclusion of the logs, but the combinatoric miscounting
would remain.

The leading terzn of VFD —VPD+L (i.e. , the error in
the full-dressing calculation) arises from one extra figure-
eight tadpole [Eq. (23)] and two extra lollipops [2/3 of
Eq. (32) in the approximation that overlapping momenta
are ignored]; these are then subtracted off with

A. Nondaisies

Diagrams besides the "daisy-type" ones and the lol-
lipops are all either higher-order in p or at least O(Ps),
e.g. ,

—1
12

3A273- (6AQ) 1n(T/m) O(n zPsp').

B. Log terms and dressed nonzero-mode loops

By ignoring the ellipsis in Eq. (1) we not only reduced
the number of diagrams to calculate, but also evaded
the question of whether to dress nonzero-mode loops.
In Table II we now restore terms proportional to L =
ln(p /T2) —2czz, where 2czz = 2 in(4vr) —2p@ 3.9076
and p is a renormalization scale. When determining the
order of a diagram we will treat L as order 1.

The diagrams of Eqs. (19)—(28) now have subleading
pieces, and new diagrams (with nonzero-mode loops of
several propagators) appear. We will spare the reader by
mentioning just the two new O(P ) contributions:

-m2L
[subleading] = (6AQ) O(n P p ), (35)

—1
4

—AT2L
(36)

(34)

(The infrared behavior was calculated from zero modes
as for the lollipop. ) There would be little point deriving
a potential accurate to O(P ) unless these diagrams were
also included.

as given in [6] (but apparently neglected in [5]). At each
order in P more terms of V,' b would need to be cal-
culated to correct the full-dressing method, since [as we
saw in Eqs. (8) and (18)] full dressing overcounts an infi-
nite class of diagrams. The Cornwall-3ackiw-Tomboulis
(CJT) technique we will discuss in Sec. IV provides a
systematic, if cumbersome, way to calculate V,

'

These (and higher-order generalizations) can be ac-
counted for by keeping the L term in the one-loop tad-
pole, Eq. (11), and using the improved mass M in the

& expansion. This corresponds to improving both zero-
and nonzero-mode propagators as done in [4]. The full-
dressing method of Refs. [5, 6] improves only zero modes,
and therefore omits the O(P ) graph in Eq. (36).

TABLE II. Rules including log term L = ln(p /T ) —3.9076.

Integral

Nonzero modes

Zero modes

Ip

(
T T m m L

45 12 + 32~~

—Tm
4n'

I2

L
16m2

T
S~m

I3

T
327rm3
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—1
2

9A2 $2T2= (6AQ) (old) +
9A3$2T4

256~2 m4

27As 2Ts
+ + O(A, p ), (37)

81Asp2Ts= 6A old +, , +0 A', p'

(38)
The new two-loop diagram is the "setting sun" tadpole

6AQT
4
™—(6AQ) (true)

9AQT
(6AP) 2 (naive) O(a P p ). (39)

C. Three-point vertices

Let us now examine O(p ) diagrams containing three
three-point vertices and up to 3 loops. When AgP
terms are retained in the gap equation Eq. (13), results
Eqs. (16) and (17) are modified to

The "true" result is &om the double integral done prop-
erly; the "naive" result comes &om ignoring the overlap-
ping momenta and using Table I, assigning two propaga-
tors to each of the integrals. This is the approximation
that has been criticized in [8], and amounts to approxi-
mating a momentum-dependent self-energy II(Q2) by its
zero momentum value II(0). The naive result is 3/2 times
the true result, which as suggested in [8] is a significant
error. This error is exacerbated in the electroweak the-
ory, where logarithms Rom analogous diagrams are lost
if II(0) is used. Here, we are interested in counting argu-
ments which are independent of whether one uses Il(0)
or II(Q2).

Note that partial dressing of the one-loop tadpole
[Eq. (37)] correctly reproduces the "naive" result, while
full dressing [Eq. (38)] does not. More subtly, full dress-
ing counts the setting sun tadpole once as a dressed prop-
agator and twice as a dressed vertex, which happen to
cancel (because overlapping momenta are treated difFer-
ently) and give zero. If II(Q ) were used, the diagrams
would instead add, leading to a miscount of three.

At 3 loops we have

—1
4

—1+ 4

6A'P'T'-—9A'P'T4= (6AQ) 2 4 (true), (6AQ) (naive) O(n P pi),256~2 m4 256m2m4 (40)

—1
4

—1+ 4
—1+ 4

18Asp2Ts 27A Q T= (6AP) s s (true) = (6AQ) (naive) O(n P p ).
512vr m 512vr3m3 (41)

We see again that partial dressing correctly counts the
naive calculations of these graphs. Since the naive results
are again 3/2 times the true results (hard loop dressings
do not afFect momentum flow), we can multiply the last
term in the gap equation (13) by 2/3 to correct for using
II(0) instead of II(Q ). This is just a simple way to im-
plement our explicit calculations, and does not represent
a systematic improvement of the partial dressing method.

We can show that no tadpole graphs with j~ ) 1 con-
tribute at O(P2). Roughly, every additional factor of p
means two more three-point vertices, which form either
a zero-mode loop (contributing P) or a two-propagator
nonzero-mode loop (contributing P ). More precisely,
a graph with Z zero-mode loops, N1 one-propagator
nonzero-mode loops, N2 two-propagator nonzero-mode
loops, f four-point vertices, and t three-point vertices,

obeys

f + 2 (t + 1) = Z + Ni + N2, j —j~ + 1 = Ki —N2,

jp = Z+ 2%2, j~ = (t —1). - (42)

Except for the leading diagram equation (ll), f & Ni,
&om which it follows that

(z+ m, ) & —,'(t+

D. The full result of partial dressing

To summarize, our results, good to O(P ) (and all or-
ders in n and p), are

In the electroweak calculation of [6], the gauge boson analogue of the figure-eight graph equation (23) was subtracted once& and
the gauge boson analogue of the setting sun graph equation (39) was subtracted twice by a term V b, correctly compensating
for the miscounting of these diagrams. However, topologically equivalent diagrams outside the pure gauge sector remain
overcounted (for example, the setting sun vacuum graph consisting of one Higgs boson and two gauge boson propagators).
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rrl 1
~ PD+L + 6 VcgTi: 2 cs Ii (M ) (50)

T2= (6Ay)
TM M2L

8' 32~2

AT2 3ATM
M =m

4 4'
I- =—ln(P, '/T') —3.9076.

2 9A2pzT

3 4vrM

ATz M2+, 1n
~ i

+ 1.65l, (44)32vrz ( Tp )

The CJT procedure with this I'~ ) gives precisely the
same result as the partially dressed tadpole of Eq. (16),
in the limit p (& 1. We have already noted that the lol-
lipop is leading order in p and must be added by hand
to VPD so the same applies to this version of CJT.

Now let us also include the (three-propagator) two-
loop "setting sun" diagram in I'( ). The gap equation is
Eq. (3), and

Here the "true" results of Eq. (39), etc. , have been in-
corporated by the new factor of 2/3 in the gap equation.
Note that despite the resummation of nonzero modes, no
linear term has been generated, since VpD+&(P = 0) = 0.

Trl —1 —1
"CJT2 2

—1
6

IV. OTHER METHODS

A. The CJT technique

Amelino-Camelia and Pi [ll] employ the technique of
Cornwall, Jackiw, and Tomboulis (CJT) [12] to derive an
e6'ective action

gl (2)
rial = I jyl+r&»jy al+~('ijy, al-T I'" I IG)

(45)

where I'( ) is the improved one-loop vacuum graph, I'( )

consists of 2PI graphs with improved propagators and
unimproved vertices, and the improved propagator G
comes from a gap equation

The gap equation now implies the identity

C3[1 2 c4I2 (M ) —csIs (M )] = cs + csc4I2 (M )

(52)

so that (ignoring overlapping momentum)

—1
vCJT2

XrI—~ PD+L.

The partially dressed tadpole (for general p) plus lol-
lipop, Eq. (44), has now been recovered. We again see
in Eq. (51) that full dressing overcounts 1 extra figure-
eight, 2 extra lollipops, and 2 extra setting-suns; the CJT
technique provides a systematic way of calculating V'

When done more carefully, the CJT technique may be
capable of handling overlapping momenta, but we are
unaware of any such analysis.

a- =D +2""-[~ ]

bG
(46) B. Restoring the leep expansion

Roughly translated, Eq. (45) says that any n-propagator
diagram arising &om the fully dressed one-loop vacuum
graph must be subtracted off (n 1) times. —

Suppose we put only the (two-propagator) figure-eight
vacuum graph of Eq. (2) into I'f l (as done in [11]).The
gap equation becomes

M = m —2c4Ii(M )

Arnold and Espinosa [8] suggest another method of re-
summing daisies which restores the loop expansion. They
note that each zero-mode loop costs at least a factor of P,
so to compute to O(P2), one need evaluate only graphs
with two or fewer zero-mode loops. This avoids any
combinatoric complications due to field-dependent mass
shifts. Hard thermal loops on zero-mode propagators
are resummed by shifting the mass with a temperature-
dependent but field. -independent quantity,

and the tadpole equivalent of Eq. (45) is

VCJT1 2 4

so
Cs[l —2c4I2(M )] = cs

2Cs Ii(M ) + 4Csc4 Ii(M )I2(M ).
But the gap equation implies the identity

(47)

(49)

AT
m =m +

4

(54)
so m ~ m only in the bottom row of Table II. A "thermal
counterterm" is introduced to cancel the overcounting of
graphs which occurs when improved. propagators are used
in a loop expansion [15]:

(55)
4

The counterterm ensures that the one-point function re-
sult remains unchanged even if nonzero modes are also
resummed. Then
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T2= (6AQ)
rm m'I,
8' 32vr2

PT2(L —6) Ar' (m'l
ln~ ~+165 +(») 64~ m

which agrees with Eq. (44) to O(P ).
The result for diagram counting is identical to partial dressing. However, because the two loop graphs are being

explicitly evaluated, overlapping momentum are always handled correctly. This is a significant improvement over the
partial dressing method.

Another advantage to this zero-mode loop expansion is that it easily generalizes to higher order in P. One must be
careful, however, if it becomes necessary to shift the mass in a field dependent way. In the Abelian Higgs model, a
cancellation [8] eliminates the need to do this at O(P ). It is not clear to us if this will be true at O(Ps). If not, it is
important to partially dress rather than to simply insert the improved mass into the one-loop vacuum graph.

C. The two-point way

Near the completion of our work, we became aware of another treatment of the electroweak phase transition
by Buchmuller, Fodor, Helbig, and Walliser [13]. These authors solve gap equations for scalar and vector boson
propagators (two-point functions), and integrate (effectively, twice) to get the efFective potential. As they point out,
the result contains all of the O(P) corrections, but only some of the O(P ) corrections. Applied to scalar P theory, we
believe their procedure is equivalent to integrating our gap equation (3) twice Thi.s difFers &om the partial dressing
method, which inserts the solution of the gap equation into a one-loop tadpole, going one iteration further in the
improvement of the e8'ective potential.

By differentiating Eq. (44) and using Eq. (5), we see that our O(P ), partial-dressing improved mass squared is

(Vo' + VPD+L)

(57)

which contrasts sharply with the M of Eq. (3); to be
precise, the two-point method of [13] misses all the two-
loop ].PI diagrams of Eq. (57). In addition, it sufFers the
usual problems with overlapping momenta.

D. The hybrid way

We have seen that partial dressing makes correct
counting easy, but overlapping momenta [in the last term

I

of the gap equation Eq. (13)] are problematic. We now
propose using the gap equation of Eq. (47), which dresses
the propagator with only momentum-independent loops,
and calculating the setting sun vacuum graph (which
gives both the setting sun tadpole and the lollipop) sep-
arately, with only hard thermal loop dressings, as done
by Arnold and Espinosa. Then we get a potential correct
to O(P2) from only two graphs (and one quadratic gap
equation):

I = 1
V~,b = (58)

T2
=(6Ay)

TM M L d 3A2$2T2 (m2)+ — ln
~
+ 1.65

8vr 32vr2 dP 32m 2 (TIJ,)

M =m + AT

4
AT2

m =m+ )

3ATM
4'

and again L = ln(p, /T ) —3.9076. This hybrid method generalizes easily to O(P ) just by adding all three-loop vacuum
graphs with overlapping momenta, and should be just as applicable to more complicated theories such as the standard
model. We expect the computational utility of the hybrid method to be more apparent in such generalizations.
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V. CONCI USION: WHAT'8 HOT AND
WHAT'S NOT

A. Summary of results

We have examined various prescriptions for calculating
O(Pz) contributions to the efFective potential in a scalar

theory, by comparing the first few terms in a loop
expansion to explicit Feynman. graph computations.

We showed that fully dressed tadpoles (or equivalently,
dressed vacuum diagrams) overcount an infinite class of
diagrams, overcount and incorrectly calculate lollipop-
type diagrams, miss significant contributions arising &om
nonzero modes, and suffer corrections (even for p (( 1)
due to overlapping momenta [approximating II(Q )
II(0)]. In order to calculate V' to O(Pz) correctly, one
needs to subtract the overcounted figure-eight tadpole
and lollipop (i.e., include V,' b), compensate for over-
lapping momentum corrections (in the lollipop), restore
the hard-loop dressed setting sun tadpole, and include
the hard figure-eight of Eq. (36).

Partially dressed tadpoles completely miss lollipop-
type diagrams, and suffer overlapping momentum cor-
rections. In order to calculate V' to O(pz) correctly, one
needs to add the lollipop by hand (as done in [4]), and
compensate for momentum corrections in the hard-loop
dressed setting sun tadpole [as seen in Eq. (39)]. The
prescription for scalar P4 theory is given in Eq. (44).

The CJT method, Eq. (45), provides a systeinatic way
of removing the overcounted diagrams of the full dressing
method, but we do not know how to extend it to correctly
calculate overlapping momenta. As it stands now, it is
equivalent to partial dressing.

The hard-loop dressing of Arnold and Espinosa,
Eq. (56), counts diagrams correctly (through the use of
"thermal counterterms" ), and no overlapping momentum
errors are incurred because all such diagrams are calcu-
lated explicitly. This task is somewhat easier if one sticks
to vacuum graphs.

The two-point method of Buchmuller et al. [13] does
not seem to be an attempt at a complete O(P ) calcula-
tion.

Finally, we suggested in Eq. (58) a simple synthesis
of the above procedures. A tadpole is partially dressed
with only momentum-independent loops (both zero and
nonzero modes), and all other diagrams are calculated by
hand at the vacuum level, using hard-loop dressing. At
O(P ) there is only one such diagram, the setting sun.

B. Outlook for the EWPT

Although the analysis presented here is in the context
of scalar P theory, the conclusions are equally valid for

the electroweak phase transition (the main difFerence be-
ing an exacerbation of errors due to new graphs involving
gauge bosons). This allows us to examine recent con8ict-
ing claims about the nature of the EWPT.

In a previous paper [4], the authors, using partial dress-
ing, found O(P ) contributions to the effective potential
which weakened the phase transition. The transition re-
mained first order over the range of validity of our calcu-
lation. We estimated the effects of ignoring overlapping
momentum, suggesting it would be numerically small.
It has since been shown that this O(P2) contribution is
logarithmically enhanced [8, 9], so that the partial dress-
ing method in [4] is incomplete. In particular, setting
sun-type diagrams need to be handled more carefully to
produce an effective potential reliable to O(P ).

Espinosa, Quiros, and Zwirner [6], using full dressing
with a V, b correction, find a weakened EWPT which
becomes second order near the limits of their range of
validity. They also ignore overlapping momenta. In ad-
dition, their V, b neglects some overcounted graphs in
the Higgs-gauge sector, and they ignore O(P2) contribu-
tions arising f'rom nonzero-mode figure-eight graphs. For
these reasons, their results are not reliable to O(P ).

A more strongly first order EWPT has been reported
by Arnold and Espinosa [8]. We have seen that for P
theory, their counting agrees with partial dressing, and
their method handles overlapping momenta correctly, so
we believe this result is reliable. We have verified their
explicit computations only for the scalar P theory. This
method seems easily generalizable to higher order in P,
though any such generalization must take care to count
graphs correctly if diagrams are resummed in a field-
dependent manner. We expect the hybrid method of
Eq. (58) applied to the EWPT would give results sim-
ilar to those of Arnold and Espinosa.
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