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Corrections to the electroweak effective action at finite temperatnre
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We calculate contributions to the finite temperature effective action for the electroweak phase transi-
tion (EWPT) at O(g ), i.e., at second order in (g T/At) and all orders in (g T /JR ). This requires
plasma-mass corrections in the calculation of the effective potential, the inclusion of the "lollipop" dia-
gram, and an estimate of derivative corrections. We find the EWPT remains too weakly first order to
drive baryogenesis. We calculate some one-loop kinetic energy corrections using both functional and di-
agrammatic methods; these may be important for saddle point configurations such as the bounce or
sphaleron.

PACS number(s): 11.15.Ex, 05.70.Fh, 12.15.Ji, 98.80.Cq

I. INTRODUCTION

Recent work [1,2] suggests the baryon asymmetry may
have been generated at the electroweak phase transition
(EWPT). This would require the transition be first order
[3,4], with the resulting Higgs vacuum expectation value
(VEV) large [roughly, P+(Ti, )/Tt, ) 1.4]. Several authors
[1,5], using the one-loop finite temperature eff'ective po-
tential [6—9], have concluded that these requirements
may be met in the standard model (with augmented CP
violation) for a sufficiently light Higgs boson, say Mh (55
CseV (now just below experimental limits [10]).

Since the transition is weakly erst order, infrared
divergences [11]from the resultant nearly massless scalar
and gauge boson modes make higher-loop graphs impor-
tant. The inclusion of plasma masses [12] accounts for
the most important corrections, O(g T /JR ), while all
other higher-loop correction are 0 (g T/Jill, ) [13].
Several authors have examined plasma mass corrections
in the gauge sector [13—16]; while we will refine these cal-
culations, the basic result holds that electric modes
decouple [16], reducing the cubic term in Vby 1/3. For
the Higgs sector, Carrington [15] computed the leading
plasma masses [O(g T ) and O(A, T )], and Brahm and
Hsu [13]worked to higher order in g. Unfortunately, the
vacuum-to-vacuum method we used overcounts some
contributions, as pointed out by the authors of Ref. [16]
and by Boyd; in this paper we reexamine the Higgs sector
using tadpole graphs.
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II. THE ONE-LOOP EFFECTIVE POTENTIAL

The effective action I [P] is the double Legendre trans-
form of the generator of one particle irreducible (1PI)
truncated Green's functions, and is the Legendre trans-
form of 8'[J]:

I [P]=W[J]—fd x J(x)P(x), (2.1)

where P is the expectation value of the field operator P in
the presence of source J. The quantum theory described
by W [J] is equivalent to a classical (tree-level) theory de-
scribed by I [P], which can be expanded in derivatives:

I [P]=fd"x[ —V(P)+ A(B„@) + . . ] .

On the restricted Hilbert space of states localized in P, V
is the usual efFective potential [20,21].

At finite (nonzero) temperature, V can be identified
with the free-energy density in the convex region, and
can be calculated by imposing periodic (antiperiodic)
boundary conditions on bosonic (fermionic) fields in Eu-
clidean time: k4~co„=(2m.nT) and

f [d k/(2ir) ] Tg„f [d k/(2m) ],
where n is an integer (half-integer) for bosons (fermions)
[6—8,22,23]. V calculated to one-loop can be written as
the sum of tree-level, T =0, and finite-T contributions:

One may question the validity of inserting zero-
momentum plasma masses into our diagrams [17];we es-
timate the error involved using the derivative expansion
of the efFective action [18], and also by direct calculation
of a two-point graph. We note derivative terms can be
important for determining critical bubbles or (B+L)-
violating sphaleron solutions [19], and resolving ques-
tions of gauge invariance.
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V= Vo+ V, + Vz. , Vo(P) =—(P —v )
2 22 (2.3)

where X=M&/2U . At any order, a useful approximate
parametrization [5,16] is

2 2 2 3 T 4V =D ( T To—)p ET—p + (2.4)

(p~ 2)2U

where

+g.
m 41n

J

2
4 2 2——m +2mM~2 2 J J J

J

(2.5)

where To is the temperature at which V"(P =0) vanishes.
This parametrization can be used to estimate quantities
such as T„ the temperature at which there are two de-
generate minima, and P+, the position of the nonsym-
metric degenerate minimum.

We add counterterms [5] to Vi to maintain V'(v)=0
and V"(v) =Mh —X(Mh )+X(0) at T =0. The latter rela-
tion arises because V is calculated at vanishing external
momentum while the physical Higgs boson mass is
defined on shell (p =Mh) [24]; it is accounted for by
"running" A, down to zero momentum:

The Higgs and Goldstone masses can make imaginary
contributions to V. For homogeneous field config-
urations, these represent the rate of decay to inhomo-
geneous states [21]. We speculate that for the critical
bubble they are canceled (at least in large part) by deriva-
tive corrections [27]. The critical bubble has only one
negative eigenmode (the "breathing" mode), whose con-
tribution to the imaginary part of the action appears to
be independent of the bubble radius R in the thin-mall
limit, whereas the imaginary parts of V would contribute
-R to the action if uncanceled. It is also very sugges-
tive that the region in which the integrand of Eq. (2.8) is
complex (x ( ~y ~, or k (

~ m~ ) arises from Fourier modes
of P with wavelengths larger than the bubble wall thick-
ness [27,28]. We eliminate these modes by taking the real
part of V& and changing the lower limit of integration in
Eq. (2.8) to Im[y ].

In the tadpole method [4,8,29], V'(P) is calculated
from tadpole graphs using Feynman rules in the shifted
theory /= /+A', dropping linear terms in P' which are
canceled in the Legendre transform relating 8'[J] and
I [P] [Eq. (2.1)] [22,30]. The one-loop diagrams are
shown in Fig. 1(a), giving (with m =m for now)

V' = (A, +b k)P(P7 —v )

b, A, = g [X (Mh ) —X (0)]
J

+g M".

J
(2.6)

The sums are over all particles j with g degrees of free-
dom and mass mj(P); we write MJ =mj(v). The upper
sign is for bosons, the lower for fermions. The standard
model fields in the Landau gauge [1,5,25] are the Higgs
bosons (gi, =l}, the Goldstone bosons (go=3}, the top
quark (g, =12), and the gauge bosons (gII =6,gz=3),
with tree-level masses

gJ dmJ+ . 2

' mJ. ln
32~' dy

gJ T dmJ m

J

where F+(y) =6I'+(y)/(m —y).

2
J —1 +M 2

J

(2.9)

m =A, (3P —v ) m =A, (P —v )

t ~ II'
2

~ z (2.7)

where (7 =g +g' .
In Appendix A we give the running functions f (r)

defined in Eq. (2.6). Note the Goldstone bosons, massless
in Landau gauge for P = v, contribute a logarithmic
infinity to X(0) and thus to b, A, , which exactly cancels the
infinity in the ln[m

& /M& ] term.
The T-dependent part of the e6'ective potential is

[6—8,22,23]

T4
VT=gj. I+(m /T),' 2m-2—
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Series expansions of I+ can be found in Appendix B. The
term arising from gauge boson loops is primarily re-

sponsible for the hump in the potential [1,5,26]. FICi. 1. Loop diagrams for V.
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III. HIGHER-ORDER CORRECTIONS TABLE I. Order of contributions to the potential.

Beyond one loop, the most important diagrams are
daisies and superdaisies, as well as one other, the "lolli-
pop [Fig 1(e)].

Consider the W tadpole [first diagram of Fig. 1(a)],
which contributes —(gT A, ) to V', where A1, -gg.
"Daisies" [6] [Figs. 1(b) and 1(c)] are the diagrams with
loops on the main 8' loop; those in Fig. 1(b) contribute
-(gT Af, )(g T /JR }"(g TIJOU). If we ignore powers of
TIP, daisies are O(g ). "Superdaisies" [Fig. 1(d)] con-
tribute -(gT Af)(g T /Af )"(g TIJtft, ), and are O(g )

corrections. While many other diagrams exist which can-
not be classified as daisies or superdaisies [Figs. 1(e) and
1(f)], only the "lollipop" [Fig. 1(e)] is O(g ). In the re-
gion of interest (g T IJR )=1 and (g TIJOU) (1 [7], so
we make a consistent approximation by considering su-
perdaisy diagrams and the lollipop. In the Higgs sector
the same categorization holds by replacing g ~A, .

We emphasize that the convergence properties of the
loop expansion depend on the choice of P as well as T.
For a given temperature T, the expansion may fail
[(g TIAf, }) 1] at some particular values of P due to un-
controBed IR divergences, while remaining good at other
values of P. A complete O(g") calculation allows us to
explore larger values of Tlg, while a partial calculation
serves as an indicator of the reliability of our expansion.

Progress towards our goal is achieved by modifying the
propagators D, as in Fig. 2. The largest O(g ) correc-
tions are mass renormalizations, and are incorporated by
replacing m in Eq. (2.9) with plasma masses [12]. Work-
ing to O(g ) requires a self-consistent solution of the
mass gap equations. These are not the whole story, how-
ever, since we calculated the plasma masses at vanishing
external momenta. Wave-function renormalization and
the momentum dependence of the plasma masses must
also be included. We plan to address these nonstatic
corrections in a future publication, but make all eA'ective
potential calculations in this paper with self-energies
evaluated at cu„=0 and three-momenta 4 =0.

To put the various corrections in perspective, we esti-
mate their contributions to the effective potential terms
D, E, and A, z-, as well as to a "pseudolinear" term J, valid

Oue loop
Daisy (pT &P )

Daisy (pT2) P )

Superdaisy (pT &P )

Superdaisy (p T )P )

Lollipop
co„&0(pT &P )

co„&0(pT )P )

„=O,k&0

'Suppressed by powers of p.

0

0

0
0

0
0

g
g
0

0
0

g
38

g
38

only when the tree mass is larger than the static plasma
mass. Since daisy and superdaisy contributions are
summed by mass renormalizations [valid at the tadpole
level in the imaginary time formalism, where propagators
go like (k +m ) '], we schematically insert the relevant
mass [see Eqs. (4.1), (4.3)] into Eq. (2.9), expand F(m /T)
using Appendix B, and read o6'the J, D, E, and k~ terms
(see Table I). The terms involving p alone come from
daisies, while those involving o. come from super daisies
(and sub-leading terms in daisies).

The largest correction comes from daisies when
pT ))P, because the introduction of an infrared cutoff
eliminates the cubic term from the one-loop graph. The
plasma mass of the 8' longitudinal mode corresponds to
this case, while the Higgs plasma mass falls between the
two extremes.

All of this is for static self-energies. We can use ex-
pressions, valid in unbroken theories, for the self-energy
of gauge bosons [31] to estimate the contribution of
nonzero frequency co„AO, or nonzero three-momentum
k+0 propagator corrections. A typical correction is a
self-energy term g pc@„T Ik . This gives a contribution

d k TV'-g $T g f co 1+ —k —m
(2ir)' " k

z~ J&d k

2T2y+ 3yT3( T2+y2) —i/2 (3.1)

+~A/ +

) W w w w w \ a w ~

. 0}
IJaawhOas ~

+ -- - +

Q) W~W = lAPIAA/V + WllQW

mhn4v

where coo=(k +m )/(1+g T plk ), and for purposes
of power counting, I" (defined in Appendix C) —T/x.
For the table, we have assumed an expansion in m /T. In
general, the nonstatic part of a tadpole is as important as
the static part. However, in the unbroken theory [31]
with co„=O (only co„=O contributes to E), the coefficient
of k is down by —1/~ relative to the coefficient of T,
suggesting that P+/T, is not significantly altered by non-
static terms. This contrasts with some recent claims [32].

IV. THE GAUGE SECTOR

FICx. 2. Improved propagators.

To first approximation JR =m ii, =gp/2, so without
propagator modification the loop expansion fails for
P (T, which is unacceptable. We solve the gap equation
of Fig. 2(a) to obtain both electric and magnetic plasma
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masses for the IV. It is known [33] that, for /=0, to
leading order the magnetic plasma mass vanishes, so we
write

IIo=p~ T +oog m)), T+O(g T ),
II,'=~,g2Tm +O(g T2),

and solve

m 0
=Qm i) +II(), m, =Qm ~+ II', .

(4.1)

(4.2)

+ 0 ~ ~

The terms neglected [such as the distinction between m;
and mo on the right side of Eq. (4.1), or Higgs-sector con-
tributions] are suppressed by powers of g, A, , or (Af/T);
see Appendix A. This procedure yields

mo= 2) [oog T++(4pog +o~ )T +g2+P], (4.3)

m; = ,' [o,g T—+Q. o 2g 4T2+ g 2/7 . (4.4)

We calculate po, o.o, and o.; to one-loop for the standard
model in Appendix A, but we will only use the result for
slnOp =A, —0:

po= 11/6, pro= —5/(4~), o = I /(6m. ) (4.5)

We will treat the Z as a third Wboson, but implicitly re-
place g —+G.

In Ref. [13] two of the authors used these masses in the
vacuum-to-vacuum W loop, i.e., in Eq. (2.8), and found a
linear term in V. At the tadpole level, this is equivalent
to using both an improved propagator and an improved
three point coupling [Fig. 3(a)]. For example, if m is the
plasma mass to O(g ), the vacuum-to-vacuum IV loop
generates a tadpole with improved Higgs-8'-& coupliny
ig„„dm /dP and improved inverse propagator p +m
This overcounts the "6gure eight" tadpole as shown in
Fig. 3(b), and is the source of the linear term (since the
improved coupling does not vanish at /=0). It is there-
fore important to make P-dependent mass renormaliza-
tions at the tadpole level [16,34,41].

It has been suggested [32,35] that including the
momentum dependence of the plasma masses eliminates
the linear term. While it is true that the momentum
dependence can be an important correction, any
dependent mass renormalization, whether or not it also
depends on momentum, must be made at the tadpole (or

I

FICr. 3. Linear term tadpole, and overcounting.

mass, 3-point, etc.) level to avoid overcounting. We be-
lieve the linear term found by Shaposhnikov [14] arose
from a similar overcounting.

Substituting the improved masses into the propagator
in the W tadpole, counting all three 8 s, yields

—3 2 d kV'= T g I Tr[P(1 IIP)—
(2m. )

(4.6)

where iP„(k—) is the Landau gauge tree-level propaga-
tor, and Il„=diag(lit, II';, ll', , ll,'). This gives

V'=3g $T~ d k 3 — k5
(47)

4 ~ (2 )3 k2 k2(k2k2+I 2g)

T(m; —mo)

4 4m
(4.8)

Insofar as m; —P and mo —T, this term reduces the cubic
term in Vby —,', as expected [16]. In Appendix C we show
there is an additional (relatively unimportant) correction:

3 2

[ln(T /M )+5.21] . (4.9)

We next turn to the lollipop diagram [Fig. 1(e)], with
propagators improved to O(g ). The contribution of
internal W —'s to V' is

where k„=k +(2mnT), k,. =k„+m;, and 5=IIO—H', =m o
—m; . The 6rst term in brackets exactly

reproduces Eq. (2.9) with m ~m;. The second term, up
to renormalizable divergences, is dominated by n =0 and
is approximately

—g M d k d3
V&'= T g J T g J Tr[P(k)[l —IIP(k)] 'P(p)[1 —IIP(p)] 'j .

(2m) (2~) [(p —k„) +m), ]
(4.10)

There is also a contribution due to the Z. Details of the
computation are left to Appendix C, where the expres-
sion is evaluated for static self energies and 5=0, ~.

Finally, we remark on our gauge fixing. In R& renor-
malizable gauges, the gauge —Goldstone-boson mixing
can be eliminated only if one chooses a different gauge for
every value of )t). Although the potential can be modified
to account for this [36], it is unnecessary in the case of

Landau gauge, where the mixing term vanishes due to
B„A"=0.

V. THE HIGGS SECTOR

It is easy to include the effects of gauge bosons and fer-
mion loops on the Higgs propagator, since the effective
potential is the generating function of 1PI graphs at zero
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external momentum. If VG is the potential calculated
from gauge bosons and fermions only, then the shifted
Higgs boson mass mI, = VG and the Goldstone boson
mass mz= VG/P. We could solve the gap equation (to
include superdaisies) as we did for the gauge sector, giv-
ing

mq(P, T)= VG(P, T)+ F+ +F+kT
4 + T

(10 7 V)

20--

15--

10.-

1—loop (dotdash, T1=0.406364),
Daisy (thin, T1=0.41443),
Super-Daisy (solid, T1=0.414089),

Estimate (dashed, T1=0 ~ 429505),
Mh= 60. , Mt = 110.

/
/

/
/

/
/

/
/

5--

mr (P, T)= VG (P, T) /P 0.05 0.1 0.15 0.2

/
(Phi)0.25

+ At T
12 +

A,'P T'
3(mz —mz)

mp

T
+5I'+

m&

m&

T

(5.1)

(10 7 V)

8-

1—loop (dotdash, T1=0.4405),
Daisy (thin, T1=0.441908),
Super-Daisy (solid, T1=0.441729),
& Estimate (dashed, T1=0.452472),

Mh= 75 ' , Mt = 150.
I
(
l
t
I

I
I
I
I

I
I

However, except for very heavy Higgs bosons these are
well approximated by

2-

XT2
mr(P, T)= VG(P, T)/P+

2
(5.2) 0.05 0.1 0.15

/
'(Phi)0.2

which corresponds to Fig. 2(b). These are the masses m
we use in Eq. (2.9). Thus, we have summed contributions
to the Higgs boson mass due to gauge boson superdaisies,
but only Higgs daisies.

Carrington I15], working to lowest order in g, essen-
tially found Eq. (5.2) but with VG and VG/P replaced by
their values at the origin. Thus at all interesting temper-
atures the scalar masses appeared real. Our calculation
reintroduces imaginary masses; see the discussion follow-
ing Eq. (2.8). Some bumpiness results in our plots where
m& and m& pass through zero.

VI. IMPROVING THE STANDARD MODEL
EFFECTIVE POTENTIAL

(10"7 V)

2-

0.02 0.04 0.06 0.08 0.1

I
I
I

I
I

I
I
I

I

I
I

I

'1
g

i(

/
(Phi)0.12 0.14

1-loop (dotdash, T1=0.552532),
Daisy (thin, T1=0.542803),
Super —Daisy (solid, T1=0.54276),
& Estimate (dashed, T1=0.555211),

Mh= 100. , Mt = 150.

We erst calculate the "one-loop" effective potential.
Then we omit the Higgs sector and improve the gauge
sector as described in Eq. (4.7) and the subsequent para-
graph to get VG. The Higgs sector is then added back in
using Eq. (5.2) in Eq. (2.9), adding the lollipop from Ap-
pendix C, and integrating to get the "superdaisy" poten-
tial, as in Fig. 2(c).

For comparison we also show a "daisy" potential,
which diff'ers only in setting cro=cr; =0 in Eq. (4.3) and
Eq. (4.4) and omitting the lollipop. A good "estimate" is
obtained by calculating the one-loop potential with
go=4, gz=2, and mz =m~=0.

Figure 4 shows these potentials for various values of
the Higgs and top masses (in GeV), including one set
matching Carrington's plots [15]. Each potential is
shown at its critical temperature T& (i.e., when two vacua

(10~7 V)

1—loop (dotdash, T1=0 ~ 661079),
Daisy (thin, T1=0.633003),
Super-Daisy (solid, T1=0.633092),
& Estimate (dashed, T1=0.647071),

Mh= 125. , Mt = 150.

2--

1.5--

0.5--

0.02 0.04 0.06

I
I
I
I
l
I
I
I
I
I
I

I
I
I
I

I

'~ I
i

t
)~

,(
r y /

(Phi)0.08 0.1

FIG. 4. One-loop, daisy, superdaisy and estimate potentials.
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Phi+/T1
~

~

Phi+/Tl vs. Higgs Mass
M (top) = 120 (solid), 150 (dash), 180 (dotdash)

C = Carrington with M(top) =110
D = Dine et al. with M(top) =120

0+(Ti )

T]
0+(Tb)

Tb 3+Q 1+8eb

0 6i

0.5-

Ti Tb
~b— (6.1)

0.4-

0.3-

0.2-

0.'1-

70 80

FIG. 5. P+/Ti vs Mb.

M (Higgs)90 100 110 120

and took eb from their Fig. 6. For a light Higgs boson,
where 0 (g ) corrections are small (see Fig. 4), all the re-
sults agree closely. As the Higgs mass increases, higher-
order corrections appear to lower P+(T, )/T, . We note
the top mass is nearly irrelevant for heavier Higgs bo-
sons. Since P+( T, )/T, « 1.4 for all experimentally-
allowed Higgs and top masses, we see the EWPT remains
too weakly first order to drive baryogenesis.

VII. SADDI K POINTS AND THE EFFECTIVE ACTION

are degenerate). V, P, and T are given in units where
U =1.

For P »2T the plasma mass corrections are small, and
the one-loop potential is adequate. The perturbative ex-
pansion is still out of control for g T/m; & 4' (where the
numerical factor is something of a guess), or roughly

P &0.06T (marked by an arrow on the plots), so even the
"superdaisy" potential is not to be trusted far to the left
of the arrow. This is about a factor of 2 closer to the ori-
gin than the corresponding cutoff for the "daisy" poten-
tial, p &0.10T [15]. Indeed we see that for Mb & 75 GeV
the "daisy" and "superdaisy" potentials differ
significantly.

We plot P+(T, )/T, [which closely approximates
P+( Tb )/Tb] vs Mb for several values of M, in Fig. S. For
comparison we show values from both Carrington [15],
Fig. 14 (with M, =110 GeV), and Dine et a/. , Fig. 5
(M, = 120 GeV); in the latter case we converted their re-
sults at Tb (which they call T, for "tunneling" ) using the
quartic potential relation

While the effective potential suftices to determine the
order of the transition, the full action I [see Eq. (2.2)] is
needed to determine the dynamical properties of the sys-
tern, such as the rates for bubble nucleation or sphaleron
Auctuations. For extremal configurations such as critical
bubbles, J =0 in Eq. (2.1) and I [P]=W[0] is gauge in-
variant [37], so derivative terms must cancel out the
gauge dependence of V.

We can use Chan's derivative expansion [18] to esti-
mate the size of derivative corrections. Since the finite
temperature Careen's functions G(x,y) satisfy the same
equations as the zero temperature ones, but with periodic
boundary conditions, we may formally express G (x,y), in
the Landau gauge, as

G(x,y) = T g f e'~ [—8„'+U(x)] 'e '~'", (7.1)
~ p i 2

(2m )

where U(x) is the mass of the field in question, including
P-independent plasma corrections. Following Chan's
technique, we write G(x, x) as an explicit expansion in
even powers of derivatives:

G(x,x)=T+f, k +U x+id k 2

(2m )

d k 2 1 a=Tg f [k +U(x)] 'g —g [8 8 U(x)] l
(2n ) q! '& 'q, Bk 'ak,

Jq

[p + U(x)] (7.2)

The contribution to the spatial part of the kinetic ener-
gy arises from the m =1,q =2 and m =2,q =1 terms in
the above sum. Taking only the dominant n =0 part of
the frequency sum gives

X,sH —
—,
' f5U(x)G(x, x)

T
U 3n( U')~(B P)z

384m

2T
(a, y)' (7.3)

64~ (gy/2)
where U =mj (P), and 8; is a spatial derivative. We have

a a+a a a a a a a a a a+a ~

FIG. 6. Momentum-dependent Higgs self-energy at 0 (g ).

inserted values for the tree-level 8'mass in the second ex-
pression, corresponding to the p term of the penultimate
diagram in Fig. 2(b).

The form is as expected by naive power counting of a
one-loop graph with two external legs, both carrying
nonzero momentum. Since this O(g) contribution is nu-
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merically small, one might think derivative corrections
are unimportant. That this may not be the case is indi-
cated by the calculation of the 0 (g ) graph in Fig. 6.

This graph arises in the derivative expansion from a
I

shifting of G due to mixing which we previously ig-
nored. Its contribution (setting s„=O) to the real part of
the Higgs self-energy, with real external four-momentum
p7 is
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in which
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and p is the magnitude of the external three-momentum.
The integral has been computed previously [31],to 0 ( T ). After a minor algebraic correction, it gives

L(m;pa, p)= 8( —p )sgn( —m )+ ln +yz„&„—1+—ln
z z
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where M~ is our subtraction point, and sgn(0)=0. The
analytic behavior of this diagram [note the strange T/p
behavior of L(m;p0, p)] is sensitive to the scheme one
uses to continue from imaginary to real external momen-
tum. Our continuation prescription is consistent with
previous work [31,38], but there are other methods [39].
The pa=0, p&0 behavior, which characterizes saddle
point solutions, may be altered if our prescription turns
out to be incorrect.

VIII. CONCLUSION

Much recent work on the EWPT [13—16,32] has con-
centrated on improving the calculation of V. We now be-
lieve there is no linear term, and that the propagator im-
provement performed in Ref. [15] and estimated in Ref.
[16] is essentially correct for the gauge sector to 0 (g ).
The main result of these corrections is to screen the lon-
gitudinal mode, decreasing the cubic term E by a factor
of —,

' and making the transition more weakly first order.
In this paper we have included higher-order correc-

tions not previously considered, specifically those from
subleading parts of daisy graphs, gauge superdaisies,
gauge superdaisies in the Higgs sector, and the "lollipop"
diagram. We estimated the effect on the effective poten-
tial of using momentum-dependent self-energies, and
computed the 0 (g ) derivative corrections to the

effective action. The results of our effective potentia1
computations are similar to those of [15,16] for a light
Higgs (Mz 75 GeV), but show an even further weaken-
ing of the transition for a heavier Higgs (75
GeV &Mh (125 GeV). Above 125 GeV our expansion
becomes less reliable.

Evans [32] has criticized all recent calculations of the
electroweak effective potential on the grounds that propa-
gator resummations have been performed at zero external
momentum, rather than on shell. We find that although
this approximation does lead to errors (as pointed out in
our earlier paper [13]), they are unlikely to lead to any
qualitative changes in the behavior of the potential.

Derivative corrections to the effective action may be
important, however. For example, if the diagram in Fig.
6 is indicative, they could significantly alter bounce solu-
tions when typical spatial frequencies are less than about
T/8. Estimates of bubble wall thicknesses are often tens
of T ' [16,40]. Similar corrections to the gauge boson
effective action could distort the sphaleron solution.

To summarize, a computation of V in any finite-loop
approximation is subject to uncontrolled infrared correc-
tions for P(T. When plasma masses are included in
both the gauge and Higgs sectors, the improved potential
is reliable for P) gT/10. We have computed V for the
standard model, and compared the results to previous es-
timates. If current estimates of sphaleron energies are re-
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liable, the standard model (even with augmented CI'
violation) is still inadequate to generate the baryon asym-
metry.

Note added in proof. Subsequent work [41] has ana-
lyzed the standard model effective potential including
momentum-dependent plasma masses, by explicitly calcu-
lating all the relevant diagrams with overlapping momen-
ta. The logarithmic corrections which arise appear to be
significant.
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APPENDIX A: STANDARD MODEL f, 's a.nd II's

The functions f~(r) defined in Eq. (2.6) are (to one-
loop)

fi, (1)= 18(~/&3 —2),
82v4f (r)= „[ln(r)+inst —2],X ~4
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Note the imaginary part of fr (representing the ampli-
tude for a Higgs boson to decay to Goldstone bosons in
the ungauged theory) is exactly canceled by a term in

fw z. For large r, the leading results for the top and the
gauge bosons [corresponding to taking X(Mt, )

—X(0)
=MhX'(0)] are

ft(r) = 10r /3 fw(r) =fz(r) = 10r /3 (A2)

The electric and magnetic plasma masses for the 8'—
from Fig. 2(a) are
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The three numbers in brackets in the first term of Ho reAect contributions from the gauge sector, the Higgs sector,
and 12 fermionic isospin doublets, respectively.

The analogous formulas for the Z are
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We do not distinguish m, , mo, and m~ in the II's; the resulting error in the gap equations Eq. (4.1) is O(g T ). To
further simplify things, we take s~~0 (with g constant), introducing an error 0 (e)=0 (gs~); and we set mz =mz =0,
since these masses ( V" and V'/P, respectively) vanish near the phase transition. Then the 8'—and Z self-energies
both become

II = g — g m n'=g m
2T2 5 2T 2T

4

which gives Eq. (4.5).

APPENDIX 8: NUMERICAL APPROXIMATIONS FQR Ig
The following approximations [5,6,43,44] to I+ [see Eq. {2.8) and the following paragraph] are accurate to 10
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where K and I'are Bessel functions, & is the Struve function, g is the Riemann zeta function, [x] is the greatest integer
less than or equal to x, and infinite sums are terminated when the desired accuracy is achieved.

We note that the P in/ term which come from I+(gP/T) and those which come from the T =0 potential cancel.

We may rewrite Eq. (4.7) a

APPENDIX C: GAUGE TADPOLE AND LOLLIPOP

3g P d k 2 kn
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and evaluate the sum with the usual contour integral trick. The second term then becomes
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where 6=Qm; —45k, k+ =Qk +m; /2+6/2, and F„=[e"~ —1]
After renormalization, Eq. (C2) is well approximated by

m. m.
l

16m M~
1n

35 T2 m.—0 39 + ln +5 21 + F + (m; —mo) .
64~2 ~~2 12 T 4m'

(C3)



CORRECTIONS TO THE ELECTROWEAK EFFECTIVE ACTION. . . 4961

Note that although the k+ can be complex, the final answer is real.
The lollipop, Eq. (4.10), has been evaluated elsewhere in unitary gauge [45] with unimproved propagators. In Landau

gauge, it is somewhat more complicated. For static self-energies,
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where p =p +m- and

k p +p k —k p 6 k +p +5z4zz4[p(p)]zz
in which k&=k„k, +k 5.

The frequency sums can be evaluated by using the contour trick: For f (p)=g(p;k)l[(p —k) —m ], po=2~inT,
and g (p, k) nonsingular at the explicit pole, the contribution from the pole is

d'p d4p
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277 3 2' 3

For ko=2m. imT(i. e., an internal momentum), E +k =F . This formula should be applied to each pole in Eq. (C4).po+ko po

Temperature-dependent infinities are canceled by graphs analogous to the lollipop, but with insertions of zero-
temperature counterterms. The finite part of Eq. (4.10) is, for 5=0,
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where
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and a =k +m;, b =p +m . A numerical approximation to Eq. (C10) is
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We used 5= ~ in all plots in this paper.
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