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Dimensional expansion for the Ising limit of quantum field theory
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A recently proposed technique, called dimensional expansion, uses the space-time dimension D as an
expansion parameter to extract nonperturbative results in quantum field theory. Here we apply
dimensional-expansion methods to examine the Ising limit of a self-interacting scalar field theory. We
compute the first few coefficients in the dimensional expansion of y2„,the renormalized 2n-point Green s
function at zero momentum, for n =2, 3, 4, and 5. Because the exact results for y2„areknown at D= 1

we can compare the predictions of the dimensional expansion at this value of D. We find typical accura-
cies of less than 5%. The radius of convergence of the dimensional expansion for y2„appears to be
2n/(n —1). As a function of the space-time dimension D, y2„appears to rise monotonically with in-

creasing D and we conjecture that it becomes infinite at D =2n /(n —1). We presume that for values of
D greater than this critical value y2„vanishes identically because the corresponding P2" scalar quantum
field theory is free for D )2n /(n —1).

PACS number(s): 11.10.Kk

In a recent Letter [1] we proposed a new technique
called dimensional expansion, which can be used to ob-
tain nonperturbative results in quantum field theory. The
dimensional series uses the space-time dimension D as an
expansion parameter. The first term in such an expan-
sion is easy to obtain because quantum field theory can be
solved in closed form in zero-dimensional space-time. An
advantage of dimensional expansions is that some of the
nontrivial aspects of the interaction already appear at
D =0. (Traditional perturbative methods yield only
noninteractive results in leading order. ) The obvious
question is how one can obtain the coefficients of higher
powers of D. A detailed explanation of how to do so is
given in a subsequent paper [2].

Here we use the dimensional expansion to compute the
first four y2„,the renormalized 2n-point Green's func-
tions at zero external momentum, for a self-interacting
scalar quantum field theory in the Ising limit.
Specifically, we calculate y4 to fourth order in powers of
D, y6 to fifth order in powers of D, y8 to sixth order in
powers of D, and y, o to seventh order in powers of D:

yg= —,', [1+(1.180+0.001)D+(0.620+0.001)D~

+ (0. 18+0.02)D3

+(0.03+0.02)D + ],
y6 =

—,', [1+(2.20+0.02)D +(2.30+0.03)D

+ ( l. 50+0.03 )D 3+(0.55+0.04)D

+(0.12+0 04)D + . . ].,
y8= —,', [1+(3.0+0.1)D+(4.5+0.1)D

+(4.2+0. 1)D +(2.6+0. 1)D

+(1.2+0.2)D +(0.6+0.2)D6+ . ]

yio= —,', [1+(4.11+0.02)D+(8.0+0. 1)D

+(10.0+0.3)D +(8.0+0.3)D

+ (4.5+0.3 )D + ( 1.8+0.3 )D

+(0.7+0.4)D ] .

To obtain these dimensional expansions we use the
graphical methods described in Ref. [2]. These graphical
methods rely on lattice strong-coupling techniques that
were developed and explained in an earlier series of pa-
pers [3—6]. For the Lagrangian

X=—,'[BP(x)] + —,'m P(x) + —,'gP(x) (2)

the Ising limit [7,8] is defined as the limit in which the
unrenormalized coupling constant g tends to infinity
while the renormalized mass M is held fixed. The Ising
limit is conveniently obtained by choosing m ~ —g. In
the limit g~ ~ the theory asymptotically approaches a
two-state system. The Green's functions of this system
are universal in the sense that they are independent of the
power of P in the self-interaction term in (2); gP

" gives
the same results as gP for all k ~ 2.

Lattice strong-coupling methods are especially well
suited to obtain the dimensional expansion of Green's
functions in quantum field theory because the lattice in-
tegral for each graph is a polynomial in powers of D.
This property leads to an efficient organization of the
graphs that contribute to each order in the D series. We
achieve a high order in the graphical expansion by elim-
inating all graphs except those that contribute to the
coefficients in the dimensional expansion under con-
sideration. We employ an intermediate renormalization
scheme to calculate the renormalized mass M and dimen-
sionless renorrnalized 2n-point scattering amplitudes y2„
at zero momentum. We perform a mass renormalization
of the scattering amplitudes by eliminating the bare mass
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m in y2„in favor of the renormalized mass M. We then
use Fade extrapolation methods to derive a sequence of
approximants for each coefBcient in the dimensional ex-
pansions in (1) for each of the scattering amplitudes yz„
in the continuum limit. We believe that each Pade se-
quence gives an accurate approximation to the true
coe%cient in the dimensional expansion for y2„because
these dimensional series are in good numerical agreement
with known exact results for yz„[3].The series in (1) are

exact at D=O. At D=1 the exact results are y4= —,',
y6 =

—,', ys =
—,'„y&o

=
—,'„and the results for (1) are

y ~
=0.250+0.003 (1% error), y 6

=0.26+0.01 (4% error),
y~=0. 31+0.01 (4% error), and y&o=0. 42+0.02 (5% er-
ror).

We obtain the graphical rules for the lattice strong-
coupling expansion by observing that in the limit of large
g the kinetic term in the Lagrangian (2) can be viewed as
a small perturbation. Therefore, the generating function

Z[J]=JVf2)iI)(x)exp —f d x [
i [Bp(x)] + —,'m P(x) + ,'gP(x)—J(x)—P(x)I (3)

for the quantum field theory associated with the Lagrang-
ian (2) can be rewritten as

Z[J]=exp —f d x d y 2) (x —y)D D ~ —1

2 5J(x) 5J(y)

The factorization in (4) of the partition function leads
to the strong-coupling lattice expansion. By introducing
a D-dimensional hypercubic lattice with lattice spacing a
we rewrite (5) as

where

XZ,[J],

'(x —y)=B 5 (x —y)

(4) Zo[J]=JV+ dt exp ——a m t ag—t—
QO 2

+aDJ, ~ (6)

and Next, we expand in powers of J; and, to obtain the Ising
limit, we set

Zo[J]=A'f 2)/exp —f d x —m P(x)~+ —gP(x)~D 1 2
m 2= —aga2 D, (7)

—J(x )iI)(x ) . (5) where a is a dimensionless parameter considered to be
small in the strong-coupling limit:

Zo[J]=~+ g (a J;) "f dt t" ' exp — ag(t 2cta—t)—

ln the limit g ~ 0o the integral in (8) is asymptotic to a"
multiplied by a constant independent of n which we ab-
sorb into Ã. Thus, we write Zo[J] in (8) as

OO

Zo[J]=JVexp a g g J;"Vzn, (9)
i n=1

where the vertices are V2=a a, V4= —2a a, v62 4+D 2

=16a + D 3 P8= —272a + D Pip=7936a' + Da

and so on. The propagator on the lattice can be written
in vector notation as

=a [(1)—2D(0)] .

This notation was introduced in Ref. [4] where this
discrete form of the propagator was used to evaluate lat-
tice integrals. The lattice strong-coupling expansion is

organized by the number of free propagators 2) ' (in con-
trast with weak-coupling expansions where the number of
vertices and not the number of lines determines the or-
der).

To compute y2„ it is necessary to calculate the one-
particle-irreducible 2n-point functions A2„for n = 1, 2, 3,
4, and 5, in the strong-coupHng expansion and to find
their Fourier transforms A2„in momentum space at zero
external momentum. We must also compute

Z '=1+ A
&(p ) p2 Q

z Az(p )
&(p') i, '=0

to obtain the wave-function renormalization constant
defined by



48 DIMENSIONAL EXPANSION FOR THE ISING LIMIT OF. . . 4921

We define the scattering amplitudes y2„asthe dimension
less renormalized one-particle-irreducible vertices at zero
external momentum:

A
—10+ 10.

A A A
—11+ 10'

A2A —1110! 10!
i0 i0 2 3|7t 8 4 2 2(5()2 6 2

—r& (p 0 p)MD(n —1)—2n
2n 2n (10)

A A2A-12
2 X 3!5! 2( 3!)24!

where M is the renormalized mass defined as
M =r2 (0,0). There are simple rules giving 1 z„in terms
of A2, m '~ n, which are explained in Ref. [4]:

r, =A, ',
I 4= —A4A2

I 6= —A6A2 +, , A4A22X3!3!
81 8!r = —w~-8+

8 8 2 3tg~ 4 6 2 2X2t3t3t 4 2

10! A4A 13+ 1o. A4A 13

2(2') (3')' (3')

We use the wave-function renormalization constant Z to
renormalize the one-particle-irreducible vertices in an in-
termediate renormalization scheme according to

r,'„(o,. . . , o)=z"r,„(o,. . . , o) .

In order to mass renormalize the scattering amplitudes
y2„,we eliminate the bare mass m, which is related to e
through (7), in favor of the renormalized mass M. To
that end, we simply invert the relation obtained for the
renormalized mass,

M a =a ' 2D+(2—D ——')a+(4D "D+—'"—)a—+(32D —132D + ""D—"'")a

+ ( —2048D —4096D —1024D —800D +480D —64)a +
to expand a in terms ofy =—a M

(12)

a=y 2Dy +—(4D +2D ——', )y8+( —8D 12D +4D—)y +(16D +48D 4D 14D—+ —", )—y

+( —32D —160D —'~D + 140D —52D)y6

+(64D +480D5+560D4 —720D8+20D2+272D ——'" )y7+

We then substitute (13) for a in every rz„to obtain

y4= —,', [1+4Dy+(4D 10D)y +16—Dy +( —80D +30D)y +(256D +104D 192D)y—
+( 704D 1736D —+2508D——656D)y

+(1792D +10432D 11 232D— 3872D +499—2D)y + ]

y6= —,', [1+6Dy+(12D —6D)y +(8D —12D 20D)y +(48D +—48D)y +( —96D —816D2+528D)y'

+ (192D +4640D —2736D —560D)y

+( —384D —18 432D 10 800D +46 512D——23040D)y + ]

y8= —,', [1+8Dy+(24D2 —8D)y +(32D —32D2)y +(16D —32D8 —36D —18D)y +(896Dz —448D)y

+(—4192D —920D +2816D)y +(13184D +52064D —92800D +38400D)y + . ],
yi0= —,

' [1+10Dy+(40D 10D)y +(80D ——60D )y +(80D —120D +30D)y

+(32D —80D —300D +108D)y +(1280D +5040D 4240D)y-
+( —2560D —64080D +76 880D —23040D)y + . . ] .

(13)

(14)

(15)

(16)

(17)

The strong-coupling expansions in (14)—(17) were ob-
tained by treating the dimensionless parameter
a= —a I /g as small in the limit where the bare
coupling g tends to infinity. The relation in (12) explicitly
carries the assumption of smallness over to the parameter

y. This justifies the reversion of (12) into (13) and the sub-
sequent reexpansion of the scattering amplitudes y2„ in
powers of y. Up to this point we have taken the lattice
spacing a to be held fixed. We expect that in the continu-
um limit a ~0 our expressions for y2„become the corre-
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sponding quantities o ep
' ' ' f th continuum theory. The con-

tinuum limit is su e ecabtl b use as a~O the parameter y
~ ~

taken to be small actually becomes infinite.
Hence, subsequent terms in this expansion or e
ing amplitudes yz„ in (14)—(17) are increasingly singular
as a series in y in the limit where a ~

We use Pade extrapolation techniques to extract in or-
series like those in (14)—(17),mation from perturbation series

where the perturbative parameter tends
' '

y.nds to infinity. e
Pade extrapolation method employed here uses as input a
peerturbation series of the form

f (y) =y "(co+ciy+ciy + ) r&0), (18)

where we assume that f (ac ) is finite. We first take the
&h root of both sides of (18) and divide by y to obtain

1/r
=(new power series in y) . (19)

We then take the Xth power of the right side of (19) for
=1 2 3 . . . reexpand and form the (O, N)-Pade ap-&

~ ~ ~ ~

f ~in theproximan . yt 8 extracting the coefficient o y

FIG. 1. Pade extrapolation for thehe first four coefficients,
b; i = , . . . , 4, in eb; i =, . . . , ,

'
th dimensiona1 expansion of

12

value of eac; is e exh b; th xtrapolation of the sequence to
, andIn Eq. (1) we hst t e resu) 1' t th esults of this procedure for y4, y6, ys, an

y &o.

FIG. 2. Plot of y4, y6 ys, and y io in Eqin E . (1) as functions of D.
For each n, y~„rises rnonotonically and y&„+&

'
gFor eac n, y&„' '

is rowing faster
n for increasing D. We believe that the radius of conver-

genceence of the D series for each y~„in q. is

~ ~

denominator of the (O, N)-Pade approximant and raising
uence o a e ex-

tra olants for f (ao ) [9]. We apply this method to the
scattering amplitudes yz„ in
(O, N)-Pade approximant for all yz„ in po D. Fin owers of D. For

h btain a sequence in N of (O, N)-Pade approxi-
mants for each coefficient in the D series o yz„. n ig.

(0 N)-Pade extrapolants for the first fourI ' t in the dimensional expansion of y& as unc-coe cien s in
Pade deter-f 1/N. We indicate the errors in the Pade e

mination of the coefficients in (1). We truncat e the di-
h after that coefficientmensional expansions for each yz„ater a c

for which the estimated error of the following coefficient
becomes significant compared to its absolute size.

coefficients and therefore eac yz„'h is a monotonically ris-
f D. Each of these functions is plotted in

Fig. 2. For each n, yz„+zis growing faster t an yz„or
D. We believe that the radius of convergenceincreasing . e e

of the D series for yz„is likely to be D = n n-
space-time dimension or wfor which the coupling constant g
of a g t eoryh becomes dimensionless and t e t eory

e we ex ect that for valuesbecomes renormalizable. Since we e p

there is a singularity (possibly a natural boundary) in the
complex-D plane at D =2n l(n —1 .
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