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Light-front +CD. III. Coupling constant renormalization
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In this third part in a series of papers on light-front QCD, we continue the study of regularization
and renormalization in old-fashioned perturbative light-front formalism. We calculate lowest order
radiative corrections to the quark-gluon coupling constant in light-front QCD. An attempt is made
to understand the origin of antiscreening in a formulation of QCD with only physical degrees of
freedom in terms of contributions from distinct Fock space sectors. The relevance of our results to
bound state calculations in QCD with a truncated Fock space are discussed.

PACS uumber(s): 11.10.Ef, 11.10.Gh, 12.38.Bx

I. INTRODUCTION

The old fashioned idea [1] of applying Tamm-Dancoff
methods to light-front Hamiltonians in field theory has
received some revival recently [2,3]. Most of the recent
work has been devoted to the study of two-dimensional
models. The ultimate objective of this enterprise is
to study bound states in QCD. However, methods to
solve light-front QCD Hamiltonian (QCD Hamiltonian
in light-&ont coordinates in light-front gauge A+ = 0)
are still in their infancy. One major obstacle to progress
comes from in&ared and ultraviolet problems that plague
light-&ont QCD.

In a series of papers [4—6] we have begun a systematic
study of light-front QCD. We are particularly interested
in Fock space methods involving few degrees of freedom.
A straightforward diagonalization of the canonical light-
front Hamiltonian in a few-body Fock space will lead to
severe infrared and ultraviolet divergences. These diver-
gences are strongly regulator dependent and an under-
standing of this regulator dependence is essential before
one can extract sensible numbers out of any numerical
calculations. Note that the renormalization problem is
much more intricate in QCD compared to QED, espe-
cially since the elementary degrees of freedom that ap-
pear in the Hamiltonian do not appear as physical states.

In Ref. [6] (hereafter referred to as paper II) we started
an extensive study of regularization and renormalization
in old-fashioned light-front QCD perturbation theory.
Since we are interested in both perturbative and non-
perturbative aspects, we have studied the implications of
a variety of cutofFs. We have evaluated the corrections
to quark mass and wave function renormalizations using
difFerent regularization schemes. We have also studied
the counterterms required for gluon mass and wave func-
tion renormalizations. En the present work we study the
problem of renormalization of the coupling constant. A
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brief summary of the results has been presented in Ref.
[7].

Our study of coupling constant renormalization is
partly motivated by the investigation of the manifesta-
tion of asymptotic freedom in difFerent gauges. The study
of asymptotic freedom in non-Abelian gauge theory has
a long history [8]. The celebrated first calculations [9,10]
were done in covariant gauges. In covariant gauges, loop
contributions from Faddeev-Popov ghosts are a necessary
ingredient to ensure the correct coefFicient which deter-
mines the approach to asymptoti. c freedom. In Coulomb
gauge, ghosts are not involved in the lowest order and
asymptotic freedom arises from a diagram involving both
transverse and Coulomb gluons [ll—14]. In axial gauge
A = 0 (which has some similarities to light-front gauge
A+ = 0), Faddeev-Popov ghosts are decoupled to all or-
ders but the gauge propagator contains severe —and

v n
singularities where q is the gauge boson momen-(t n)'

turn and g is the spacelike vector characterizing the axial
gauge. With the prescription for the double pole which is
defined to be obtained by the differentiation of the prin-
cipal value prescription for the single pole, the correct
value is obtained for the ultraviolet divergent part of the
gluon wave function renormalization constant [12,15]. As
noted by Frenkel and Taylor [12] the crucial fact is that
the gluon spectral function, which is formally positive, re-
ceives a negative contribution because of the

( ), gauge(~~)'
singularity in A = 0 gauge, and this in turn causes an-
tiscree ning.

Previous calculations in light-front gauge can be classi-
fied into four difFerent categories. The earliest calculation
by Thorn [16] was done for the pure Yang-Mills theory in
the context of four-dimensional loop integrals with non-
covariant regularization (k integration first, and sepa-
rate cutoffs for A,

+ and k }. Thorn studied the four-
gluon vertex for the kinematic choice of zero external
transverse momenta and arrived at the well-known re-
sult for the running coupling constant. As a part of
developing calculational techniques to study the evolu-
tion of hadronic structure functions, Curci, Furmanski,
and Petronzio [17] studied radiative corrections to the
quark-gluon vertex in 4+ = 0 gauge. These authors con-
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sidered massless quarks and employed dimensional reg-
ularization as the ultraviolet regulator and a principal
value prescription for &+ gauge singularity. They also
utilized an "in6nite-momentum parametrization" of the
rnomenta [18]. As a consequence of the principal value
prescription, various renormalization "constants" depend
on longitudinal momenta. In addition, various renormal-
ization constants contain products of ultraviolet regula-
tor and the principal value regulator (the so-called mix-
ing problem). This mixing is an inevitable consequence
of Hamiltonian field theory with only physical degrees of
&eedom as emphasized by Thorn who erst observed this
effect. In the calculation of Curci et a/. , however, when
all the renormalization constants are collected to com-
pute the radiative correction to the coupling constant,
the unwanted products all cancel and one recovers the
well-known running coupling constant. There exist also
calculations which utilize four-dimensional integrals and
choose the Mandelstam-Leibbrandt prescription [19,20]
for the gauge singularity and dimensional regularization
for the ultraviolet divergence. In this context there have
been formulations where (a) the unphysical gauge degrees
of &eedom are explicitly eliminated in the Lagrangian us-
ing the constraint equations (for the case of pure Yang-
Mills theory see [21,22]) and (b) the unphysical gauge
degrees of freedom are kept [23]. In the former case, be-
cause of gauge fixing, one can no longer verify Slavnov-
Taylor identities but the loop calculations are very simple
and renormalizability is quite transparent. In the latter
case, since the residual gauge &eedom is kept, one can
explicitly verify Slavnov-Taylor identities even though
loop calculations are very complicated and the discus-
sion of renormalizability is quite intricate. For an ex-
cellent discussion of the two formalisms for Yang-Mills
theory see Ref. [22]. The Mandelstam-Leibbrandt (ML)
prescription, which is essential for the success of these
approaches, makes Wick rotation and Euclidean power
counting possible for four-dimensional loop integrals in
Feynman perturbation theory. The ML prescription as
such cannot be applied to Hamiltonian perturbation the-
ory [24]. In old-fashioned light-front perturbation the-
ory, one has to deal with three-dimensional noncovariant
integrals, and furthermore the light-&ont power count-
ing is very different from equal-time power counting [25].
Hence there is no a priori reason to abandon the principal
value prescription in old-fashioned light-front perturba-
tion theory. One should study in detail the criteria for
renormalizability in the Hamiltonian &amework. As a
starting point one should investigate the cancellation of
gauge singularities in physically relevant quantities. The
study of the renormalization of the quark-gluon coupling
in QCD in lowest order offers this opportunity.

A further motivation to investigate the running of the
coupling constant in light-front gauge in old-fashioned
perturbation theory arises &om the study of high-energy
inclusive and exclusive reactions in QCD. As is well
known (see, for example, Refs. [27,17,28]), in order to
have a successful partonic interpretation of these physical
processes it is essential to work in gauges where the gluon
has only physical degrees of freedom. Furthermore, as
Drell, Levy, and Yan [29] and Bjorken, Kogut, and Soper

[30] have argued, old-fashioned perturbation theory and
the triviality of vacuum are essential ingredients for a
probabilistic interpretation of parton densities. In order
to develop a perturbative approach to exclusive reactions
in QCD, as Brodsky and Lepage [31] have emphasized,
the formalism of old-fashioned perturbation theory and
light-&ont quantization are very convenient tools. Thus
a study of the origin of antiscreening in light-front QCD
utilizing old.-fashioned perturbation theory in the Hamil-
tonian context (which employs only physical degrees of
freedom) becomes extremely relevant for the systematic
calculation of physical processes in high-energy QCD.

A further motivation to study renormalization of the
coupling constant in light-front QCD comes from our ul-
timate objective of studying bound states in QCD. The
relativistic bound-state equations require regularization
and renormalization. The renormalization procedure re-
quires us to take the cutoff to be much larger than the
mass scales of the bound states. In theories that lack
asymptotic freedom, larger cutoffs imply small renormal-
ized couplings and weak efFective couplings in the low-
momentum region. This results in almost nonrelativistic
bound states or even no bound states (triviality prob-
lem). An example of this phenomenon is provided in Ref.
[32]. A theory that possesses asymptotic freedom may
help us to perform renormalization in a more meaningful
manner by allowing us to choose cutofFs to be much larger
than bound-state mass scales. Furthermore, in such a
theory the effective coupling grows at small momenta ir-
respective of the value of the renormalized coupling, and
the possibility arises for building strongly bound states ir-
respective of even weak renormalized coupling. However,
just the knowledge that the theory possesses asymptotic
freedom is no guarantee that renormalization may be car-
ried out in a simple manner in a bound-state calculation.
This is because in practice, we have to truncate the Fock
space in order to make the numerical problem tractable
on a computer. Since Feynman diagrams hide multipar-
ticle intermediate states behind covariant propagators,
what minimal Fock space states are to be included in or-
der to overcome the triviality problem is obscure in the
context of covariant calculations. This issue is naturally
resolved in the old-fashioned Hamiltonian perturbation
theory calculations.

The plan of this paper is as follows. In Sec. II we
discuss the structure of the quark-gluon vertex for differ-
ent kinematical choices and specify some characteristic
features of the calculation. Radiative corrections to the
vertex for zero external gluon momentum are discussed in
Sec. III. The corrections to helicity-fIip matrix elements
are discussed in Sec. IV. Section V contains the discus-
sion, conclusions, and outlook. The explicit expressions
for various diagrams contributing to coupling constant
renormalization using the rules we developed in paper II
are presented in the Appendix.

II. QUAR. K-GLUON VERTEX'
IN LICHT-FRONT +CD

The canonical light-front Hamiltonian contains several
difFerent three-point and four-point interactions and a



LICJHT-FRONT QCD. III. COUPLINCJ CONSTANT. . . 4905

q, o

pi, &i p2, A2

FIG. 1. The lowest order quark-gluon vertex in +CD.

priori there is no reason to assume that the strengths
of the various interactions will renormalize in the same

manner. In principle one should study the evolution of
the strengths of all the interactions that appear in the
Hamiltonian. In the present paper we do not undertake
this ambitious program. Instead we study one particular
quark-gluon vertex, the one arising &om the three-point
interaction. %e investigate radiative corrections to this
vertex for different choices of external momenta.

The lowest order three-point quark-gluon interaction
matrix element (Fig. 1) is given by

2g= —gTp 2
o* —o* +im

~

—
~

o'
p2 pl kpz

(2 1)

In the above equation and in the rest of the paper the
factor &+, where k+ is any longitudinal momentum has
the principal value prescription, i.e. , &

-+ 2(& . + &, ),
denoted

~&~
in paper II. If we set q(q+, q+) = 0, the ma-

trix element is (since pi'+ = p2'+ = p"+)

M pi ——2 g Tpf bg, g, e".
p+ (2.2)

From the structure of this vertex we expect the one-loop
corrections to be of the form

pi = 2~g Tp p+ (2 3)

If we set all external transverse momenta to zero, only
the helicity-Hip part of the matrix element survives:

(I
Mpz ——imgTg

~ +
—

+ ~ yq o'yg, e'*.
ES i+ p2+)

(2 4)

Since mass m and g appear in this vertex multiplicatively,
we expect the vertex correction to be of the form

(I 11
b~p2 ——i mbg + gbm Tp

&pi pz )
(2.5)

Thus we expect in addition to the coupling constant
renormalization a "vertex mass" correction also occur-
ring due to radiative corrections. In the following we
study the radiative corrections to both the matrix ele-
ments Mpq and Mp2. We will see that the contributions
of various time-ordered diagrams depend crucially on the
kinematical choice of external momenta. The calcula-
tions simplify drastically for the choice of zero external
gluon momentum. However, it is important to note that
this kinematic choice cannot be made a priori for the
contribution arising from the gluon wave function renor-

malization constant. Naively, this contribution seems
to vanish automatically for zero longitudinal momentum
(q+) of the external gluon since it is the upper limit of
loop longitudinal momentum. However, the integrand
has a + factor with the consequence that the result af-

ter the integration for nonzero q+ is finite in the limit
q+ —+ 0. The study of radiative corrections to Mp2 is
especially interesting following the observation [25] that
in light-front quantization in 8+1 dimensions, chirality is
the same a8 helicity. Mp2 is the only helicity-Hip interac-
tion in the entire canonical light-front QCD Hamiltonian.
The coupling constant and the quark mass enter multi-
plicatively in this vertex. Thus a separate identification
of the "vertex mass counterterm" is necessary in order
to isolate the radiative corrections to the coupling con-
stant. The difference between the vertex mass and the
kinetic mass (the mass that appears in the &ee part of
the Hamiltonian) has been emphasized and discussed in
detail previously by Burkardt and Langnau [26] in the
context of renormalization of Yukawa model and QED.
Note that the mass counterterm (which preserves parti-
cle number) is quadratic in the quark mass whereas the
"vertex mass counterterm" (which changes particle num-
ber) is linear in the quark mass.

The one-loop vertex correction diagrams are given in
Figs. 2—7. The corresponding expressions using the rules
of old-fashioned perturbation theory are collected in the
Appendix. Details of the rules developed in a two-
component formalism are given in paper II. The com-
putations using these are simpler compared to those us-
ing a four-component formalism [31]. For the loop inte-
grals we have chosen the simplest regularization scheme,
namely, we use the principal value prescription for k+ and
a low and high cutofF for k (p ( A, ( A) with p much
greater than all particle masses. To avoid singularities
we have kept the initial quark state off its mass shell and
Pz denotes the off-mass shell light-&ont energy. Note
that Figs. 2 and 3 receive contributions &om both the
mass correction and the wave function renormalization
constant correction. In these cases we first extract the
divergences by expanding the energy denominators. To
be specific, for example, for Fig. 1(a) we find the product
of energy denominators:
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P =pq

A(P )ED P —pi P —k —(py —k) P ——pi

~

A(P =p. )+(P -p. )
BA(P )

P —-
p —, (

' ' OP

In this expansion, the first term corresponds to the
mass correction and is subtracted by a mass counterterm.
It is the second term which has ultraviolet logarithmic
divergences that contributes to the renormalization of the
coupling constant. In the rest of the paper (except the
Appendix) for Figs. 2 and 3 we explicitly give only the
expression for the second term in the above expansion.

Note that we have used the identities
g' /3 p+) A

M2( )
=

~

——21n
~
Cyln —.

4Ã (2 6 ) p
(3.2)

where M, n = 2—7 are represented by Figs. 2—7 and the
corresponding expressions are given in the Appendix.

Figure 2 receives a contribution from fermion wave
function renormalization. The contribution &om Fig.
2(a) is

(&T 4-
T.(r T')

T'T T'

if.~.T'T

where Cy = ~~/ and C~ = 1V for SU(1V').

(2.7)

(2.8)

(2.9)

(2.10)

Here we erst encounter the infamous mixing of ultraviolet
and infrared divergences. In the Hamiltonian context
there is nothing unnatural about this result since in old-
fashioned perturbation theory with a trivial vacuum, we
expect the second-order contribution to wave function
renormalization to be negative, as explained in paper II.
The contribution from Fig. 2(b) is

III. RADIATIVE CORRECTIONS TO A4og

g2 ('3 p+ ) A
M2(g) =

2 ~

——21n
47r2 (2 6 ) p,

(3.3)

If we set external gluon momentum q(q+, qz) = 0
the quark-gluon vertex is reduced to Eq. (2.2). In ++-
ordered perturbation theory, the one-loop vertex correc-
tion is given by

8MO, —(M2 + Ms + M4 + M5 + M6 + M7)MOl, (3.1)

The sum of contributions &om Figs. 2(a) and 2(b) is

M2 ——(Mg( ) + M2(b) j
g' f'3 p+5 A

2 ~

——21n
~
Cf ln —.

27r (2 6 ) p
(3.4)

Next we calculate the contributions ft. om the gluon
wave function renormalization. We emphasize that for
Fig. 3 one has to be very careful for the choice of q+ = 0.

(a)

(a)

(b)
FIG. 2. Contribution to quark-gluon vertex from fermion

+rave function renormalization.
FIG. 3. Contribution to quark-gluon vertex from gluon

+rave function renormalization.
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Pl
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FIG. 4. Contribution to quark-gluon vertex from difFerent
time-ordering diagrams all of which correspond to a single
Feynman diagram for vertex correction involving quark-gluon
vertex.

FIG. 6. Contribution to quark-gluon vertex involving in-
stantaneous fermion interaction that does not change particle
number.

g2 A
M3( )

= NfTf ln —,
8vr2 3 p

g2 11 A—C~ln —.
8m2 3 p

M3(b) ——

(3.5)

(3.6)

Thus,

With the principal value prescription, &+ ——1 at A:+ ~ 0,

which implies that the integral + J' dk+ involved in

Fig. 3 is not simply zero. Here we set q+ = 0 after
the integration. Obviously, Pigs. 3(a) and 3(b) are the
wave function renormalization corrections to the emitted
gluon, similar to the quark wave function renormalization
in Fig. 2. It is easy to Gnd that

M3 —M3( ) + M3(b)

g /ll 4
~

—C~ — Nfl ~

. —
8~2 ( 3 3 (3.7)

The contribution from the intermediate fermion-
antifermion pair is &ee of gauge singularities and is nega-
tive as expected. The contribution &om the intermediate
two-gluon state is expected to be affected by the in&a-
red singularity and negative as anticipated &om second
order perturbation theory [see Eq. (4.6)j. However, the
in&ared logarithmic divergences in the gluon wave func-
tion renormalization constant are removed due to q+ = 0.

Next consider contributions from Fig. 4:

Pl Pl Pl

P2

(c) (a)

P2 P2

FIG. 5. Contribution to quark-gluon vertex from diferent
time-ordering diagrams all of which correspond to a single
Feynman diagram for vertex correction involving three-gluon
vertex.

(b)
FIG. 7. Contribution to quark-gluon vertex involving an

instantaneous gluon.
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, ( d'r. 1 " dk+ f p+ k+)
M4( )

= 2 g
I

——C~ + Cy
I

—
I

2 „—2+
2 22vr sIr, 2

o p+ ( k+ p+)
p+~

I

——2ln
I I

——C~+ C~
I

ln —,
4vr2 (2 e) ( 2 ) p

M4(b) M4(c) M4(d) M4(e

(3.8)

(3.9)

Here M4(d) and M4( ) have zero contribution to the vertex correction because these two diagrams vanish for q+ = 0
due to the positivity of light-&ont longitudinal momentum. Thus,

g' /3 p+l ( 1
M4 ——,

I

——»n
I I

——C~ + c'f
I
» —.

47r q2 r ) ( 2 ) v

Next we consider contributions &om Fig. 5:

(3»)

, f —il d2K 1 " dk+ ( p+
Ms(i= —2g

I
IC~ —

I 2„&2i 22 '"'
o p+

g' (3 p+) A

8~ (2 e ) p

k+1—2+
p+ )

(3»)

(3.12)

M5(, )
——0, (3.13)

s —1 (Xq o.*Xp, )e'*im d K ~ dk+
M M =2 CT

2 p+ 2 27t K p p

T C~ ln-
= —M5( )Mpg . (3.14)

So

(3.i5)

Ms = (M5(~) + M5(bl + M5(c) + M5{gi + M5(e) )
g' t'3 p+l A

I

——21n
I
C~ln —.

8vr2 (2 e ) p

To evaluate the contributions to the coupling constant
we have to multiply M2 and M3 by 2 in order to take into
account the proper correction due to the renormalization
of initial and final states [33,34] [also see Eq. (3.33) in
paper II]. Thus adding the contributions vre have

The contribution from Fig. 6 is

(gt„ io.*yp, ) &**m
( )~p~= 2~ +~ Cf '

+p+

2(2vr) s r.2 p+2

Tp Cf ln-
—M6(b) Mpy. (3.16)

SMog ——(2M2+ 2Ms+ M4+ Ms + Ms+ M7)Mop

g /11 2 ) A
~fz~ Iln

8m2 i6 3 ) p
(3.i9)

Note that all mixed divergences cancel. The correction
to the coupling constant is given by

g Ill 2 ) A
g~ = g(l + bg) = g 1+

I

—C~ — 1VfTf
I

ln ——
8vr2 q 6 3 ) p

(3.2O)

Thus the total contribution from Figs. 6(a) and 6(b) is We compute the P function by

M6 ——0. (3.17) (3.2i)
For Fig. 7, we make the kinematical choice after the
evaluation of the diagram. The contributions &om Fig.
7 are

gs f 11 4
I

—c„—
16~2 q3 3 )

(3.22)

M7(~) —M7(b} —0 (3.i8) which is the well-known result to the one-loop order.
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IV RADIATIVE CORRECTIONS TO Mop The combined contribution from Fig. 2 is

In this section we present the results for the lowest or-
der radiative corrections to the strength of the helicity-
flip matrix element in light-&ont QCD using the old-
fashioned perturbation theory rules given in paper II. We
present the results for each time-ordered. diagram sepa-
rately in order to exhibit the contribution from distinct
intermediate Fock-space states.

The one-loop vertex correction is given by

g
2 p+p+ A

Mq ——(—) Cf 2 ln —3 ln —.
4Vr2 Q2 p

(4 4)

Next we calculate the contributions from the gluon
wave function renormalization constant. The time-
ordered diagrams are given in Figs. 3(a) and 3(b).
The contributions Rom fermion-antifermion intermediate
states are given by

hM p2 —— (M2 + Ms + M4 + Ms + Ms + Mp j M pg.

(4.1)

First we give the contributions from fermion wave func-
tion renormalization. The time-ordered diagrams are
given in Figs. 2(a) and 2(b). The corresponding ex-
pressions are given in the Appendix. The contribution
from Fig. 2(a) is

g d K
Ms() =(—) 2&y Ty

+ (k+)'+ (q+ —k+)'
g+ o (g+)'

g A=Nf Tf (—) ln —.
6m2 p

(4.5)

p+~ 3 A
M2( )

= (—) Cp 21n —— ln —.
4Vr2 2 p

The contribution &om Fig. 2(b) is

g
2 ~~+ 3 A

M ( )
= (—) C~ 21n —— ln —.

4Vr2 E 2 p

(4.2)

(4.3)

We have assumed that there are Nf 8avors of fermions.
Note that this contribution is the same as that for the
kinematical choice q+ = 0.

The contributions from two-gluon intermediate states
are given by

g2 11 q+ A= —CA ——4 ln ln —.
2 4' 2 3 p

(4.6)

The two-gluon intermediate state contribution is negative, as one expects from old-fashioned perturbation theory,
solely due to the presence of mixing term. We reiterate that this a natural feature of Hamiltonian calculations with
only physical degrees of freedom.

Next ere consider contributions from Fig. 4. The contribution from Fig. 4(a) is

( g2 d2v. "'
+ ( ]. k+ ].

M4( )
= 4

i

——C~ + Cy i

dk+
i2 2 2~ s r.2

o (p2+ —k+ 2p+p+ 2p+)
( g' ( e 1 1p~+l A= —

]

--C~+ C,
~2 ) 2~' ( p,+ 2 4p,+) I

The contribution &om Fig. 4(b) is

M4(b)
——0.

The contribution &om Fig. 4(c) is

M4(C) = 0.

The contribution &om Fig. 4(d) is

(4.7)

(4.S)

(4.9)

2 q+ 2(2~)s ~2
p P+, —k+ iP+, —k+ 2P+ 2P+P+)

= (—)-'(——.'C~+Cf),
I

—1
' —-+

2vr' q p+ 2 2p+, ) )tj,
' (4.1O)
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The contribution from Fig. 4(e) is

p+p+ g2 d2~ q+

M4(.)
= (——,'C~+ Cg) (—)

g2 A= (—)(—-'C~+ Cf)2 O'K p
Adding the various contributions we have

dk+
(» —k+)'

(4.11)

g2 p+p+
M4( ) + M4(~) + M4(, )

= (—zC~ + Cf) 21n —3+ 2 ln —.

Next we consider contributions from Fig. 5. The contribution from Fig. 5(a) js

(4.12)

g
Ms() =(—) —C~

2 f 1

P2 2 2k+ r' 1 2 )

2(q+)' 2 i q~+ q2+ ~

where qj
——pg —k and q2

——p2 —k,

q' &4q+~~+ ~+~2+ 6~2+ u~+ 6~+, ~+, 1+'l= (—) —C~ —2 ln + ln + ln —12 — ln —.
2 Svr2 ( p+~e p+, ) u

(4.13)

Here we first encounter a linear infrared divergence in the one-loop calculation of the vertex in addition to the mixing
term. The contribution from Fig. 5(b) is

1 P2 g
Ms(b) = (—) —C~

2 g+ 2 2K

k+) (
&(+ —k+) + k+) „+, (,+ k+) &k++ (, k+))

2 / 1 2 ) 2 & 1 2
k+ ( (q+ —k+) k+ ) (q+ —k+) ( k+ (q+ —k+) )

1 2(q+) 2 2 F (p+ —k+)2
@+pe+ k+(q+ —k+) k+(q+ —k+) ( p+, @2+ )

(
—) —C~

~

2 —61n —6 ln +3+
~

ln —.
8Vr2 q p+X~ pj E Py )

(4.14)

M5(, )
——0.

The contribution from Fig. 5(d) is

(4.15)

Note the presence of linear infrared divergence in this
contribution. The contribution from Fig. 5(c) is

(4»)

M, . =C ' "' "" 'dk+k+('
2(2m) q+p2+ e2 0 (q+ + k+)2

=C~
~ + ln —2 — ~ln —.

Sa q p+ q+ q+ j

Adding various contributions we have

p1
x dk+0+

D

u' &4q+J»
8'(,

(q++ k+)
(q+ —k+) 2

3p+ q+
ln

Pl P2

p+)—2+ ' ~ln —.
q+) s

(4 16)

M5( ) + M5(b) + M5(g) + M5( )

q+&= (—) —C~, i
1 —2ln ', ' —41n

2 8~' ( p

It is reassuring to see that the linear in&ared divergences
cancel between Figs. 5(a), 5(b), and 5(d). The contribu-
tion &om Fig. 5(e) is The contribution from Fig. 6(a) is

(4.18)
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p+ g de
Ms(~) = (—) 2 Cf

2 27/ K p

p+ g2 A=(—) Cgln —.
q+ 8m2 p

The contribution from Fig. 6(b) is

+is+
~1 ~l

(4.19)

g2 A
M6 —— Cf ln —.

8vr2 p

The contributions &om Fig. 7 are

M7( )
——0,

(4.21)

(4.22)

+ 2
P1 g A

q+ 8vr2 p
The combined contribution from Fig. 6 is

(4.20)

p+ g2 ] k+
M6(b) —2 r x 3 Cf dk + +q+ 2(2m)3 K p P~ P~

M7(b)
——0. (4.23)

In order to evaluate the contributions to the coupling
constant we have to multiply M2 and M3 by a factor of

[33,34] [also see Eq. (3.33) in paper II]. Thus adding
the contributions, we have

~~02 — 2M2 + 2M3 + M4 ™5™6™7~02
4 ) g' A

=imgTp~
~ +

—
+ ~

y„o. e~y„,
~

—C~ — Kgb ~— , in-
(@~ p2+) ' ' (3 3 ) 16vr2 p,

g A
+imgTp

~ +
—

+ ~ yq o. e yp, 2Cy+ Cy 2 in —.
&n& pz ) - 8m2 p

(4.24)

3g2 A
bm = Cf ln —.

87r2 p
(4.25)

This is exactly the mass correction expected in covariant
theory for the mass counterterm. It is in fact surpris-
ing to see this factor emerging as the vertex counterterm
in the light-&ont calculation since it is impossible to re-
produce the covariant answer for the mass counterterm
using the cutoffs we have employed in this paper (see
paper II for details). This aspect of regularization and
renormalization seems worthy of further investigation in
the future.

V. DISCUSSION) CONCLUSIONS, AND
OUTLOOK

In this work we continue our study of light-front @CD
in the &amework of old-fashioned perturbation theory,
which was initiated in paper II. We study radiative cor-
rections to the quark-gluon coupling constant. We are
motivated by (a) the investigation of the origin of anti-
screening in non-Abelian gauge theory in diferent
gauges, especially the origin of antiscreening in a Hamil-
tonian formulation with only physical degrees of &eedom,
(b) the study of high energy inclusive and exclusive reac-
tions in @CD and the associated issues of regularization

Recalling our discussion in Sec. II, we identify the first
term in the above expression as the coupling constant
correction and the second term as the "vertex mass" cor-
rection. Comparison with Eq. (3.23) in Sec. III shows
that we get the same P function. An additional diver-
gence however appears in the vertex as we anticipated in
Sec. II. The "vertex mass" correction is

and renormalization in old-fashioned light-front pertur-
bation theory in light-front gauge A+ = 0, and (c) the
identification of distinct intermediate Fock-space state
contributions to the origin of antiscreening and its impli-
cations for bound-state calculations in non-Abelian gauge
theory within a truncated Fock-space.

In paper II we studied quark and gluon mass and
wave function renormalizations for diferent regulariza-
tion schemes. In this work we have restricted ourselves to
the simplest choice in a Hamiltonian calculation, namely,
we use a principal value prescription for k+ and a low and
high cutoff for k (p & k & A).

The most obvious feature of our regularization
scheme is the appearance of the product of divergences
[in(e) ln(A)]. As we have discussed in paper II, in a
Hamiltonian calculation with only physical degrees of
freedom and a trivial vacuum, second-order perturbation
theory indicates that the quark and gluon wave function
renormalization constants should be less than one. It
is the presence of a product of divergences that ensures
this in the present calculation. As a result we cannot
extract the running coupling constant simply from the
gluon self-energy. This appears to be a major complaint
against the principal value prescription. It is worthwhile
to remember that in axial gauge in a covariant calculation
it is the particular regularization of the

(& ), gauge sin-(s )2
gularity that enables one to extract the running coupling
constant from the gluon self-energy [12]. In the present
case, although individual contributions exhibit the prod-
uct of singularities, as we have shown explicitly, they are
canceled in an order g calculation of the renormalization
of the quark-gluon coupling constant.

Another feature of our regularization is the momen-
tum dependence of the wave function renormalization
"constants. " This has been noticed before in various
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contests [16,17,35]. The unusual momentum dependence
seems to be a general feature of light-&ont gauge and the
principal value prescription. In axial gauge the renormal-
ization factors are also not pure numbers (they depend
on q . g), but their ultraviolet divergent parts are inde-
pendent of q g [12,36].

A source of diKculty in the present calculations is the
in&ared problem caused by massless gluons. This prob-
lem appears severely in diagrams involving the three-
gluon coupling. Note that in the present formulation
in&ared problems appear in both small k+ and small
k . We avoid the small k infrared problem by choos-
ing the lower cutofF on transverse momentum, p, to be
much larger than all the masses in the problem. Since
we are mainly interested in the ultraviolet divergences
in the present work, we have ignored pure ln(e) diver-
gences. In this context we direct the reader's attention to
the detailed discussion of wave function renormalization
presented in paper II. We have shown that it is possible
to get 1n(e), ln(A), and ln(e) ln(A) divergences in fermion
wave function renormalization, depending on the regular-
ization scheme. It is worthwhile to remember that even in
covariant gauge calculations [37] of the vertex correction
in QCD with dimensional regularization, pure infrared
divergences occur which do not get canceled.

In the present work we have addressed only the ultra-
violet renormalization of the masses, wave functions, and.
quark-gluon vertex in light-front QCD. To order g2, we
have already generated a gluon mass counterterm (see
paper II) which is absent in the canonical Hamiltonian.
The implications of this for the light-front infrared diver-
gence problem and corresponding renormalization in the
next order has to be studied prior to the application of
the renormalized Hamiltonian to bound-state problems.
Work in this direction is in progress. In the future one
would also like to study coupling constant renormaliza-
tion in other regularization schemes and/or perturbation
theory schemes in the Hamiltonian context. Note that
our calculation had to utilize two cutoffs in transverse
momentum (the lower cutoff itself has to be very much
greater than particle masses) in order to reproduce well-
known results. This feature follows naturally in a renor-
malization group approach which is also a very promis-
ing &amework to perform nonperturbative bound-state
calculations in reliable approximation schemes. Some of
the recent attempts in this direction are Refs. [38—40]. A
further avenue of research is the extraction of mass singu-
larities in the context of scale evolution of structure func-
tions in old-fashioned perturbation theory. The study of
composite Geld renormalization, which is essential for the
investigation of high-energy QCD, is also an unexplored
territory in old-fashioned. perturbation theory.

Lastly we mention the most important problem in
light-&out QCD, namely, the calculation of hadronic
bound states. Previous studies of bound states in gauge
theories in the light-&ont formulation in 3+1 dimensions
have truncated the Pock space to two fermions and two
fermions plus one boson. After this truncation one ig-
nores self-energy and retardation efFects to avoid the in-
&ared singularity problem in the bound-state calculation.
Such a scheme is appropriate for the calculation of weakly

coupled bound states such as in QED. In QCD we expect
strongly coupled bound states and because of asymptotic
freedom it is possible to have such states even with weak
renormalized coupling. Thus bound-state calculations
should incorporate the efFect of asymptotic freed. om in
order to ensure meaningful results. This is a nontrivial
problem with the truncation of states which is inevitable
in any practical calculation. Our calculation of radia-
tive corrections to the quark-gluon coupling constant in
old-fashioned light-front perturbation theory in QCD has
clearly exhibited the contributions &om distinct interme-
diate Fock-space sectors. This calculation will undoubt-
edly aid in the program toward the construction of an
efFective Hamiltonian for hadronic bound states.
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APPENDIX.

In this appendix we give the explicit expressions for
the diagrams in Figs. 2—7 using the rules developed in
paper II for old-fashioned light-front QCD perturbation
theory. In writing the above expressions by using the
rules, we have used the completeness of the normalized
spinors and polarization vectors for the internal quark
and gluon lines: P& yp y&

——I and P e'*a~ = h;~. As
already noted, P& denotes the ofF-mass shell light-front
energy of the initial quark state. We denote the measure
b ds[y] dk d k

Figures 2(a) and 2(b) contribute to quark wave func-
tion renormalization:
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M2( )
= d [k] 0(p —k )g ( g—)Tg

I'* (pg, p2, q)
8(k+)

x (—g)T, I' (p —k, p, —k)(—g)T, r' (p„p —k, k)g '*

1
X

[P, —k ——(pg —k)
—](P, —p, )

' (A1)

M2(b) —— d'[k], 0(p+ —k+)~t(-g)T,', r'„(p, —k, p„-k)

x( g)T,—', r', 0(p, p. —k, k)(-g)T;.r;0(» p q)~e**

1
X

[Pi —k —(pi —k) ] [Pi —q —k —(p2 —k) ]
(A2)

Figures 3(a) and 3(b) contribute to gluon wave function renormalization via intermediate fermion-antifermion and
two-gluon states, respectively:

Mg( )
——

0 q+
d'[k] 8(q+ —k+)0(k+)yt( —g)T, I",,(k, k —q, q)

x ( g)T,',,r—'„(k —q, k, —q)( —g)T~.r'„(pl p2 q)ge
1

X
(Pi —k —p2 ) [Pi —k —(q —k)

1
M3(b) ———

2
ds[k]

0(k+) 0(q+ k+) 0(q+) t( ~ )fabcrilnx( k k )

x(—ig) f 'sl' '(—q, q —k, k)( g)Tp I', —(p, p, q)ye**

1
X

(P, —k ——p2 ) [P, —k ——(q —k)
——p2 ]

(A4)

Figures 4(a)—4(e) involve various vertex corrections involving quark-gluon vertex:

M4( )
—— d'[k] 0(p+ —k+) &t(-g)r,',r'„(k,», k —p. )p+-k+

x(—g)T, I'* (k+ q, k, q)( g)T, I' (p—„k+q, p —k)ye'*

1
X

[P, —(k + q)
——(p2 —k)

—][P, —q
——k ——(p2 —k)

—
]

' (A5)

e k+
M() —— d k 0 + —A:+ — T I' —k, , —k

2(T T~)~ a*0' 1

p2 + q+ —k+ P, —q —k ——(p2 —k)—

d'[k]
("')

e(p+ —k+)&tg'(
" i

+ +

(A6)

x( g)T r~ (p, p ——k, k)ye**
Pi —k ——(pi —k —' (A7)

d'[k] 8(q+ —k+)yt( —g)Tp~ I'0(k —q, pg, k —pi)
P1 — +

x( g)T, I"o(k, k —q—, q)( —g)T, I'0(p„k, pi —k)y&"
1

X —(» —k) ]IP —p. —(k) —(q —k) ]' (A8)

M4(, )
—— d A: 0 k+ 0 p+ —A;+ p~ —g T,P' k, P q, q

2 b b 1 i* 1
x4g Tp T, X&

(p~ —k+) Pj —k ——(q —k) ——p2
(Ag)
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Figures 5(a)—5(e) represent vertex corrections involving the three-gluon vertex:

d [k]e(k ), , ~ (-g)T~,r„(k,p„k- p, )
s + 8(px —k+) 8(p2 k+) t s

x(—ig) f ' I""(q,k —p„p, —k)(—g)T' I' (pg, k, pg —k)ye"
1

X
[P, —k- —(pg —k)-][P, —q- —(p2 —k)- —k-]' (A1O)

q+ —k+

x(—g)Tp I'0(p, —k, p2, q —k)(—g)T r'0(pg, pg —k, k)ye"
1

X
[P, —k —(pg —k)

—
][P~ —k ——(q —k) ——p2 ]

'

Ms(, )
= d [k] y (—ig)f 'r*~s(q, —k, k —q)

s 8(k+) 8(q+ —k+) t .s. * i

q+ —k+

, (T T')p o'o&
Xg

p~ —k+ P~ —k —(q —k) ——p2
)

(A11)

(A12)

M5(a) —— d k 0&1 k+ y —2ig TP~ ' + + 2(q+ —k+ 2

x(—g)T;.r;,(p„p, —k, k)&."
Pi —k —pg —k)

Ms(, )
= d [k] 8(p2 —k )y (—g)Tp r'o(p2 —k, p2, —k)

8(k+)

2 Tb hue i+q+ —k+ 1

(q+ + k+)' P; —q- —k —(» —k)
-—

Figures 6(a) and 6(b) contribute to the "vertex mass" renormalization:

(A13)

(A14)

g3 k g + k+ f 2 PY

J1
x ( g)T" r (pg—, pg —k, k)ye"

Pi —k —(pg —k)

e k+
g ++ k+ +t Z Zg

, (T'T )~ o&o' 1
Xg

J'2 P~ —q
——k ——(p2 —k)—

(A15)

(A16)

Figures 7(a) and 7(b) represent contributions to the vertex arising &om an intermediate instantaneous gluon at-
tached to the initial quark state:

M7( )
— d k 8 q+ —k+ 8 k+ y —g T~p Fqo k k

X 4 2 Tb ~d i~1 1
) "P (q+)'

' P; —k- —(q —k)--» '

My(b) = d [k] + + + y ( ig) f r Q (q k k q)
1 s 8(k+) 8(q+ —k+)

(q+) Pi —k —(q —k) ——p2

(A17)

(A18)
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