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The light-front gauge A+ = 0 is known to be a convenient gauge in practical QCD calculations
for short-distance behavior, but there are persistent concerns about its use because of its "singular"
nature. The study of nonperturbative field theory quantizing on a hght fro-nt plane for hadronic
bound states requires one to gain a priori systematic control of such gauge singularities. In the
second paper of this series we study the two-component old-fashioned perturbation theory and
various severe infrared divergences occurring in old-fashioned light-front Hamiltonian calculations
for QCD. We also analyze the ultraviolet divergences associated with a large transverse momentum
and examine three currently used regulators: an explicit transverse cutoR', transverse dimensional
regularization, and a global cutofr'. We discuss possible difBculties caused by the light-front gauge
singularity in the applications of light-front QCD to both old-fashioned perturbative calculations
for short-distance physics and upcoming nonperturbative investigations for hadronic bound states.

PACS number(s): 11.10.Ef, 11.10.Gh, 12.38.Aw, 12.38.Bx

I. INTRODUCTION

An intuitive physical picture of high-energy processes
in QCD is provided by the partonic interpretation [1].
It is well known that such a picture emerges most natu-
rally in the light-&ont canonical quantization with light-
front gauge A+ = A + A = 0. Based on factorization
theorems [2], the hadronic structure functions which one
extracts &om measured cross sections can be separated
into hard and soft parts for large momentum transfer
Q2. The hard part is the so-called hard scattering coeffi-
cient, which is the short-distance contribution of quarks
and gluons to the structure functions. The soft part
measures the low-energy (nonperturbative) properties of
quarks and gluons in the parent hadron. When QCD is
quantized on a light-&ont plane with light-&ont gauge,
the soft contribution can be identified with parton distri-
bution functions, i.e., the number density of partons as
a function of the &action of the light-front longitudinal
momentum of the parent hadron. In the last two decades,
QCD with either covariant gauge or light-front gauge has
been used extensively to calculate the hard scattering
coefBcients that are relevant for the scale evolution of
hadronic structure functions. However, the QCD based
exploration of the nonperturbative part, the parton dis-
tribution functions, is still in a very preliminary stage.

Several practical calculations for short-distance QCD
have been performed in the standard Feynman pertur-
bation theory with the light-front gauge [3,4]. In this
scheme, Feynman rules are derived by the use of the path
integral approach with a (light-front) gauge-fixing term
[5], and various hard scattering coefficients are calculated
via either the operator product expansion [3] or a Feyn-
man diagrammatic approach [4]. Despite the successful
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perturbative calculations, it is still not clear whether one
can extend the Feynman approach to the nonperturba-
tive studies, namely, the QCD calculation of parton dis-
tribution functions, which requires the full information
of hadronic bound states.

Current attempts to explore nonperturbative QCD in
LFFT are based on the Hamiltonian theory, which is de-
fined by quantizing the theory on a light-&ont plane via
equal-x+ (the light-front time) commutation relations, as
was first developed by Kogut and Soper for QED [6]. In
the light-front QCD Hamiltonian theory (LFQCD), the
hadronic bound states may be obtained by diagonaliz-
ing a light-f'ront QCD Hamiltonian in a truncated quark-
gluon Fock space [7], based on the old ideas of Tamm and
Dancoff [8). In this formalism, the low-energy hadronic
structure, such as parton distribution functions and vari-
ous hadronic form factors, can be addressed directly from
QCD. Meanwhile, the short-distance behavior can also
be studied in the same &amework, i.e., in old-fashioned
perturbation theory, or explicitly in the x+-ordered per-
turbative QCD Hamiltonian theory based on equal-x+
commutation relations [9]. Indeed, the interpretation of
high-energy processes via the parton picture had led to
extensive investigations of perturbative field theory in
the infinite momentum frame in the early 1970s [10,11].
At that time, Drell, Levy, and Yan [10] and Bjorken,
Kogut, and Soper [12] had already pointed out that in
the old-fashioned theory the physical picture for various
real physical processes becomes much clearer. The par-
ton picture is just a typical example.

Yet, beyond many interesting applications for exclu-
sive processes given by Lepage and Brodsky in the early
1980s [9], x+-ordered Hainiltonian QCD has not been ex-
plored extensively in the last decade. Only very recently,
loop calculations in the x+-ordered perturbative QED
and QCD theory have been performed [13—15]. It is seen
that there are severe divergences in LFQCD which are
associated with light-front gauge singularities. However,
a systematic computational method, which involves vari-
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ous regularization and renormalization schemes for light-
&ont singularities and ultraviolet transverse divergences,
is not yet well established.

In this series of papers, we study various problems
'of QCD in the equal-2: light-&ont canonical Hamilto-
nian theory that have not been addressed in detail be-
fore and that might be faced when we attempt to solve
hadronic structures in this &amework. In the first paper
[16] (called paper I hereafter), we have explored phase
space canonical quantization and light-&ont in&ared sin-
gularities in LFQCD. The latter originates &om the light-
&ont longitudinal boundary integrals when we eliminate
the unphysical longitudinal gauge potential in A+ = 0
gauge. In this second paper, we focus on problems of var-
ious light-&ont divergences in the x -ordered Hamilto-
nian theory and some regularization schemes, which must
be handled properly in both the old-fashioned perturba-
tive calculations for short-distance behavior and the up-
coming nonperturbative study for hadronic bound states
in LFQCD. In the following paper [17], we will present a
calculation of the ultraviolet divergent part of the quark-
gluon vertex up to one loop in 2:+-ordered Hamiltonian
theory.

Because of the two requirements of field theory,
namely, covariance and unitarity, quantization of non-
Abelian gauge theory is not simple. In the usual co-
variant path integral quantization, the unphysical gauge
components violate unitarity and therefore one has to in-
troduce ghost Gelds to cancel the unphysical states in the
theory. A covariant formalism has several advantages in
many aspects. Yet, the physical picture becomes obscure
once unphysical particles are introduced. On the other
hand, in the canonical quantization, one has to choose a
physical gauge, such as axial gauge or light-&ont gauge,
where unitarity is automatically satisfied but covariance
is no longer manifest. Although most QCD investigations
for short-distance physics are based on physical gauges,
particularly on light-&ont gauge, one still prefers to use
the covariant formulation. The main complaint against
light-&ont gauge is that the principal value prescription
for the gauge singularity in this gauge prohibits any con-
tinuation to Euclidean space (Wick rotation) and hence
the power counting for Feynman loop integrals. As a re-
sult, nonlocal counterterms have to be introduced, which
break the multiplicative renormalizability [18,19].

However, even in covariant perturbation theory, formal
multiplicative renormalizability may not be significantly
useful in the calculations of hard scattering coefBcients.
This is because gauge invariant composite operators in
the operator product expansion are not multiplicatively
renormalizable [20], and the gauge variant operators will
induce gauge invariant counterterms that do contribute
to gauge invariant matrix elements. It has recently been
shown that by taking into account this mixing in the
covariant theory the long-standing discrepancy between
the covariant and light-&ont gauge calculations for the
second-order anomalous dimension of the gluon compos-
ite operators can be resolved [21]. In fact, the mixing
of gauge invariant operators is an intrinsic property that
exists in any covariant formulation of QCD. The above
mixing problem of gauge invariant operators apparently

disappears in physical gauges, and perturbative calcula-
tions becoxne straightforward. However, a new spurious
mixing of ultraviolet and in&ared divergences associated
with the gauge singularity does occur in light-&ont gauge
using the principal value prescription. Here we have to
be careful to see whether or not the spurious mixing af-
fects physical quantities. In light-&ont gauge Feynman
approach, it has been shown that the most severe in-
&ared divergences caused by the choice of A+ = 0 gauge
with the principal value prescription are indeed canceled
in gauge invariant sectors [22]. However, in Hamiltonian
theory it has not been explored how this severe spurious
mixing behaves and whether the resultant divergences
canceled for gauge invariant quantities. These are essen-
tial problems in both perturbative and nonperturbative
investigations, which we shall address in this and the fol-
lowing paper [17].

Since gauge Gxing of A+ = 0 removes the unphys-
ical degrees of &eedom, unitarity is automatically sat-
isfied and no ghost Geld is needed, with the price to
pay being the loss of manifest covariance. Indeed, the
choice of A+ = 0 gauge promises that QCD involves only
two-component gauge fields and two-component quark
fields in light-&ont coordinates. In the early stage of
the development of light-&ont QED, Bjorken, Kogut,
and Soper used the two-component formulation to dis-
cuss various physical QED processes [12]. In the middle
1980s, a two-component Feynman perturbation theory
with Mandelstam-Leibbrandt prescription [23] was de-
veloped by Capper et al. [19] and Lee et al. [24] for pure
Yang-Mills theory. It has been shown that there are many
advantages in such a two-component light-&ont field the-
ory. However, the extension of the two-component theory
to the study of light-front canonical quantization (i.e. ,
x+-ordered theory) of QCD has not been explored in
the literature. In the old-fashioned light-&ont pertur-
bative QCD formulation of Lepage and Brodsky [9], the
unphysical degrees of &eedom were eliminated for the
quantization, but in the Gnal step they recombined the
vertices together to express the Hamiltonian in terms of
four-component quark and gauge fields. In this formu-
lation, the three point vertices look the same as the co-
variant form and therefore it becomes useful for compar-
ing with the covariant expressions. Lepage and Brodsky
have made an extensive application of their theory to
QCD exclusive processes at the tree level. For loop di-
agrams, the calculations become quite complicated. It
is pleasantly surprising to see that the two-component
formulation not only provides a transparent physical pic-
ture but also simplifies very much the calculation scheme
of Lepage and Brodsky. In order to understand clearly
the origin of light-&ont singularities in various physical
processes and simplify practical calculations, we derive
the two-component LFQCD in this paper and then study
light-&ont regularization and renormalization based on
the two-component formulation.

The paper is organized as follows. In Sec. II, following
paper I, we further formulate LFQCD in terms of physi-
cal degrees of &eedom so that both the gauge and quark
fields become two-component. The equal-x+ canonical
quantization conditions are obtained by use of the one-
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form structure of physical phase space, as shown in paper
I. The origin of the gauge singularity and associated di-
vergences are also discussed. In Sec. III, we develop the
two-component x+-ordered (old-fashioned) perturbation
theory for LFQCD in detail. We construct the corre-
sponding diagrammatic rules for the x+-ordered LFQCD
calculations. To understand the basic light-&ont singu-
larity problem and the associated divergences in loop in-
tegrals in the x+-ordered two-component LFQCD the-
ory, we present a calculation of the quark mass and
wave function renormalization constants to the second
order in Sec. IV. We also discuss the counterterms re-
quired for gluon mass and wave function renormalization
in this section. Finally, we include an appendix for the
construction of the two-component Feynman theory in
light-&ont coordinates and a comparison with the old-
fashioned Hamiltonian theory.

II. TWO-COMPONENT FORMALISM

The QCD Lagrangian is

l: = F+'(—8 A') +i@+t(0 g+)

2( {A.-c.—+-—(f'c+cty )),
1

where

(2.3)

Z = —(E.-'+ a.-'j
+ + 0.L xz+gA~ + m

—0+ E A —I9' E'A (2.4)

tor gauge potentials are physically independent degrees of
&eedom. The other two components are unphysical and
may be eliminated in the canonical Hamiltonian formula-
tion by a suitable choice of gauge condition. In light-front
coordinates, such a gauge choice is A+ = A + A3 = 0
(light-front gauge). With the light-front gauge, as we
have shown in paper I, the Lagrangian can be rewritten
as [16]

l: = Tr(F"—F—„„)+ g(ip„D" —m)@,
2

(2.1)
is the Hamiltonian density and

x~ = x' (i = 1, 2) 2 (2.2)

as the local coordinates which lead to a space-time metric
tensor g+ = g + = 2, g' = —b,~, with the other com-
ponents equal to zero. We also choose x+ as the "time"
parameter so that x and x' become the longitudinal and
transverse coordinates.

A. Two-component gauge field. s

In (Abelian or non-Abelian) gauge theory, only two-
components, i.e., the transverse components, of the vec-

where F"" = Bf"A" —(9"A~ —ig[A", A"] are the gluon
field strength tensors and A" = P A"T are the 3 x 3
gluon field matrices with T the Gell-Mann SU(3) matri-
ces: [T,Tb] = if 'T' and Tr(T Tb) = zb b. The field
variable @ describes quarks with three colors and Ny fla-
vors, and D~ = 0~ —igA~ are the covariant derivatives,
while m is an Nf x Nf diagonal quark mass matrix.

In light-&ont coordinates, we choose

C = 0+E ——(O'E' + gj 'AbE,') + gg+tT Q+, (2.5)

C = i 8+) —(io.g . (9g + go.g Ag + Pm)g+. (2 6)

Here, E " = —2t9+A " and B = F are components
of the light-&ont color electric Geld and the longitudinal
component of the light-front color magnetic field, and @+
and vP are the light-front up and down components of
the quark field [6]: @ = g++g, @~ = A~g = zp p+@,
where A++A = I, A~ = A~, and A+A = 0.

From Eq. (2.3) it becomes clear that the indepen-
dent dynamical degrees of freedom in LFQCD are the
transverse gauge fields A' and the up-component quark
field @+. The Lagrangian equations of motion show that
C = 0 and C = 0, which implies that the longitudinal
gauge fields A and the down-component quark field @
are Lagrange multipliers. By solving these constraints,
C = 0 and C = 0, which determine the Lagrange mul-
tiphers, the LFQCD Hamiltonian can be expressed for-
mally as

2

II = (g~ ($2~ —t9'A~ + A' A~/'A~ + — " A'A~A'„A~ + t o.~ iO~ + gA~ —im
2 4

x
( i

(og (iOg+gAg)+im)v/r+ +g0'A'
] i (f 'AbO A', +2@+T g+)( 1 -b. '+,

E»+) (~+)

+
~ + ~ (f As(2+A +2rf+T @e) ~

'~ (f Asft+Ar -t 2rfetT f+)) + surfarce terms,
g' 1& b;; ( 1 5 (2.7)
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where the surface terms are given by the last term in Eq.
(2 4) 0+ =

0
0

(,.s+ ) [(7'(i(9' + gA*) + im](

(2.1O)
B. Two-component quark spinors

Equation (2.7) indicates that the canonical Hamilto-
nian theory of QCD can be formulated purely in terms
of the transverse (physical) gauge fields, as we expect af-
ter gauge fixing [16]. Furthermore, it is interesting to see
here that in light-&ont coordinates the four-component
fermion field can also be reduced to a two-component
field. This is indeed one of the main advantages of light-
&ont field theory that simplifies the relativistic fermion
structure.

The two-component quark field can be explicitly for-
mulated in a light-&ont representation of the p matrix
defined by

This immediately shows that v)+ and @ are two-
component fermion fields. Hereafter, we shall simply let
$ represent the light-&ont quark field.

It must be emphasized that the above two-component
light-front field still describes relativistic spin-1/2 parti-
cles, which are intrinsically difFerent &om spin-1/2 non-
relativistic particles. In other words, it contains quarks
and antiquarks. To see how antiquarks can be described
in the two-component representation, we need to con-
struct the charge conjugate for (. By using the condition
Cp"+C = —p", it is easy to find that the charge con-
jugation operator in the p representation of Eq. (2.8)
is

0 0 0 —2i
2i 0 ' 0 0

Hence,

0 —io'C=ip p io' 0 (2.11)

—2o 0
'Lo

o. 0
) 7 0 3 (2.8) :('=q(7 (', (2.12)

Then the projection operators A~ become

1 0 0 0+00'01
m

(2.O)

where g is a phase factor which will be set to unity in
this paper. Equation (2.12) indicates that quark and an-
tiquark can be described in a two-component formalism
in light-&ont coordinates. An explicit solution for &ee
quarks and antiquarks will be given in the next section.

In the two-component representation, the Hamiltonian
(apart &om total transverse spatial derivatives) becomes

g Q2 2+g ~ Q Q g g2+ ~ ~ Q gled g2

x
~

.
~

((7~. (iO~+gA~) +irn)( +gt9'A'
~ ~ (f 'AtO+A, + 2(tT ()

( 1 , f 1')
&~+ r

+
j j (f A'stt+A +2( T () j

*j(f Astt+Ar + 2(tT ()) + surface terms,g (1) . . . t'1)
2 i~+) (2.13)

This is the canonical LFQCD Hamiltonian that is ex-
pressed only in terms of two-component gluon and two-
component quark field variables.

To quantize the above two-component LFQCD, we use
the canonical phase space approach, as shown in paper
I. The resulting equal-2;+ commutation relations for the
physical degrees of &eedom are

conventional equal time quantization. To find a commu-
tation relation between A', we have to define the opera-
tor 1/(9+ explicitly. As we have discussed in paper I, the
gauge singularity of light-&ont gauge is hidden in this
definition, so this definition will have a significant e6'ect
on the regularization and renormalization of LFQCD.

[A'(x), t9+A~~(y)] + y+ =ib (,b'~b (x —y),

(&(*) &'(y))*.=&. = b'(* —y)

(2.14)

(2.15)

C. Light-front gauge singularity

where hs(~ —y) = b(x'—y )b2(x~ —y~). Equation
(2.14) shows that the basic equal-x+ commutation rela-
tions of the physical gauge fields are the relations between
the A' themselves, which is essentially di8'erent &om the

The gauge singularities in light-&ont QCD that arise
when one tries to eliminate the unphysical gauge degrees
of &eedom by solving the constraint equations can be
seen clearly in momentum space. In momentum space,
the constraint Eqs. (2.5) and (2.6) cannot determine
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A' = E(A*,(),
0

(2.16)

the light-&ont initial value problem is relevant to the

the dependent Gelds in terms of physical fields for the
single longitudinal momentum A:+ = 0. In coordinate
space, this implies that the A+ = 0 gauge has a singular-
ity at longitudinal boundary. A careful treatment of the
definition of I/O+ is therefore necessary in the study of
LFQCD, as we have pointed out in paper I.

Since the LFQCD Lagrangian (2.14) is only a linear
function of the Grst-order light-&ont time derivative of
Geld variables, and the equations of motion for the gauge
potential has the form

boundary value at longitudinal boundary. According to
the discussion in paper I, a suitable definition of (1/0+),
which determines uniquely the initial value problem at
x+ = 0 [25], is

/'1 1
~
f(x ) = — dx' e(z —x' )f(x' ). (2.17)

gO+) 4

With the above definition, we have shown that the
residual gauge &eedom in A+ = 0 gauge is completely
fixed [26]. The singularity at k+ = 0 is removed and
the nontrivial topological properties of QCD are mani-
fest in the nonvanishing boundary behavior of A' at lon-
gitudinal boundary. Using this definition, the LFQCD
Hamiltonian becomes

(2.18)

-2 1 2

H = dx d x~ —O'A~ +g 'A'A~0'A~ + — " A'A A'A

1 dx' 2gO'A'e x —x' p x', x —i o,~ iB~+gA' + m e x —x' o,~ i ~+gA + m
~ ~

OO OO

dx' p (z, z)~z —x'
~p (x', x) +

~

lim A
~

— d'z~ dx p (x,x)4 (A-woo ) 4

where we have defined p (x, x) = 2(f 'AtO+A', +
2(tT () and have used the identity [27]

1 dz' .(x —z-'-).(-x'- —x" ) = ~z —x"
~

—-X,
—A

(2.19)

and the surface terms in (2.13) vanish [16]. The equal-
x+ commutation relation for A' can also be found from
(2.14):

b b'~
[A*(x),At, (y)] + y+ = i e(z —y )b—(z~ —y~).

(2.20)

It has been veriGed that the above formulation is consis-
tent with the Lagrangian equations of motion [16].

From Eq. (2.19) we see that the LFQCD Hamiltonian
contains a boundary term [the last term in Eq. (2.18)]
due to the linear instantaneous interaction. This term
seems to be problematic since it contains an infinite fac-
tor. However, as we have examined in paper I, although
the k+ = 0 singularity is removed by Eq. (2.17), the
in&ared divergences &om the small longitudinal momen-
tum, i.e., surrounding the k+ = 0 region, are still present
in the above Hamiltonian. These in&ared divergences as-
sociated with light-&ont gauge singularity are hidden in
the three point quark-gluon and gluon-gluon vertices in
Eq. (2.18). There are mainly two types of the light-front
in&ared divergences: linear and logarithmic. In paper
I, we have demonstrated in a one-loop calculation that

III. THE X+-ORDERED LFQCD
PERTURBATION THEORY

In this section, we shall develop the x+-ordered pertur-
bation theory for the two-component canonical Hamilto-
nian LFQCD.

A. The z+-ordered perturbation theory

The LFQCD Hamiltonian can be rewritten as a free
term plus interactions:

0 = dx d x~ 'Hp+'R;„g . (3.1)

It is easy to show that

'Ro = (O'A')(O'A ) +—(t
~

.
~ (,2 ( iB+ )

+I~t = +999 + +999 + +9999 + +QQQQ + +9999~

(3.2)

(3.3)

and

with our consistent definition of the product of two prin-
cipal value prescriptions based on Eq. (2.17), the linear
in&ared divergences are canceled by the infinite bound-
ary term [the last terxn in Eq. (2.18)]. Thus this infinite
term is necessary for a singularity-free LFQCD Hamilto-
nian with the principal value prescription. For detailed
discussion see paper I. In this paper, we will address the
logarithmic infrared divergences.
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I
(~~. A~)

(1(
&~+ J

t' 1 )
y (T A~

~ ~

(a. c)~+m)
k~+ J

are determined by

o(*+) = U(o, *+)o,(*+)U(*+,o),
e) = U(O, x+)le)

(3.1o)
(3.11)

1+
I ~ 1(~ gi —m)~. Ai)i,&~')

W~m = gf "(8A'Ab*A'+(O, 'A')
~ ~

(A(8+A')),,k~+)
(3.5)

'Rqqgg: g ( 0 ' A~
~

.
(

0' ' A~(ic)+ )
+ ' g, 1(f' A(~'A )I q,*.

I
(i'7 0)

= +qqggi + +qqgg» (3.6)

gg
I g, I

(('tT C) I g, I
((tT 6))

f 1') t (11
2

'8 = f '—f A*A A*Agggg b c d e

+2
i i (Ai, (9+A', ) i i

(A&0+A', )
f' 1 l

+gggg& + +gggg2 (3 8)

To derive the x+-ordered LFQCD perturbative the-
ory, we undress the Heisenberg operators and go to the
interaction picture by using the usual U-matrix transfor-
mation,

~+
Z

U(x+, xo+) = T~ exp
+

where T+ is an x+-ordering operator. Thus, the full in-
teracting Heisenberg operators 0 and state vectors ~@)

In the interaction picture, the equations of motion are

1iB ~4)r = H; iI,@)r, 0 Or = [Or—,.Ho). (3.12)

I@) = UIC') = ).I

. f —'l" 1

xe &
'+"'+ " T [H;„i(—7.i) . H;„,(—~„)])Cg),

(3.i4)

where U—:U, (0, —oo), and ~4) is an eigenstate of Ho.
(ii) The perturbative expansion of the matrix element

of the operator 0 between the initial state ~4, ) and the
final state ~@r) is

The perturbation expansion is then the same as that fa-
miliar from quantum mechanics. For convenience, we
will drop the subscript I in the following. By using the
adiabatic assumption [28]

CO
p

~

q
71 x+

U, (x+, x+) = ) I

—
I

—, d~ . . . d~„-(2) n! + +

xe--'!I"I+-+I.-I)T [H, (~, ) .H, (~ )]
(3.13)

where e is an infinitesimal number (one should let it go
to zero at the final step of the procedure), we obtain the
following perturbative expansion [29].

(i) The perturbative expansion of state vectors is given

(0 z~o(o)l@') = (c'flU 'o(o)U[o;)

= ). I I —, dq; dr e
——.(I 'I "

I .I)(cg&IT+[H;„,(~i) H;„, ( „q) 0( )o]l cg) (3
. (—i)" 1 ~1 +'''+ Tri

n!

B. Momentum space representation

0 A' (x) = —.[A' (x), H()]
1

1
4

dx' e(x —x' )c)~A' (x+,x', ~),

(3.i6)

In practice, it is convenient to perform perturbative
calculations in momentum space. In the interaction pic-
ture, the Fourier transform of A' (x) and ((x) can be
obtained by solving the equation of motion in momen-
tum space for the &ee Hamiltonian. The equations of
motion are determined by Eq. (3.12):

& &(x) =
—, [&(x) Ho]
1

1

4

x((x+, x', x~),

dx' e(x —x' )((9~ —m )

and their solutions are

A'(*) = ) g~

( )
3

[
+

]
Ie &a (q, A )e 'q + H .c .]

(3.17)

(3.is)
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((x) = ).X)
2 (2vr) s

C. Old-fashioned renormalization theory

+ dt(p, —A)e'~ ], (3.19)

with

q~ p~+ m

[q'] '
[p'1

(3.2o)

In Eqs. (3.19) and (3.20), A is defined as the helicity,

1
for gluons,—1

for quarks.1/2

(3.21)

dxi .dx„e(x —x, )

The gluon polarization vectors are si —— ~(l, i) and

(1, —i). The quark spinors are simply the eigen-

states of a spin-1/2 nonrelativistic particle, yi)2 ——(0)
and )t i)2 ——(i). For the definition of Eq. (2.17), the
multiple principal value prescription is given as

+ ~ ~ ~ (3.26)

where Ini), ln2), . . . are properly symmetrized (anti-
symmetrized) states with respect to identical bosons
(fermions) in the states. If the initial state is a single
particle state, we can extract a factor from this expan-
sion [10,12]

In momentum space, the renormalization of mass, wave
function, and coupling constants in x+-ordered Hamil-
tonian perturbation theory (the old-fashioned renormal-
ization theory) can be determined from the perturbative
correction to the masses, the wave functions, and the
coupling constants.

(i) Wave function renormalization: In momentum
space, the perturbative expansion of state vectors is given
by

- lni&(nilII' ~(0) fc'&U4 = 4+
P —P~1 + Z6

+ - Ini&(niIII ~(0)ln2&(n2III ~(0)1@&

„,„; (p- - p=, + '~)(p- - p=, + '~)

x. -e x
1 ( 1 1

. +
2 (A++ie k+ —ie)
1 f(k+).

f (k+)

(3.22)

gg ()o) ~ ) -
I )( I

-~(o)l )

p —p-, +~~

+ - I lni&(nilII'-~(0) ln2&(n2III -~(0) l~&

(»
-»:, + i~)(p —p:, + i~)

+ ~ ~ ~ (3.27)

[a(q, A), at(q', A')] = 2(2~) k+8'p p b (q —q'),

(b(»~) b'(p'»')k = fd(p ~) d'(p' ~')&
= 2(2ir) bg), ib (p —p'),

(3.23)

(3.24)

where 8 (p —p') = h(p+ —p'+)b (pi —p&). The charge
conjugate of ( [see Eq. (2.12)],

It is this prescription that regularizes the infinite term in
Eq. (2.18). The creation and annihilation operators in
(3.19) and (3.20) satisfy the basic commutation relations

and the factor Z@ is called the wave function renormaliza-
tion constant determined by the normalization condition

(4 IU Ul@& = 8@iy, . (3.28)

Note that in contrast with the summation in Eq. (3.26),
in Eq. (3.27) sums over all intermediate states except

the initial state IC'&. Furthermore, Eq. (3.28) leads to

('(x) = ).X~
P PJd( P)

—gP~-
2(2vr)s

+ bt(p, —A)e'"* (3.25)

)., I(nilH;„~(0) IC) I2

(p
——p, + i~)' (3.29)

shows that b(p, A), bt(p, A) and d(p, A), dt(p, A) are the
quark and antiquark creation and annihilation operators.

(ii) Mass and coupling constant renormalization: The
perturbative calculation of matrix elements, (3.15), in
momentum space becomes

(e, lo(o) le, &
= (c,lo(0) lc, & + ) - (@el~'-~(0) lni)(nilo(o) I@'&

py —p~~ + zE

(I'~ III;„,(0) ln, ) (n, la;„,(0) ln, &(n, I o(0)] le;&

(py
—p . +ie)(py —p .+ i&)

(3.3o)
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The mass correction can then be computed &om "energy-
level" shift, i.e., the correction to the energy of an on-
mass-shell particle:

reca11ing that p+ and p~ are the conserved light-front
kinematical momenta, we obtain the mass renormaliza-
tion in the light-&ont field theory:

bp = (@l(H —Ho)l@)

(o) I@) + )- l(nilH'-t(o) I@)I'

P —P~1 + ZC

+ ~ ~ ~ (3.31)

hm' = p+bp- = p+(clH;„, (o)le)
+ ) - l{nilH'-i(o) I@)I'

p p~i + ie

Using the mass-shell equation m = p+p —p&, and The coupling constant renormalization is

(@'ylH.i(o) I@') = (@flH.~(o) I@')

+ . (@~IH;„,(o)ln, )(n, lH,*„,(o)le; ) . (c,lH;„, (o)ln, )(n, lH;„, (o)ln, )(n, lH,*„,(o)]le, )

py p~~ + && (pf

pffft

+ 2E) (pf —p~2 + ze)

= Z QZ;Zf(C gIH„, (o)I4;), (3.33)

where H„~ represents various interaction terms in Eq.
(3.3) that are proportional to the coupling constant g, Zg
is the multiplicative coupling constant renormalization,
and Z; and Zf are the wave function renormalization
constants of the initial and Anal states.

Next we develop the diagrammatic approach for the
perturbative expansions discussed above. All matrix el-
ements of H;„t, namely, the LFQCD vertices, are listed
in Table I with the corresponding diagrams. These are
obtained by directly calculating the matrix elements be-
tween &ee particle states. The rules to write the ex-
pression of perturbative expansions &om diagrams are
as follows.

(a) Draw all topologically distinct x+-ordered dia-
grams.

(b) For each internal line, sum over helicity

and integrate using I ""z~,"~-8(k+) for quarks and
J' ""is"," 8(A,+) for gluons.

(c) For each vertex, include a factor of 16m b (py —p;)
and a simple matrix element listed in Table I. Each gluon
line connected to the vertex contributes a factor /i+
&om the normalization of the single gluon state.

(d) Include a factor (pf —P p + ie) i for each inter-
mediate state, where P p sum over all on-mass-shell
intermediate particle energies.

(e) Add a symmetry factor S i for each gluon loop,
coming Rom the symmetrized boson states.

We conclude this section with a discussion of the major
difference between the above two-component perturba-
tion theory and the four-component formalism of I epage

and Brodsky (LB) [9]. In the LB formalism, the three
point vertex has the same structure as in covariant the-
ory and thereby the spinor and polarization vector of
quarks and gluons contain unphysical components. The
four-component theory should be useful when we com-
pare the calculations with the covariant expressions. In
the two-component theory, the vertices are complicated
[see Eqs. (3.4) and (3.8)] but they have been expressed
purely in terms of physical degrees of freedom, so each
term corresponds to a real dynamical process. For exam-
ple, the quark-gluon vertex in the two-component theory
contains three terms [see Eq. (4.2)]: the first term origi-
nates from the elimination of the longitudinal component
of the gauge Beld, which induces the main gauge sin-
gularity, the second term is a helicity-conserving quark-
gluon interaction, and the last term is the helicity-Hip
quark-gluon interaction. Thus the two-component the-
ory is practically useful when we study the interactions
involved in real physical processes and discuss the origin
of various divergences in renormalization, as we will see
in the following paper [17]. Furthermore, as we will see in
the next section, although formally the three point ver-
tices in the two-component formalism look complicated,
their matrix elements in momentum space can be im-
mediately reduced to only depend on light-&ont relative
momenta and thereby the corresponding diagrammatic
calculations become much simpler.

To illustrate the above computation scheme and to dis-
cuss light-&ont in&ared divergences, we next calculate
some basic x+-ordered diagrams.
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TABLE I. The y+-ordered Hamiltonian diagrammatic rules. All gluon momentum directions are
x+-ordered (from left to right). The indices n, P, . . . , correspond to quark color and run from 1 to
3; a, b, c, . . . , represent gluon color and run from 1 to 8; while i, j, . . . , are transverse space indices
that run from 1 to 2.

Diagram Vertex

(i, a)

Hng

(1, c)
tg f"—e' e"s" (k2 —k&)' —"+ (k2+ —ks+) h;,

1

+ (ks + kg)' — + (ks+ + k~+)

+ —(4+ kg)'+ („„')(2~++ k~+) 4;,)
= —igf 'I' s'(t(kq, k2, ks)g' e~'g'

+emg1

(i, a)

t(T~T )y cr'

[ + I+]

egg 2

A p
P1

gg&iT+ f+~&yt 2 + 2 /4)), .e4 eJ
a++a+

[a+-I+]2

P1

4g TP42Tg~g g
I

+

p4

+gggg1

y2 a1a2b a3o4b

+(2-3)+(2-4))

+gggg2
IC)60050~

k4 k3

ga2a2( ga, a4Sb. . b. . (&4++&2 )(12+&4 )
g J J t1t2 t3tg [g+ g+][I+ y+]1 2 3 4

+(2 2) + (2 4) l
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IV. EXAMPLES OF LIGHT-FRONT
RENORMALIZ ATION

In this section, we compute mass and wave function
renormalization up to one-loop for quarks and gluons in
the x+-ordered two-component theory, providing a de-
tailed analysis for most severe light-&ont divergences in
old fa8hi-oned Hamiltonian theory

In the x+-ordered loop integrals, the internal momenta

(k+, k') can always be expressed in terms of relative mo-
mentum as

I+ , , I+
[p+]

'
[p+]

(4.1)

where (p+, p') are total momenta. In the two co-mponent
theory, the three point vertex can be written as a function
of the relative momenta.

(a) Quark-quark-gluon vertex [see Figs. 1(a) and l(b)]:

a~(p —ki) —im, , ~ p +im
[k+] [p+ —k+] [p+]

[p' —k'1 [k'] & [p']
1 2

(4.2)

(
k' cr'P —im;, o'(pi —k&) +im

[k+] [p+] [p+ —k+]
1 p+ f, k+, 5 (, ,=

[p+ —k+] [k+] '

"*
[p+]"' '

1 2
K —7 KJ O' X7 BIZ) .

[p+][1-*] [&]

~

~ (4.3)

(b) Three-gluon vertex [see Fig. 1(c)].
P

I'"o'(p, k, p —k)—:—(p —2k)*— (p+ —2k+)

k~ l I l

(k —2p)' — (k+ —2p+) b); + (p+ k)' — (p+ + k+) b;[k+] '
[p+ —k+]

I+la"&I&~r+I&+] I

&' ~,)u I&&*'+I+ k+1
1k ~+)s" I&', )

1 1+ ~'~h + (4.4)

These identities in the two-component theory greatly
simplify the complicated x -ordered diagrammatic cal-
culations. The four-component diagrammatic rules [9]
lack this simpli6cation.

From (3.27), we also see that if we shift p of the
initial state to off-mass-shell, the one-loop wave function
renorrnalization in Eq. (3.29) is given by

Z@ ——1—~(~p (p))
Bp J2=m2

(4.5)

Thus, the mass and wave function renormalization can
be found directly from bp ]p2g 2 at the one-loop level.

A. Quark mass and wave function renormalization

Based on the x+-ordered perturbative theory, the light-
&ont quark energy correction up to one-loop is deter-
mined by

(c)

k, j k —p, /

FIG. 1. The three-paint vertices with speci6c mamenta.
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ap- = (p', x'[II —II,~px)

= (~S» + ~p2 + ~ps ) ~(p —p') ~~,~ (4.6)

g Cf 8 K~ dx

[p+] 16~s, [1 —x]

where ~p, A) is a dressed single quark state. The three
terms in the second equality of Eq. (4.6) correspond to
the three diagrams shown in Fig. 2. Using the rules listed
in Table I, we find, for Fig. 2(a),

4 —4—+ 2 a2 +2m2x2I ~

I
2 2 2

t~l' l~]x
x(1 —x)p2 —m —xmz2 )

(4.10)

(4.7)

dk+d2k~ 0(k+)0(p+ —k+)

xI"o(p —k, k, p—)I"o(p, k, p —k)
1

x
p —k —(p —k)

g Cf. d K~ Bx

[p+] 16~s, [*][1 —x]
' (4.11)

(4.12)

Figures 2(b) and 2(c) are the self-inertia diagrams from
the normal ordering of the instantaneous interactions

Hqqgg $ and Hqq~q . Their contributions to the quark en-
ergy correction are

dk+dzk~ 0(k+) (r'(T'

16' [k+] [p+ —k+] '

dk+ 82k
&p,

—= 2g'(T T ) e(k+)
16vrs [p+ —k+]2

1
Q+ y Q+]2 ) '

(4.8)

(4 9)

Without any explicit specification, the k+ integrals are
from zero to infinity, and the k' integrals are from neg-
ative infinity to positive infinity. The last factor in Eq.
(4.7) is the energy denominator, where the light-front
energies for internal lines are always on-shell energies,
namely, they satisfy Eq. (3.20) for quarks and gluons.
We set the initial light-front energy p to be off mass
shell, so that the mass and wave function renormaliza-
tion can be determined directly from bp . Also, note
that the boundary term in Eq. (2.18) has an explicit
contribution to bp3 in the principal value prescription of
Eq. (3.22). In Appendix B of paper I, we have demon-
strated the cancellation of linear infrared divergences in
the quark mass correction of Eqs. (4.7)—(4.9) which in-
cludes the boundary term contribution. Here we present
the complete calculations for quark mass and wave func-
tion renormalization.

By using the identity Eqs. (4.2) and (4.3), it is easy to
find that

where Ct = (T T ) = (% —1)/2K, N is the number of
colors (i.e. , N = 3).

Equations (4.10)—(4.12) involve various infrared diver-
gences for longitudinal momentum integrals as well as
ultraviolet (UV) divergence for transverse momentum
integrals. The infrared divergences are regularized by
the principal value prescription of Eq. (3.22). To carry
out the integrations explicitly, we have to regularize the
UV divergences. The regulator in Feynman theory that
preserves covariance and gauge invariance is dimensional
regularization. This regularization plays a crucial role in
proving the renormalizability of perturbative Yang-Mills
theory. Unfortunately, dimensional regularization is not
available in old-fashioned perturbative theory. In fact,
in the nonperturbative study of the x+-ordered Hamil-
tonian theory, renormalization requires us to introduce
a cutoff procedure. Currently, there are three regular-
ization schemes for UV divergences used in x+-ordered
Hamiltonian theory: (i) an explicit cutoff for the trans-
verse momentum [30]; (ii) transverse dimensional reg-
ularization [31]; and (iii) a global cutofF regularization
[9]. These regulators break some symmetries of the the-
ory, and renormalization requires counterterms to restore
them. In Ref. [9] it is suggested that the global cutoff
could be a suitable regulator for the x+-ordered Hamil-
tonian @CD calculations. To compare the different reg-
ularization schemes in the old-fashioned theory, we will
examine all three prescriptions.

(i) Transverse cutoff regularization: ~K~~ ( A~. For
this simplest regularization scheme, Eqs. (4.10)—(4.12)
turn out to be

(a) (c)

FIG. 2. The x+-ordered graphs for the
one-loop correction to the quark mass
and wave function renormalization in
two-component LFQCD.
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g' p' —m' ( p+ 3 l
dpi = — C«

~

21n ——
~

lnA~
8vr2 + ( e 2 j

dx
i

—2+ x
i
ln f(x)

f2
o & [x)

m'
~

—21nA~+ 2J

—I+ln+ q2e e)
g' A2~ p+

bp2 = C« ln

8~' «[p+] ( 2e ) '

(4.13)

(4.14)

(4»)

where we have defined f(x) = [xm —x(l —x)p ). From
the above result, we see that in the one-loop quark energy
correction, one-gluon exchange gives rise to both linear
and logarithmic in&ared divergences. The instantaneous
fermion interaction contribution [see 8pz in Fig. 2(b)]
contains only one logarithmic divergence which cancels
the logarithmic divergence in bpz . The instantaneous
gluon interaction contribution [bps of Fig. 2(c)] has a lin-
ear in&ared divergence which precisely cancels the same
divergence in bpz . As we have pointed out in paper I, this
cancellation of linear in&ared divergences is based on the
use of the regularization for k+ + 0 in Eq. (3.22), which
consistently includes the boundary term contribution in
Eq. (2.18).

Now it is easy to find the quark mass correction (drop-
ping the finite part)

2 2

bm =p bp ~„2 ~= C«m lng 2 A~
4Vr2 m2 (4.i6)

which is longitudinal infrared divergence free. Note that
the coefficient (I/4) in this mass correction is difFerent
from the covariant result (3/8) because of the difFerent
regularization schemes.

The quark wave function renormalization constant is

Obp
Z2 ——1 + 0p p'= '

«'3 p+ l= l+ C« ~

——21n
~

ln
8vr2 q 2 jm'

p+ «' p+l
+ 2111

~

1 —ln
I

. (4.17)
~ )

In wave function renormalization we see that there is an
additional type of divergence, the mixing of infrared and
ultraviolet divergences. This is the "spurious" mixing as-
sociated with the gauge singularity. It corresponds to the
so-called light-&ont double pole problem in the Feynman
theory with A+ = 0 and the principal value prescrip-
tion that prohibits any continuation to Euclidean space
and power counting in Feynman loop integrals. In the
x+-ordered Hamiltonian perturbative theory, the power
counting is different, as was recently pointed out by Wil-
son [32]. The above argument of power counting for
Feynman loop integrals may be irrelevant. Furthermore,

since the second order correction to wave functions must
be negative [see Eq. (3.29)], from Eq. (4.17) we see that
it is the additional infrared divergence that gives a con-
sistent answer for wave function renormalization. As we
will show in the following paper [17], this type of diver-
gence is indeed canceled completely for gauge invariant
quantities and therefore the mixing divergences in the
old-fashioned Hamiltonian theory may not be a problem
for LFQCD.

(11) TTQAsvepse dtmerisxoAQl pegslQpzzQ«xoD: Usiilg
transverse dimensional regularization, we find that

g' p' —m' ( p+ 3l I
Sar' [p+] q e 2) «

& 2 ~2
dxi ——2+x iln

o ( [x] ) f(x)
m' f 2 ' p' l

i

———2 dxln
[p+] ( «o f(x))

(4.&8)

(4.S9)bp,
—= bp,

—= O,

where p is a scale introduced by dimensional regular-
izatioii, and « = 1 —di/2 with the dimension of the
transverse space being dq. Comparing with the explicit
transverse momentum cutoff, it is obvious that dimen-
sional regularization removes some infrared divergences
associated with quadratic UV divergences, which should
otherwise be canceled consistently in the theory. The
mass and wave function renormalization in the transverse
dimensional regularization scheme are

2 m2
bm =p+bp ~„~ ~ = C«

4Vr2

g' &3 p+ l
Z2 ——1+ 2C«

~

——2ln
8vr2 g 2 e ) Eg

p+ & p+
+ 21n

~

1 —ln —ln
E ( e m )

(4.20)

(4.2i)

)a pJ + m) A + pJ2

[ +] —
[p+]

(4.22)

where jp+, p~) is the momentum of the initial (or final)
state. For one-loop quark mass and wave function cor-
rections, the intermediate state contains one gluon and
one quark so that (4.22) is reduced to

k~2 (p& —k&)'+ m' A'+ p2~

Ik+] [p+ —k+] [p+]
(4.23)

which can be further simplified as

which gives the same results as the explicit cutoff for UV
divergences (by replacing —with ln —,). In wave func-
tion renormalization, there is an additional pure infrared
divergence which is associated with the mass scale in di-
mensional regularization.

(iii) Global cutof). Another cutoff scheme in the x+-
ordered fight-&ont field theory is called a global cutoff
[9] and it is defined as follows. The momentum of any
intermediate state is restricted by
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K K + m

[*] [1 —&]
(4.24)

Now applying the regulator of Eq. (4.25) to the integrals
in Eq. (4.30), the mass and wave function renormaliza-
tion become

The cutoff condition, Eq. (4.24), is independent of the
total momentum and therefore is obviously boost invari-
ant. With this regulator, the integrals in (4.10)—(4.12)
are restricted by

v2 ~2 +m~
g&d'«O

I

A'
[*l II —*l )

&max

dXO KITI~X d KJ (4.25)

where

r.' „=x(l —x)A' —xm', (4.26)

and 9(r „) leads to an additional condition on the lon-
gitudinal momentum:

m'0&K&1-
A2 (4.27)

(4.28)

: 2

dx

[1 —x]'
' dx

[*]"
(4.29)

where the secoDd step in Eq. (4.29) is obtained by re-
placing the quark momentum in the integral [see Fig.
2(c)] by the gluon momentum due to momentum conser-
vation. Using Eqs. (4.28) and (4.29) to combine Eqs.
(4.10)—(4.12) together, we find

[*]2Q 2 ——2++

1

(4.30)

Equation (4.27) implies that the singularity of the gluon
longitudinal momentum for x —+ 1 is regularized by the
global cutoff. However, there is still an infrared singular-
ity when x ~ 0, which can be treated by the principal
value prescription,

I ~

——
2 +. +, , where e

is dimensionless and is boost invariant.
Forinally, the instantaneous diagrams [Figs. 2(b) and

2(c)] do not involve intermediate states, which appar-
ently implies that the global cutoff cannot be applied
to these diagrams. However, the instantaneous diagrams
arise &om the normal-ordering Hamiltonian, and in prin-
ciple, are accompanied by Fig. 2(a). Thus, before we
replace the integrals in Eqs. (4.10)—(4.12) by Eq. (4.25),
we shall first combine Eqs. (4.10)—(4.12) together. Note
that

hm =p bp I„2 2= Cpm ln
3g2 2

A2

8' 2 m2'
g2 (3 1 l A2

&2 = 1+ |-"y
8~2 (2 e ) m2

+ ln
I

2 ln
e )

(4.31)

(4.32)

B. Gluon mass and wave function renormalization

Similar to the x+-ordered calculation of the quark mass
and wave function renormalization, the gluon energy cor-
rection up to one-loop is given by

h(q ), = (6, j, q', A'IH —HoIa, i, q, A)

= (bqi + hq2 + hqs + hq4

+hqs )h (q —q')hg), h i,h;~, (4.33)

where Ia, i, q, A) is a dressed single gluon state. The cor-
responding diagrams are shown in Fig. 3. For Figs. 3(a),
3(b), and 3(e), using the diagrammatic rules listed in Ta-
ble I, we have

It is of interest to see that with the global cutoff, the
second order mass correction gives the same coefBcient
(3/8) as in a covariant calculation. Comparing with
the other two regulators, the additional mass correction
originates from the first term in the last integral of Eq.
(4.30), a contribution from the one-gluon exchange dia-
gram [Fig. 2(a)]. This contribution is canceled by the
fermion instantaneous interaction [Fig. 2(b)] in the ex-
plicit transverse cutoff regulator, and is "removed" in
transverse dimensional regularization. Here, the fermion
instantaneous interaction gives a finite contribution to
the mass correction.

The wave function renormalization constant from the
global cutoff is the same as &om the other two regula-
tors for UV divergences, and behaves also very similar
for IR divergences. Also, the mixing of UV and IR di-
vergences is exactly the same for all three different reg-
ulators. In x+-ordered Hamiltonian theory, the mixing
divergences cannot and should not be removed as indi-
cated by the negativity of the second order correction
of the wave function renormalization constant that must
result in a physical theory.

Comparing the three different regulators, it is hard to
see which regulator is better at the one-loop level. In
fact, the quark mass and wave function renormalization
in QCD are the same as the electron mass and wave func-
tion renormalizations in @ED [13],except for a color fac-
tor (Cy). The infrared divergences associated with the
gauge singularity are not surprising. The severe problem
of gauge singularities (if these exist in the present formal-
ism) should be exhibited in the second order correction
to the gluon state, which we now turn to discuss.
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(a)

FIG. 3. The x+-ordered graphs for the
one-loop correction to the gluon mass
and wave function renormalization in
two-component LPQCD.

(c) (e)

dk+d'k e(k+)
16~s [k+]2 q+

0(q+ —k+), ,x „ I'o (q, —,—q)

—g~2 q
dk+d k

q 16~3

x8(q+ —k+)Tr[I"o(k, k —q, q)

1xI"o'( —q, q —k, k)
q —k —.—(q —k

(4.34)

can be simplified by using Eqs. (4.2)—(4.4):

g
2 K~2 1 K~2

bqi = 2 C~ dx
[q+] 16'' o x(1 —x)q' —~2~

'~" [*]"[1--] ~

2x —2+ —+ —m2 1 1 2
J I~] [~]

x(1 —x)q' —~2~ —m'

(4.39)

(4.4O)

1
xl'o(k —q, k, —q)]

q —k —jq —k

(4.35)

, (y-"y'")
2 q 16m3

x2 (b;, bii —b;I, b, () . (4.36)

Figures 3(c) and 3(d) are the self-inertia diagrams from
the normal ordering of the instantaneous interactions

Hz~gg~ and H~zzg2. Their contributions to the quark en-

ergy correction are

g
2[q+]

d2v~ dx 6(1+x)2

[*] ~[1--]'
(1 —x)'
(1+x)'

gbqs:
[ +]

+A

d2v f 1
bqs = 2 TyNy dx

i

1

1+x)
(4.41)

(4.42)

(4.43)

2

bqs b bh;,. = Tr(T T )
q

0(k+)
16vr3

1 1
~

* '~
' [,+ —~+] [q++ ~+]) '

(4.37)
dk+d k~ 8(k+)

k+

(q+ + k+)2 (q+ —k+)2

[q+ —k+] (q+ + k+)
(4.38)

1
(glacd ybcd)

2

In Eqs. (4.34), (4.36), and (4.38), the factor 2 is a sym-
metry factor for two-boson states. The above expression

where C~b~s = f '"f '" = Nb s, T~b s = Tr(T T ) =
2b g, and Ny is the total flavor number for quarks.
Again, we now put the gluon oK mass shell so that the
mass and wave function renormalization can be found si-
multaneously from Eqs. (4.39)—(4.43). In the previous
subsection, we have shown that there are three regula-
tors for UV divergences in x+-ordered LFQCD. To un-
derstand these regularization schemes for the gluon sec-
tor, we compute the integrals in Eqs. (4.39)—(4.43) for
all three schemes.

(i) Transverse cutog regularization: Using the explicit
transverse cutofF regularization for the UV divergences,
we And
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g' q2 ( q+ 11 lC~
~

2ln —
~
lnA~

8vr2 q+ ( e 6 )
r 2 5+ dx

~

2 —x(1 —x) —
~

ln[x(1 —x)q ]
0 l*l)

A~ vrq+

[q+] 2e
(4.44)

hq2
—— TfNf —ln A~

g
Sa2 q 3

dx(2x —2x + 1) ln[m —x(1 —x)q ]

m2 1

2 ln A2~ —2 dx ln[m, ' —x(l —x)q']
[q+]

A 2~ & q+
+2 /ln —I

/q+ & & )
pq = — TfNf ln

47r2 q+ )

g2 A2~ 7rq+ k+
($q = C~ —1+ ln

8~ q+ 2e

$q = C~ ln

(4.45)

(4.46)

(4.47)

(4.48)

where k+ is the internal fermion momentum A:+ —+ oo.
In Eq. (4.44), there is also a mass singularity, which is
commonly known in gauge theory in the covariant for-
mulation. Formally we introduce a small gluon mass

(q = p&) in the energy denominators to regulate this
singularity. The gluon mass and wave function renor-
malizations are

b'p = q+bq ~~2 o

g
2 A~2

4m2 TfNfm ln
m2

k+

) 4 ' ) (4.49)

Obq
Z3 =1+

|9

g' f ll q+ ) A'= I+
2 ~

——2ln
~

C~ln
8m2 q6 e) &a

2 A2~ q+——TfNy ln —2CA ln
3 m2 (4.5O)

Equations (4.44)—(4.48) show that all severe diver-
gences appear in the gluon sector: quadratic and loga-
rithmic UV divergences, linear and logarithmic IR diver-
gences, gluon mass singularity, and an unusual large lon-
gitudinal momentum logarithmic divergence. Only the
linear infrared divergences are canceled [see (4.44) and
(4.48)] with our principal value prescription Eq. (3.22),
as we anticipated in paper I. The gluon mass correction
is not zero. The first term in (4.49) is a fermion loop
contribution [Fig. 3(b)), which is the same as the pho-

ton mass correction in QED. In addition, the gluon mass
correction also contains a severe mixing of quadratic UV
divergences with logarithmic IR and UV divergences of
longitudinal momentum. It is caused by the instanta-
neous fermion and gluon interaction contributions plus
the tadpole effect of the normal four gluon interactions
[Figs. 3(c)—3(e)]. It is interesting to see that this kind of
divergence behaves the same way from both the fermion
contribution and the gluon contribution. The nonzero
gluon mass correction of Eq. (4.49) is not surprising be-
cause it has the same divergence feature as the photon
mass correction in LFQED [Eq. (4.49) will be reduced
to photon mass correction when we set Tf ——1,CA ——0,
and Nf = 1]. In a covariant calculation, the zero gluon
mass correction is true only for dimensional regulariza-
tion which "removes" or drops the mass correction. In
the present calculation, maintaining zero gluon mass re-
quires a mass counterterm, as is known in QED. The dif-
ference between QED and QCD is only manifest in. the
gauge boson wave function renormalization. For wave
function renormalization, again there is an additional
mixing of UV and IR divergences, which provides the
correct sign for the wave function renormalization con-
stant. In addition to this feature, there is a contribution
from the gluon loop [Fig. 3(a)]. As we will see in the
following paper, after the cancellation of the mi~ing di-
vergences, it is this contribution that leads to asymptotic
freedom in QCD.

(ii) Transnerse dimensional regularization: Transverse
dimensional regularization leads to the solution

g' q' ( q+ ill (1 p'5
bq~ = — C~

/

21n ——
/ /

—+ ln-
8m. 2 [q+] I, e 6 ) (e, q2)

,„.~')
g q' t'2 1

hq2 = — TtNf8 2 [q+] (3e,

(4.51)

dx(2x' —2x+ 1) ln
m2 —x 1 —x q2)

dx ln
m2 —x(1 —x)q2)

(4.52)

(4.53)

m'K I+ ~2 —+2

bq3 = bq4~5 ——0.

The gluon mass and wave function renormalizations are

Obviously, transverse dimensional regularization removes
all quadratic UV divergences. Thus if we only consider
zero quark mass, as is usually assumed in practical per-
turbative calculations [22], the gluon mass correction in
transverse dixnensional regularization is zero.

bp = — TgNgm —,g 21
4vr2

g2 f 11 q+l 2 1
Zs ——1+

i

——2ln
i
C~ — TyNf—8~' q 6 3 eg

ill q+) p,', q+
+C~

~

——21n
~

ln 2
—21n

q6 e ) t'a
(4.55)
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(iii) Global cutog Up to the second order, the interme-
diate states for the gluon energy correction are difFerent
in different diagrams. For Fig. 3(a), the global cutoff is
given by

K KJ + J (A2
f~l [l —&]

(4.56)

which leads to the condition

~'.„=x(l —~)A', O & x & I. (4.57)

(4.58)

The transverse and longitudinal momenta are then re-
stricted by

m2 m2
r „=x(l —2:)A —m, & x & l —,(4.59)

which regulate both UV and IR divergences. %'hen nor-
mal ordering the Hamiltonian, the instantaneous inter-
action must be regulated in a similar way, namely, Fig.
3(c) is accompanied with Fig. 3(b) and Figs. 3(d), 3(e)
with Fig. 3(a). The result (dropping the finite part) is

g'C~, t' q+ ill A'

8 '[q+] & ~ 6)

This shows that the global cutoK for a massless gluon
does not remove the light-front infrared singularities from
x + 0 and x ~ 1. The associated infrared divergences
have to be regulated by the principal value prescription:
I/[x] [see after Eq. (4.27)]. However, for Fig. 3(b), the
global cutoÃ is

the explicit transverse cutofF, but no pure infrared di-
vergences.

Comparing the above three calculations, we see that
in each case we have to introduce a gluon mass coun-
terterm to keep the gluon massless. In the gluon wave
function renormalization, the divergences are also very
similar from each regulator. None of these regulators
can avoid the severe light-front divergences. Thus we
cannot easily conclude that one is better than the oth-
ers. Normally, the choice of a suitable regulator also de-
pends on whether it can maintain a maximum number
of symmetries. However, not only does the global cut-
oK preserve boost invariance, the other two regulators
can be made to maintain boost invariance as well if we
replace the ratio p+/e by e in the explicit transverse
cutoK and in the transverse dimensional regularization.
This is because these regulators can be applied to the
relative transverse momentum and the ratio of longitudi-
nal momentum. In the three schemes, rotational invari-
ance is preserved along the longitudinal direction but is
obviously destroyed in the transverse directions. Thus,
symmetry considerations alone do not provide a simple
criterion for a choice between these regulators. In the
light-&ont gauge I'eynman theory, there is a regulator de-
veloped by Mandelstam and I eibbrandt [23] which can
remove the severe k+ ~ 0 singularity. Unfortunately,
this prescription depends on the sign of k and there-
fore we cannot apply it to the x+-ordered Hamiltonian
theory.

However, from the above calculations, we see that the
wave function renormalization contains several compli-
cated pure infrared divergences and a mass singularity
from the massless gluon. This complexity can be avoided
if we introduce a mass scale u for the minimum cutofF for
transverse momentum,

(4.6O) A~ +Kg +6, (4.64)
g NfTf 22 A 2

bq2'+' 8~'[q+] 3 m, ' 3q —ln + —A

1—m /A A2
dx ln

m2 —x(l —x)q2

(4 6l)

Therefore, with a global cutoB, the gluon mass and wave
function renormalization are

g2 A2
bm = Cm ln

4vr2 f u2 '

2 2

bp = — TfNf-m lng A~
4a2 Q 2

(4.65)

and assume that u is much larger than all other masses
in the theory. With this regulator, the quark and gluon
mass and wave function renormalization become simple:

g
2 A2

bp = — Ty&ym ln
4' 2 m2

g' r II
Zs = I+

~

——21n —
I
C~ ln

7I E 6 E&) p,

2 A2——TgNy ln
3 m2
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(4.62)

(4.63)

( k+)
+. (A~ —u ) i

—
Tying i

1 —ln
2

(4.66)
g' /'3 p+ l A2~

Z2 ——1+ Cf
~

——21n —
~

ln (4.67)
8vr2 g2 E ) tl,
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The results show that the global cutofF uses minimum
regularization parameters (A, e, and p@). In the mass
correction, only quadratic and logarithmic UV diver-
gences are involved. The wave function renormalization
has the same UV divergence behavior as found using

This shows that all pure infrared divergences in wave
function renormalization are removed. The remaining
unfamiliar divergences are the mixing of quadratic UV
with logarithmic IR divergences in the gluon mass cor-
rection, and the mixing of UV and IR logarithmic diver-



48 LIGHT-FRONT QCD. II. TWO-COMPONENT THEORY 4897

gences in wave function renormalization. The mixing di-
vergences in the gluon mass correction could be removed
by a gluon mass counterterm, while the mixing diver-
gences in wave function renormalization are canceled in
physical quantities, as we will show in the next paper [17].
Thus, in the case of the lack of a better regularization
scheme, Eq. (4.64) with the principal value prescription
of Eq. (3.22) may be the simplest regulator for practical
old-fashioned perturbative calculations in LFQCD. We
will use this regulator for further calculations in the next
paper [17].

Finally, we calculate the anomalous dimension for
quarks and gluons. The anomalous dimension of the
quark field to order g is

1 OZ2

2Z2 BlnA
u' & I+

Cy
~

21n
8m 2 ( e

31
2) (4.69)

which is the same as Lepage and Brodsky obtained [9].
The momentum-dependent term implies that the quark
anomalous dimension is gauge dependent. The anoma-
lous dimension for the gluon field is

1 BZ3
2Z3 BlnA

g2 ( q+ 11 i 2c,
~

2&n ——
~
+ Tln'g)], -

8~ ( ~ 6) 3
(4.70)

which is also gauge dependent. In the case of setting
q+ = 0, the gauge-dependent term can be removed, and
Eq. (4.70) is reduced Gross-Wilczek result in their Feyn-
man calculation with A+ = 0 and q+ = 0 [3].

V. DISCUSSIQNS AND SUMMARY

In this paper, we have not provided any new features
of QCD in old-fashioned Hamiltonian theory. However,
to the best of our knowledge, th.'s is the first attempt to
show in detail various light-front divergences in Hamil-
tonian theory. We are motivated to analyze these severe
light-&ont divergences by the current investigations of
nonperturbative light-front field theory for QCD. Sys-
tematic control of these divergences is required a pri-
ori before we perform any practical numerical calculation
in light-&ont coordinates for QCD bound states. From
the basic one-loop calculations presented in this paper,
we learn that in the old-fashioned perturbation theory,
LFQCD involves various UV and IR divergences. Some
of the divergences have not even been encountered in
covariant and noncovariant Feynman calculations to the
same order. We have explored these divergences in the
two-component theory, which simplifies greatly the calcu-
lations based on the formalism developed by Lepage and
Brodsky, and in which we can also clearly see the origin
of each divergence Rom the structure of physical quark-
gluon interactions. We see that the currently available
regularization schemes for Hamiltonian theory do not re-
move these unwanted divergences.

Among various light-front divergences, there are two
severe divergences we have to deal with in the old-
fashioned theory for LFQCD. The first is the mixing
of UV and IR logarithmic divergences in wave function
renormalization. As we have argued, the occurrence of
the mixing divergences may not be a severe problem. In
light-&ont gauge Feynman theory with principal value
prescription, such a Inixing divergence prohibits any con-
tinuation to Euclidean space and thereby breaks down
the standard power counting used to analyze Feynman
loop integrals. As a result, proving renormalizability of
the theory is problematic. The Mandelstam-Leibbrandt
(ML) prescription can resolve this problem. However,
in old-fashioned Hamiltonian theory, this argument is no
longer available because power counting in the light-front
field theory is totally difFerent, as pointed out recently
by Wilson [32]. In fact, although the use of light-front
gauge has always been regarded as dangerous due to the
occurrence of the mixing divergences, it has been shown
in light-kont gauge Feynman theory that these mixing
divergences are indeed canceled in gauge invariant quan-
tities [22]. It will be seen in the following paper [17]
that the mixing divergences are also canceled completely
in the old-fashioned Hamiltonian theory for the coupling
constant renormalization, as has also been shown recently
by Perry based on the LB formalism [15]. Consequently,
we believe that the problem of mixing divergences may
not exist when we consider real physical processes.

The second problem is the infinite gluon mass correc-
tion. In the old-fashioned Hamiltonian theory, dimen-
sional regularization is not available to avoid the nonzero
gluon mass correction. To have a massless gluon in per-
turbation theory, we have to introduce a gluon mass
counterterm. In the leading order (one-loop) calculation,
there is no difficulty arising from a gluon mass counter-
term. However, when we go to the next order, it can be
found that the gluon mass counterterm leads to a non-
cancellation of in&ared divergences. Based on the power
counting for light-&ont QCD [32], we can see, &om the
light-&ont energy dispersion relation,

t

p~ + m
p+ (5.1)

that the nonvanishing infrared divergences could intro-
duce nonlocal counterterms in both the longitudinal and
transverse directions. In equal-time quantization, such
nonlocal counterterms are forbidden for a renormalizable
theory. Here, these nonlocal counterterms are allowed by
the light-front power counting. This is a special feature
of LFQCD. One speculation from this property is that
the nonlocal counterterms for in&ared divergences may
also provide a source for quark confinement [32].

In summary, renormalization in light-front QCD
Hamiltonian theory is very diferent &om conventional
Feynman theory and it is an entirely new subject where
investigations are still in their preliminary stage. Very re-
cently, a renormalization group based approach has been
proposed for light-front field theory [35]. It would be in-
teresting to see the extension of this approach to LFQCD.
In perturbative calculations, careful treatment could re-
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move all severe infrared divergences for interesting phys-
ical quantities in LFQCD. For nonperturbative studies,
the cancellation of severe in&ared divergences may not
work because certain approximations (e.g. , Fock space
truncation), might be used. These approximations may
also break many important symmetries, such as gauge
invariance and rotational invariance. It is the hope of
the current investigation of light-front renormalization
theory that the counterterms for the light-front infrared
divergences may restore the broken symmetries and also
provide an effective confining LFQCD Hamiltonian for
hadronic bound states.
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i@+a pSo p(p) =
p' —m'

'j . . z
oab ig ah (A3)

Z = Zg + Z2+ Z3, (A4)

where the three terms on the right-hand side are denoted
by the three Feynman diagrams shown in Fig. 4. From
Table II, we find

d4e—iZi ——(ig) (T T ) So(p —k)
(2vr) 4

&&I"o(p —k, —k)DO, . (k)I'~e(p, k), (A5)

(A6)

The diagrammatic rules for various vertices are listed in
Table II. The rest of the Feynman rules are the same as
in instant form for boson and fermion theories.

In this appendix, we will use the two-component Feyn-
man perturbation theory to calculate quark and gluon
self-energies and compare these to the x+-ordered calcu-
lations in Sec. IV.

(i) The turbo comp-onent Feynman calculation of quark
self-energy. To compare the x+-ordered Hamiltonian
with Feynman perturbative calculations, we evaluate the
quark self-energy by use of the Feynman rules listed in
Table II.

In the two-component Feynman perturbation theory,
the one-loop quark self-energy is given by

APPENDIX: TWO-COMPONENT FEYNMAN
PERTURBATIVE THEORY

For comparison with the old-fashioned 2:+-ordered per-
turbation theory explored in this paper, we also present
in this appendix the two-component LFQCD Feynman
theory. The two-component LFQCD Lagrangian has a
canonical form

4
—its ——(—2ig )(T T ) So(k)

~

1

[p+ + k+]2 )~
'

which can be reduced to

(A7)

where

o+

&o = —B„A'0"A' —(t
~ ~ ( 2+ m2)(,

(A1)
Zg ——zg C'f

d4k 1 1

(2~)' k'[(p —k) 2 —m2] [p+ k+]

4&p+ l p+ &„ I+—4[k+]+2 I
I~ — +p~ I

~int = —+int- (A2)

The Feynman rules can be derived &om the path integral
formalism [33]. Here we use the procedure of 't Hooft and
Veltman [34]. The result is as follows. The &ee quark and
gluon propagators in two-component LFQCD are

Z2 ——i2g Cf

, /k+)'
+ 2m'

(ip+i

(2vr)4 k2 [p+ —k+] '

(A8)

(A9)

(a) (c)

FIG. 4. The Feynman diagrams for the
one-loop quark self-energy in two-component
LF+CD.
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TABLE II. Two-component Feynman diagrammatic rules. 8;„t ———A.;„&. All gluon momenta
are outgoing.

Diagram Vertex

Og

a, i b, j
baabag

k2

Og
~ p+

p2 —m2

vugg
T+ 2 ~ +J p2J ~m 4 4 +i p1i+~m

i&+] &2+] W+, ]

ggg

gf"—"" (k~ —k3)" — ' (k+ —k+) h' .
1

+ (kg —kg)" ("„',)(k~+ —k~+) h;„,

+ (ki —kg)' —i",', i(2~+ —2~+) b;, ;,j

vugg

g +2T 1 )g 2g '1 (T~l T~2)~~1 g ~2

[ + I+] +
[ + y+]

2iT'f-"*i ) „~i,b;—„;j

2 T~T~ T~T
9 Q+ +]2 [ + +]2

gggg

$g $1/3 $Q$g '51ig SQ't3

+&', ;h. ; i,'+~,'+i2+~„+) + (2 2) + (2 4)j
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Z3 ——z2g Cy
d4k k+

(27r)4 k2 —m2 q[p+ —k+]2

[p+ ~ k+] 2 )l
(Alo)

d4k 1
(2m)4 (k2 ~ ie)[(p —k) —m2 + xe]

~ ~

&[k+I'[p -k+1) ' (All)

Using the principal value prescription, we can integrate
over k in Eqs. (A8)—(A10) and show that Z; = 8p,
To do so, we consider a general integral

where f is an arbitrary analytical function of „~+ and

~
+ k+]. To integrate over k, we define

dk+d2k

2m ([k+] '
[p+ —k+]) (k+k —k~2 ~ ic) (p+ —k+)(p ——k —

) —(p —k)~ —m2 y je'

(A13)

Using the identity

x+zc
in(a+ie)

) (A14)

to rewrite the last two factors in Eq. (A13) and then integrating over k, we have

I (k+, k~) =—

Consider the case p+ ) 0. Since n, P ) 0,

k+ ) p+ I-(k+, k ) = 0,
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where we have used the

~&+j
——0 for k+ = 0 [see

above results together, we
as

principal value prescription
Eq. (3.22)]. Combining the
can simply write I (k+, k~)

I (k+, k~) = f l

1

q [k+] '
[p+ —k+]) [k+)[p+ —k+]

X (A2ii
(+ A)2& ~ 2 y2p- —"[+ k+]

—ra+]+z

d4k 1 ( 1 1
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(A22)

The same result can be obtained for p+ & 0. Similarly,
it can also be shown that

for 0 & k+ & p+ and zero for others. Substituting this
result into Eq. (All) and using the relative momenta
[see Eq. (4.1)], we have

d k 1 . 8 K~ GX

(2~)4 k2 16~s, [*]
(A23)
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Using the above two solutions, Eqs. (A8) —(A10) are im-
mediately reduced to (4.10)—(4.12) and therefore Z,
bp,

(ii) Gluon self en-ergy in the tivo co-mponent Eeynman
calculation. In the two-component Feynman perturba-
tion theory, the one-loop gluon self-energy can. be written
as

(a) (b)

Explicitly,

d4k

(2vr) 4 k2 (q —k) 2

xI"P(q, —k)1'™p'(—q, q —k),

IIab g (facdf bdc)
2 [q+]

(A29)

d4k k+ q+ —k+

(2vr)4 k2 —m2 (q —k)2 —m2

x Tr[I"p(k, q)1 ~p(k —q, —q)], (A30)

2

-'II;. ', = g T (T Tb)
[q+]

(A24)

where the terms on the right-hand side are represented
by the Feynman diagrams shown in Fig. 5 in which Fig.
5(d) corresponds to Figs. 3(d) and 3(e) of the x+-ordered
diagrams. Using the rules listed in Table II, we have

4
—g2(facefbfd) Fima( k))4 gp

x Dp, Dpf I"p'( q, q ——k), (A25)
4

—( g) (T T ) Tr[I" (q —k, k)

xSp(k)Sp(q —k)1 ~p(k, q)], (A26)
d4k

(—2ig )(T T ) Tr(o*o*)Sp(k)
(2vr) 4

X
g [q+ —k+] q+ + k+ J

' (A»)
4

(
. 2) (facdf bcd) Daa

2 (2vr) 4

(p+ + k+)2l
I ~;,b« —be~, i + ~«b, i

+
~

~'g~« —~«b, t+~a~, l.

(A28)

(c)
q

FIG. 5. The Feynman diagrams for the one-loop gluon
self-energy in two-component LFQCD.

d4k k+

(2.) k

x
]

1

E[q+ —k+] [q++ k+]) ' (A31)

2
'II.b-= T (T Tb)

[q']

84k

(p+ + k+)2 (p+ k+)2
+ +

(p+ k+)2 (p+ + k+)2

ab 2 (facdf bcd)
'g4 —

2
~

(A32)

Again, by using (A22) and (A23), it is easy to find that
II, b(q) = 8q (q) b bhi j. Therefore, in perturbation the-
ory, the two-component Feynman theory is reduced to
the x+-ordered Hamiltonian theory if we integrate over
k first.

One advantage of two-component Feynman perturba-
tion theory is that we can use the MI. prescription and
dimensional regulator to regulate the light-&ont infrared
divergences and ultraviolet divergences in Feynman loop
integrals, and may recover the multiplicative renormaliz-
ability of the theory, at least in the one-loop approxima-
tion, as shown in Ref. [24].
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