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Light-front QCD.
I. Role of longitudinal boundary integrals
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In this first part in a series of papers on light-front +CD, we address the global properties of light-
front canonical structure. In the light-front canonical gauge theory, the elimination of unphysical
gauge degrees of freedom leads to a set of boundary integrals which are associated with the light-
front infrared singularity. We find that a consistent treatment of the boundary integrals leads to
the cancellation of the light-front linear infrared divergences. For physical states, the requirement
of finite energy density in the light-front gauge (A+ = 0) results in equations which deterinine the
asymptotic behavior of the transverse (physical) gauge degrees of freedom at longitudinal boundary.
These asymptotic fields are generated by the boundary integrals and they involve nonlocal behavior
in the transverse direction that leads to nonlocal forces which may be the source of +CD confinement.
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Quantum chromodynamics (QCD), the theory of the
strong interaction, is a theory in physics that has been
accepted widely as fundamental but has not been tested
by precise experiments. The lack of precision experimen-
tal tests comes from the fact that we are still unable to
apply QCD to describe strong interaction processes at
low and intermediate energies, although many of these
processes have been measured for a long time. For a typ-
ical example, we do not know how to accurately calculate
the proton magnetic moment which is extremely well-
known experimentally. Also, we do not know how to use
chiral symmetry in QCD to precisely address the issue
of PCAC (partial conservation of axial-vector current),
which underlies almost all the theoretical understanding
of the low-energy strong interaction. At high energies,
the asymptotic freedom behavior allows us to use per-
turbation theory. Even there the employment of QCD
requires assumptions of factorization that separate low-
and high-energy contributions to physically accessible ob-
servables, and the perturbation theory is only applicable
to the high-energy contribution [1]. A currently available
nonperturbative calculation scheme for low and interme-
diate energy QCD is lattice gauge theory [2]. Exten-
sive work on lattice gauge theory has led to significant
progress in various avenues of research; however, accu-
rate information on the bound states of light quarks is
still not available. The difhculty in solving low-energy
QCD is that theorists have been unable to demonstrate
a clear physical picture of the quark confinement and the
dynaInical mechanism of chiral symmetry breaking from
the fundamental theory.

Recall that QCD was initially proposed as a strong

interaction field theory in light-&ont coordinates, moti-
vated by light-&ont current algebra [3]. In recent years,
the search for nonperturbative solutions of QCD has led
to an extensive exploration of light-front Beld theory
(LFFT). The main attractions for studying nonpertur-
bative QCD in light-&ont coordinates, called &ont form
by Dirac [4], are that [5] (1) boost invariance in LFFT is
a kinematical symmetry, which is important in the study
of composite systems, particularly the hadrons in QCD,
(2) LFFT is a relativistic field theory with nonrelativistic
structure so that the relativistic bound-state equations
are reduced to Schrodinger-type equations, &om which
the nonrelativistic quark model may find its justification
in QCD in light-&ont coordinates, and (3) the positivity
of the longitudinal momentum (k+ ) 0) in light-front
Hamiltonian field theory implies that the light-&ont vac-
uum consists only of particles with longitudinal momen-
tum k+ = 0, which may simplify the QCD vacuum struc-
ture. These properties provide a hope to solve QCD in
light-&ont coordinates for hadrons.

A systematic formulation of the light-&ont field the-
ory for QCD [QCD in light-front coordinates with light-
front gauge, (LFQCD)] was given by Casher as well as
by Bardeen et al. about 17 years ago [6], based on the
light-front quantization approach developed by Kogut
and Soper [7] for QED, while the light-&ont pure Yang-
Mills theory was studied by Tomboulis even earlier [8].
The perturbative LFQCD for various exclusive processes
has also been investigated extensively by Lepage and
Brodsky in the very early 1980's [9]. However, nonper-
turbative LFQCD has not been explored. In order to un-
derstand basic nonperturbative relativistic bound-state
problems in LFFT, in the last few years many works have
mainly focused on various (1 + 1) dimensional field the-
ory models, and some on the (3+1) dimensional Yukawa
model and QED [10,11]. One main obstacle in extending
the study to nonperturbative LFQCD is that a formal-
ism to address simultaneously the major difBculties of
QCD in light front coordinates is still not in place. These
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difficulties include the renormalization problem (even in
perturbation theory), the confinement problem, and the
problem of the QCD vacuum and dynamical chiral sym-
metry breaking.

The renormalization problem in the study of relativis-
tic bound states in LFFT has several aspects. Since
power counting is difFerent on the light front [12], there
are additional ultraviolet divergences in LFFT, compared
to the instant form (i.e. , equal-time quantization) [4].
The additional ultraviolet divergences have received some
attention recently in the context of the relativistic bound-
state problem in the (3+1) light-front Yukawa model [13].
A renormalization group based approach has been pro-
posed for LFFT [14]. Ultraviolet divergences in light-
front perturbation theory is also not straightforward due
to the lack of covariance in the formalism [15], and non-
covariant counterterms are needed to restore Lorentz co-
variance [16]. LFQCD also contains severe light-front
in&ared divergences. The resolution of the light-front in-
frared divergence problems is not complete even in per-
turbative LFQCD [17]. Issues arising from the possible
mixing of the ultraviolet and infrared divergences in the
relativistic bound-state problems in LFFT have not been
addressed so far.

Understanding confinement is crucial for building
hadroruc bound states in QCD. In the canoincal LFQCD
formulation of Lepage and Brodsky [9], the associated
Hamiltonian contains a linear potential between color
charges only in the longitudinal direction, which does not
provide a confinement mechanism for quarks and gluons
in 3+ 1 dimensions. Therefore, it may not be suitable for
describing low-energy hadronic structure. Recently, Wil-
son proposed a formalism to construct a confining light-
front quark-gluon Hamiltonian for LFQCD [12]. Wilson
suggested that a starting point for analyzing the full QCD
with confinement in light-&ont coordinates is the light;—

front in&ared divergences. Based on light-front power
counting, the counterterms for the light-front infrared
divergences can involve the color charge densities and in-
volve unknown nonlocal behavior in transverse direction
that become a possible source for transverse confinement.
However, the analysis is not yet complete and a scheme
for practical calculation has yet to be developed.

Dynamical chiral symmetry breaking is another impor-
tant issue in the study of QCD for hadrons. In instant
form, dynamical chiral symmetry breaking is associated
with a nontrivial vacuum through the Goldstone mecha-
nisin. In LFQCD, the vacuum is trivial when the k+ = 0
sector is ignored. Therefore, it seems to be natural to
argue that in order to obtain a nontrivial vacuum, one
has to solve the k+ = 0 modes [ll]. Solving the A,

+ = 0
modes may provide us with mechanism for spontaneous
chiral symmetry breaking. Yet, the k+ = 0 sector is sin-
gular and is very ambiguous. This singularity may exist
even in free field theory. Thus, it is not clear whether
the nontrivial structure of LFQCD must be associated
with the A:+ = 0 modes. Furthermore, by involving the
k+ = 0 sector, the main advantage of LFQCD that sim-
plifies nonperturbative bound states is lost, and therefore
there is no strong reason why we should study nonpertur-
bative QCD in light-front coordinates. In fact, dynamical

symmetry breaking can be manifested in difFerent ways
in difFerent frames. It may be more attractive if we could
formulate LFQCD with a trivial vacuum such that the
dynamical breaking of chiral symmetry is manifested ex-
plicitly via efFective interactions. However, the attempt
in this direction has not yet started.

All these problems mentioned above are essential and
should involve non-Abelian gauge degrees of freedom in
QCD. We are still unable to solve QCD at the moment.
As a starting point, we shall address in this paper the
problems of light-front infrared singularity based on a
canonical quantization approach to LFQCD. We hope
that these discussions will provide some insight for solv-
ing QCD in light-front coordinates in the future.

We apply the conventional canonical procedure [18] to
QCD in light-front coordinates. It turns out naturally
that QCD is a generalized Hamiltonian system [19]where
the first-class gauge and quark constraints emerge explic-
itly in the Lagrangian. As is known, in the light-front
gauge these first-class constraints become solvable first-
order difFerential equations, and are used to eliminate un-
physical degrees of freedom to all orders of the coupling
constant. However, the gauge constraint equations con-
tains a set of boundary integrals at longitudinal boundary
for the longitudinal color electric fields [see Eq. (16) and
the following discussions]. These longitudinal boundary
integrals are the color charge density integrated over the
longitudinal space (x ) and are the source of the light-
front infrared singularity. The resulting LFQCD Hamil-
tonian contains a boundary term proportional to these
boundary integrals which are overlooked in previous in-
vestigations of light-front gauge theory.

We find that in perturbation theory the boundary inte-
grals serve to remove linear infrared divergences in loop
integrals. Removing the linear infrared divergences in
LFQCD is a serious problem that has not been solved
completely. In usual Feynman theory of perturbative
LFQCD, by use of the gauge-fixing term, one can derive
the gauge propagator involving I/A:+ singularity. Beyond
the leading order calculation, this singularity leads to
linear infrared divergence in the principal value prescrip-
tion. In x+-ordered Hamiltonian perturbation theory,
the linear infrared divergences emerge even in tree-level
and one-loop diagrams. By including the boundary term
in the Hamiltonian, we obtain a consistent distribution
function for the product of two principal value prescrip-
tions, from which the linear divergences in loop integrals
are removed by the same divergences from instantaneous
interactions. This finding may be useful for perturbative
LFQCD calculations in high-energy processes.

The relevant boundary integrals in the Hamiltonian
formulation of axial gauge were indeed pointed out first
by Schwinger in 1962 [20]. Because of the difFerent struc-
ture between LFFT and the field theory in instant form,
the consequences from the boundary integrals we study
in this paper have not yet been realized explicitly in ax-
ial gauge. One of the important differences is related
to the QCD vacuum. In instant form with axial gauge,
the QCD vacuum cannot be simple. In LFQCD, gen-
erally the vacuum should also be nontrivial because of
the A:+ = 0 modes. However, the choice of antisymmet-



4870 WEI-MIN ZHANG AND AVAROTH HARINDRANATH 48

ric boundary conditions for Geld variables at longitudinal
boundary excludes the k+ = 0 modes. In this case, the
LFQCD vacuum remains trivial as the bare vacuum, and
thus the nontrivial QCD structure must be carried purely
by the light-front infrared behavior of gauge fields.

For physical states, the requirement of finite energy
density results in asymptotic equations for transverse
(physical) gauge fields at longitudinal boundary. These
asymptotic gauge fields are generated by the boundary
integrals, and they involve not only the color charge den-
sities in transverse space but also nonlocal behavior in
the transverse direction. We find that by replacing the
nontrivial boundary condition with a trivial one for the
transverse gluon fields, many transverse nonlocal interac-
tions are induced by the boundary integrals, which may
lead to quark and gluon confinement. This possibility
will be explored in further investigations.

The paper is organized as follows. In Sec. II, a canon-
ical procedure for LFQCD is studied where we focus on
the problem of the boundary conditions in solving the
light-front constraints. In Sec. III, we discuss canoni-
cal quantization of LFQCD by use of the rigorous phase
space structure [21] rather than the Dirac procedure [22].
In Sec. IV, the roles of boundary integrals are explored
in detail. Some remarks are made for relevant problems
in Sec. V. Finally, in the Appendix, we demonstrate the
cancellation of linear infrared divergences at the tree level
in qq scattering and in one-loop diagrams for the quark
mass correction. The detailed perturbative calculations
will be given in the following papers [23,24].

II. CANONICAL FORMULATION AND
BOUNDARY CONDITION

ordinates is constructed by defining the conjugate mo-
menta of field variables (A~(x), @(x),vP(x)) as

E:(*) = = F+-~(x),
08 1

B(8 A„—) 2

BZ 1- + i
vrp(x) = = i Qp—+ = —Qt (x),B(B@) 4 2 +

t9l'. .1 o + i
~gt(x) = = —i—p p+g = ——g+(x),0(B @t) 4 2

(4)

/+& g A& + t g g t

A.-C. + — 'C+ Ct1

where

m = —,
' (E. '+ a ')

+2 + o'g iBg+gAg + m + Hc.

28+(E A ) —8'(E'A ) (8)

and

C = (8+E + f-'Ab+E, )

(O'E' + gf—'AbE;) + gg+tT g+,

where the fermion spinor in light-&ont coordinates is di-
vided into @ = g++ g, @~ = A~/ with A~ = 2p p+.
Following a similar procedure in instant form described
by Faddeev and Slavnov [18] for gauge theory, we sepa-
rate the time derivative terms &om the Lagrangian

We start from the QCD Lagrangian
C = (iO+ + gA+)@

—(in' . Bg + gng Ag + Pm)v)+. (10)

2Tr(F" F„„—) ~ Q(ip„D" —m)g,

where F""= 0~A —0"A" —ig[A", A ], A~ = P A~T
is a 3 x 3 gluon field color matrix, and the T are the
generators of the SU(3) color group: [T,T ] = if 'T'
and Tr(T T ) = 2b b. The field variable @ describes

quarks with three colors and Ny flavors, D" =
2

0~
—igA" is the symmetric covariant derivative, and m is
an Nf x Nf diagonal quark mass matrix. The Lagrange
equations of motion are

B„F""+ gf 'Ab„F," + gpss"T @ = 0,
(ip„B" —m + gp„A")g = 0.

(2)
(3)

The light-&ont coordinates are defined as x+ = x
xs, xz —x' (i = 1, 2), where x+ is chosen as the "time"
direction along which the states are evolved, and x and
x~ become naturally the longitudinal and transverse co-
ordinates. The inner product of any two four-vectors is
then a~b" =

2 (a+b + a b+) —a~ b~, and the time and
space derivatives (8" =

& ) and the four-dimensional

volume element are given by 0+ = 2, 8 = 2& +,
0' = —, , and d x = 2dx+dx d x~, respectively.

Naively, the canonical theory of QCD in light-front co-

In Eq. (8) we have defined B = F as the longitudinal
component of the light-&ont color magnetic field.

The reason for writing the Lagrangian in the above
form is to make the Hamiltonian density and also the dy-
namical variables and constraints manifest. In Eq. (7),
the first term contains all the light-&ont time derivative
terms. From the definition of Eqs. (4)—(6), it immedi-
ately follows that only the transverse gauge fields A'

and the up-component quark fields g+ and g+ are dy-
namical variables. The second term in Eq. (7), R, is
a Hamiltonian density. It contains three parts, the first
part involves the light-&ont color electric and magnetic
fields; the second, the usual quark Hamiltonian with cou-
pling to the gauge field, and the last a surface term. In
addition to the kinetic term and the Hamiltonian den-
sity, Eq. (7) also contains an additional term. This
is a constraint term which indicates that the longitudi-
nal gauge field A and the down-component quark fields

(Q ) are only the Lagrange multipliers for the con-
straints C, C (Ct) = 0. These constraints arise from the
definition of canonical momenta in the light-&ont coordi-
nates and are consistent with the Lagrangian equations
of motion. The gauge field constraint C = 0 is in fact
the light-&ont Gauss law which is an intrinsic property of
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are these two constraints reduced to solvable one-
dimensional differential equations:

ig+E — giEi + g(f abAcEii @t Ta@ )

iB+Q = (iag. (9g+gng. Ay+Pm)g+ .
(12)

In order to solve Eq. (12), we have to define the oper-
ator 1/(9+. In general,

( I ')
X , X , Z~

)

1
dz, s(x —x, )f(x, , x, x~)

+C(z+, x~),
where s(x) = 1, 0, —1 for x ) 0, = 0, ( 0, respectively,
and C(z+, x~) is a x independent constant. However,
since the canonical conjugate of transverse gauge field in
LFQCD is a dependent variable [E' = —2(9+A', see Eq.
(4) with A+ = 0], one has to impose a priori a boundary
condition for A in order to derive the canonical com-
mutation relations for the physical Geld variables. It has
been shown [26,27] that the suitable definition of 1/(9+
which uniquely determines the initial value problem at
x+ = 0 for independent field variables is C(z+, x~) = 0.
This corresponds to choosing an antisymmetric boundary

gauge theory. The fermion constraint C (Ct) = 0 is purely
a consequence of using the light-&ont coordinates.

The existence of constraint terms simply implies that
@CD in the light-front coordinates is a generalized
Hamiltonian system [19]. These constraints are all sec-
ondary, first-class constraints [25] in the Dirac procedure
of quantization [22]. To obtain a canonical formulation
of LFQCD for nonperturbative calculations, we need to
explicitly solve the constraints, namely, to determine the
I agrange multipliers, to all orders of the coupling con-
stant. Generally, it is very dificult to analytically de-
termine the I agrange multipliers &om the constraints
C, C = 0 since they are coupled by A+. Only in the
light-front gauge [7,26],

A+(x) = A'. (x)+A'. (x) = 0,

condition for Geld variables in the longitudinal direction.
Using Eq. (13) and the definition E' = —2o)+A', we

can explicitly express E in terms of transverse gauge
fields A' and the independent light-&ont quark field @+
from the gauge constraint in Eq. (12):

E (T) = —O'A'(T) ——j dT ~(x —x' )p (x', x)

+C (z+, zg), (14)

where we have defined the color charge density

p(x, z+, z~)—:p(x, x)

1 (fabcAi g+Ai + 2yt ra@ ) (15)

To uniquely determine the initial values at x+ = 0,
we require that the E and A satisfy antisymmetric
boundary conditions at longitudinal boundary, namely,
C (x+, x~) = 0. As a result,

E (x) *:— -(9*A*
i ~ p — dx p (x,x).

2

(16)

A/2

dx s(x —x' )s(x —x" )2 —A/2

1= —ix' —x"
i
+ —A, (17)

2

where the parameter A denotes the distance between two
boundary points in the longitudinal direction, the color
electric field energy in the Hamiltonian becomes

Since E satisfies now an antisymmetric boundary
condition, its boundary values at longitudinal boundary
are completely determined by Eq. (16), where the second
term is boundary integrals over x for the color charge
densities. As we will see later these integrals are the
source of light-front infrared singularity. We call them
the longitudinal boundary integrals, or simply the bound-
ary integrals.

By using the identity [20],

1
Ha = — dz d z~(E )

1 — 2
' '

2
OO

2
+g dx BA E' x —x p x, x

OO 2 OO

dx' p (x, x)~x —x'
~p (x', x) +

~

llm A
~

d xJ dx p (x, x)
—OO (%moo ) 2

(18)

From Eq. (18), we see that after eliininating the longi-
tudinal gauge Geld in the light-front gauge, color charge
instantaneous interactions emerge in the Hamiltonian. In
addition, Eq. (18) also contains a boundary term (the last
term) due to the linear instantaneous interaction. There

is no such term in Coulomb gauge because the Coulomb
potential vanishes at spatial infinity. This term is pro-
portional to the square of the boundary integrals and is
associated with the infrared singularity. In Sec. IV, we
will show that in perturbation theory, this term is regu-
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larized by the distribution function of the product of two
principal value prescriptions and leads to the cancellation
of the light-&ont linear in&ared divergences. For physical
states, the requirement of finite energy density results in
the asymptotic equations for the transverse gauge fields
which show that the asymptotic transverse gauge fields
do not vanish at longitudinal boundary and are generated
by the boundary integrals. Thus, the boundary integrals
can inherently affect @CD dynamics.

Now the Lagrange multipliers in Eq. (7) can be easily
determined. The Lagrange multiplier @ is the solution
of the quark constraint in Eq. (12):

OO
Z

(x) = —— dx' d'xi'(x —x' )b'(x~ —xi)

x(n~ [iB~ + gA~(x')] + Pm)g+(x').

The Lagrange multiplier A is obtained from the defini-
tion E = —-0+A and Eq. (16):

1
A (x) = —— dx' s(x —x' )E (x+, x', x~) .

(20)

For this solution, the first surface term in Eq. (8) van-
ishes. Moreover, it is reasonable to assume that the
transverse color electric fields E' as well as A' vanish
as O(r ) and O(r ) at r = ~x~~ ~ oo because the
gauge &eedom is totally fixed at the transverse infinity.
Thus the other surface term in Eq. (8) vanishes as well.

After the determination of the Lagrange multipliers,
the LFQCD Hamiltonian is given simply by

dx d x~( '(E + -B 2)

+g+t [n'(i 0' + gA') + Pm]g

1, . - - gd d —(o)'A~ ) + f 'A' A~0'A' + f ' f A' A'A' A'

OO

+— dx' - [2gO'A's(x —x' )p (x', x) —i@+(n'(iB'+ gA*) +Pm)s(x —x'
)

x(n'(iB' + gA') + Pm)g+] —— «' ~-).*,*)l* —*' lp-(*', *))
(. g'

+~ lim A
4

x~ dx p~ x ) x

III. PHASE SPACE APPB.IOACH TC)
LIC HT-FR, ONT QUANTIZATION

A self-consistent formulation of LFQCD requires that
the resulting Hamiltonian must generate the correct
equations of motion for the physical degrees of freedom
(A, @~,g+). This section is devoted to the derivation
of canonical quantization and a check of the consistency.

To see how to correctly reproduce the Lagrangian
equations of motion, we need to find consistent commuta-
tors for physical field variables. In the light-front gauge,
the Lagrangian of Eq. (7) is reduced to

8 = —0+A'o) A* + —(g+t8 g+ —0 g+~g+) —'R. (22)

is still a constrained Hamiltonian system. Usually, in or-
der to quantize such a constrained Hamiltonian system,
one has to use the Dirac procedure, by imposing the so-
called primary, second-class constraints E' + &0+4' = 0
(similarly for vr@ &t ) to construct Dirac brackets. How-

ever, for these trivial primary constraints, the mathemat-
ically well-defined canonical one-form overs a rigorous
phase space structure for canonical quantization [21,28].
Now, we will use such an approach for light-front quan-
tization.

The phase space structure for the physical variables
(E', A'; or@,@+,7r@t, g+) is determined rigorously by
rewriting Eq. (22) as a Lagrangian one-form l:dx+ (apart
from a total light-front time derivative):

1+ ' 2 Z8+A*, vr—@, = —g+t, 7r~t = ——g+. (23)

The canonical momenta of the physical field variables
A', @+,vP+t are

(24)

Zdx+ = 22(E'dA' +7ry dQ++ dQ+t7r~t

A* dZ' —dere @+——g+tdvr~t ) —'Rdx+

I ~pdg —Rlx

However, Eq. (23) shows that all the canonical momenta
are functions of the independent field variables. Thus, af-
ter determining all the Lagrange multipliers, the system

where the first term on the right-hand side is called
the canonical one-form of the physical phase space, and
quark fields are anticommuting c numbers (Grassmann
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variables). Correspondingly, the symplectic structure or
the Poisson brackets of the phase space is given by

w = 2r pdq dq~ or [q~, q ]„=I (25)

Canonical quantization is realized by replacing the Pois-
son brackets by the equal-x+ commutation relations

Explicitly

[q~q ] = ir p. (26)

[A*(x) Fb(y)] + „+ = i2b~bb' b (x —y),

(@+(z) ~~ (y))*+=y+ =i 2+b'(* —y),

(&+(z) &gt (y))*+=,+ = —i 2+b'(z —y),

(28)

(29)

or

[A*(z), ct+A~b(y)] i „+ =ib bb*'b (x —y),
[A*.(z) A'b(y)]*+=~+

V1ib bb" ——s(z —y )b (z~ —y~),4

(32)

1x +(a~ (~8~ +a@~) +Pm))@+ .

0 A* = —[A', 0]

[D~bFq~' —D'bEb —gj
' —g f 'Ab 0+A',],

(34)
where D'b ——b bB' —gf b'A'„and A and E are given
by Eqs. (20) and (16) [30].

In addition, choosing antisymmetric boundary condi-
tions in the longitudinal direction in LFQCD has the fol-
lowing advantages.

(1) With any other boundary condition, Eq. (14) con-
tains an arbitrary x -independent function. Such an
arbitrary function leads to ambiguities in formulating
LFQCD. Only with an antisymmetric boundary condi-
tions, is this arbitrary term zero and formally LFQCD
can be completely defined. Furthermore, by the choice

where b (z —y)—:b(x —y )b (z~ —y~). All other com-
mutators between the physical degrees of freedom vanish.
Note that, unlike in the instant form, the commutator
[A' (x), A~&(y)] does not vanish since the canonical con-
jugate 8' is a function of the field variable A'. Equa-
tion (31) is obtained by the use of Eq. (13) with the
antisymmetric boundary condition (i.e. , C = 0), which
leads to the antisymmetric boundary condition for A' (x):
A' (—oo) = —A' (oo) [29]. Using the basic commutation
relations of Eqs. (31) and (32), it is straightforward to
verify that the equations of motion are consistent with
Eqs. (2) and (3):

1
~ 0+ =

—,[0+ ~]

igA —(ng (iBg y gAi) + Pmj
~ ~

of antisymmetric boundary conditions, the residual gauge
&eedom in A+ = 0 is completely fixed [31].

(2) For the definition Eq. (13) with C(x+, zi ) = 0, all
field variables in LFQCD satisfy antisymmetric boundary
conditions at longitudinal boundary except @~(z), whose
boundary condition is not specified. However, the equa-
tion of motion for @~(z) contains (&+ )g~ [see Eq. (33)]
which forces it to satisfy the antisymmetric boundary
condition. As a result, the k+ = 0 modes are completely
excluded in the momentum expansion of field variables.
Since the LFFT vacuum is occupied only by the k+ = 0
particles, with the help of antisymmetric boundary con-
dition the LFQCD vacuum is ensured to be trivial as
the bare vacuum. The nontrivial structure of QCD (the
k+ = 0 mode effect) is carried purely by light-front in-
frared properties in field operators. We also must em-
phasize that the exclusion of the k+ = 0 mode in field
variables by the antisymmetric boundary conditions does
not mean that the zero modes of composite operators are
removed.

It is worth pointing out that the antisymmetric bound-
ary conditions provide a well-defined regulator to the
light- front infrared divergences in momentum space,
namely, the principal value prescription. In Feynman
perturbation theory, the use of the principal value pre-
scription leads to the "spurious" poles in light-front Feyn-
man integrals, which prohibit any continuation to Eu-
clidean space (Wick rotation) and hence the use of stan-
dard power counting arguments for Feynman loop inte-
grals [32]. This causes difFiculties in addressing renor-
malization of QCD in Feynman perturbation theory with
light-front gauge. In the last decade there are many in-
vestigations in attempting to solve this problem. One
excellent solution is given by Mandelstam and Leib-
brandt, i.e. , Mandelstam-Leibbrandt (ML) prescription
[33], which allow continuation to Euclidean space and
hence power counting. It has been also shown that with
ML prescription, the multip/icative renormalization in
the two-component LFQCD Feynman formulation is re-
stored [34].

In the present paper, we study QCD in light-&ont
equal-x+ quantization. Unfortunately, ML prescrip-
tion cannot be applied to equal-x+ quantization be-
cause ML prescription is defined on the boundary
condition which involves z+ itself [35] and are not
allowed in equal-x+ canonical theory. Yet, as is
pointed out recently by Wilson [12], light-&ont power
counting difFers completely &om the power counting
in equal-time quantization that noncanonical counter-
terms are allowed in LFFT. Furthermore, the cur-
rent attempts to understand nonperturbative QCD in
light-front coordinates is based on the x+-ordered (old-
fashioned) diagrams in which no Feynman integral is in-
volved [10,11]. Thus the power counting criterion for
Feynman loop integrals is no longer available in LFQCD
Hamiltonian calculations. In Hamiltonian perturbation
theory with the principal value prescription, LFQCD
contains the severe linear and logarithmic infrared diver-
gences generated from the boundary integrals. In pertur-
bation theory, the logarithmic infrared divergences can
be completely canceled in the complete loop diagrams,
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as was previously shown in the calculation of QCD cor-
rection to the scale evolution of hadronic structure func-
tion up to two-loops using the principal value prescrip-
tion [36]. A simple example of such a cancellation in x+-
ordered perturbative theory is also given for quark mass
renormalization in the Appendix. In the following papers
of this series [23,24] we will present a detailed discussion
on 2:+-ordered perturbative loop calculations and renor-
malization of LFQCD Hamiltonian theory up to one-
loop, where the logarithmic infrared divergences are sys-
tematically analyzed and their cancellation is also shown
in the coupling constant renormalization. However, the
severe light-&ont linear infrared divergences that even
exist in tree level have not been explored. The renormal-
ization of light-&ont Hamiltonian theory is an entirely
new subject where investigations are still in their prelim-
inary stage [12—16]. Since the light-front power count-
ing allows noncanonical counterterms, a complete under-
standing of renormalized LFQCD may not be worked out
within perturbation theory, and new renormalization and
regularization approaches are needed to be developed. In

this paper we show that the boundary integrals play an
important role in removing the severe linear in&ared di-
vergences.

IV. ROLE OF BOUNDARY INTEGRALS

1. Removing linear infrared divergences I.n the past
decade, applications of LFQCD are mostly restricted in
perturbation theory. In the original development of Lep-
age and Brodsky the boundary term in Eq. (21) is ig-
nored so that the light-front instantaneous interactions
are thought to be linear potentials [7,37]. However, we
find that this negligence leads to severe inf'rared singu-
larities in the perturbation theory. To see this clearly,
we consider the formulation in momentum space. For
the prescription of 1/8+ expressed in terms of the inte-
gral of Eq. (13), the standard Fourier transform leads to
the principal value prescription in momentum space as
follows:

1/' 1 1 5 ~ 1dx' e(x —x'
)f(x' ) m —

~
y

~

f(k+) = f(k+) (35)

11' 1f (x ) = — dx' dx" e(x —x' )e(x' —x" )f (x" )(g+ ) 42

1 ( 1
(36)

Equation (36) defines the product of two principal value prescriptions of Eq. (35) in terms of the distribution function.
In this derivation, it follows [see Eq. (17)] that the boundary term in Eq. (21) have been regularized. It is known
that Eq. (36) leads to linear infrared divergences in loop integrals. In order to avoid this divergence, the following
prescription has been introduced [9]:

1 1 1

This corresponds to the case that the longitudinal bound-
ary term in Eq. (17) is ignored. Equivalently, the last
term in Eq. (21) is dropped. Apparently, this prescrip-
tion removes the linear infrared divergence originated
from the instantaneous interactions. Unfortunately in
such a prescription, beyond leading order calculations in
Feynman perturbation theory or even in leading order
calculation in the old-fashioned Hamiltonian perturba-
tion theory, the product of two principal value prescrip-
tions appearing from three-point vertex either is not de-
fined or leads to linear infrared divergences. We shall
show that it is the prescription of Eq. (36) which serves
for the cancellation of linear infrared divergences origi-
nated from the three-point vertex and from the instanta-
neous interactions. Here we only discuss the x+-ordered
(old-fashioned) perturbative calculations.

First at the tree level, for example, for qq scattering
[see (Al)], only the linear potential leads to a 1/e di-

vergence as k+ ~ 0. The scattering involving one-gluon
exchange is 6.nite due to the principal value prescription.
Thus in the naive prescription (37), even the lowest order
qq scattering amplitude is 1/e divergent. By including
the boundary term, this divergence is canceled. In loop
calculations, for example, for the one-loop correction to
the light-front quark energy [see (A2)], the one-gluon ex-
change diagram (which contains an integral of 1/[k+] )
leads to a 1/e divergence; the linear potential is, however,
infrared finite in the relevant integral of 1/[I%.'+ ]. Hence,
in the naive prescription, loop calculations also contain
the severe 1/e infrared divergence. In the prescription of
(36), the instantaneous interactions are the linear poten-
tials accompanied by the boundary term, which produce
a 1/e divergence from the integral of 1/[A:+]2 that cancels
precisely the same divergence in the one-gluon exchange
diagram. Furthermore, the cancellation in the one-loop
correction of quark-gluon vertex has also been verified
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[24].
The reason that the linear infrared divergences are re-

moved by using the prescription of (36) can be under-
stood as follows. From Eq. (16), the k+ singularity orig-
inated from the boundary integrals. The color electric
energy in LFQCD Hamiltonian contains two sources for
the k+ singularity. One is the explicit boundary term, the
last term in Eq. (21), which is 1/k+ singular. The other
belongs to the gluon emission vertex. The resultant gluon
emission vertex is the first term in the square bracket in
Eq. (21), which is 1/k+ singular. Therefore, in one-gluon
exchange diagrams, it produces a 1/1+2 singularity from
the product of two principal value prescriptions for the
definition of Eq. (35). The associated linear divergence
in loop integrals is the same as that from the 1/k+ sin-
gularity of the boundary terms in the prescription of Eq.
(36), with a difFerent sign from an energy denominator,
and therefore the linear infrared divergence is canceled.
Note that in Eq. (21) there is another 1/A:+ singularity
(in the second term in the square bracket), which comes
from the quark constraint [see Eq. (19)]. Yet, in one-
gluon exchange diagrams, it leads to a form 1/(pi pz )
(p+i

—@2+ + k+) which does not generate infrared di-
vergences. Thus, all linear infrared divergences originate
from the same source, the boundary integrals. Any negli-
gence of boundary term in the Hamiltonian through Eq.
(37) will lead to unwanted infrared divergences.

However, the cancellation of the linear infrared diver-
gences in higher order loop integrals (beyond the one-loop
diagrams) may also depend on the regularization of ul-
traviolet divergences. The cancellation beyond leading
order should be true for gauge invariant regularization.
For gauge variant regularization, such as transverse di-
mensional regularization [6], boost invariant cutoff regu-
larization [38], and the explicit cutoff regularization [39]
used in the x+-ordered perturbative LFQCD, we need to
introduce gluon mass counterterms. These counterterms
break gauge invariance and thereby may also spoil the
cancellation of linear in&ared divergences in higher or-
der diagrams. However, if we set the quark mass m = 0
in perturbative LFQCD, the transverse diinensional reg-
ularization results in a zero gluon mass correction. In
this case the cancellation is still satisfied in two-loop dia-
grams. In deep inelastic scattering, one often sets m = 0
in calculating high-order corrections to the scale evolu-
tion of hadronic structure functions [36]. A more detailed
discussion on perturbative LFQCD will be presented in
the following papers [23,24]. For low-energy dynamics,
the light quark mass is crucial and perturbation theory
is no longer useful. Removal of in&ared divergences needs
to be treated in an alternative way, which we shall discuss
later.

We inay point out that in 1+1LFQCD [40], the bound-
ary integral is the color charge operator. The correspond-
ing boundary term occurring in the Hamiltonian [41] is
then proportional to the square of color charge. It is in-
deed this term resulting in an infinite quark mass which
is regarded as evidence of quark confinement in 1 + 1
QCD. Explicitly, the linear potential does not provide
an infinite mass for the quark, as shown above (also see
Ref. [42]), but the boundary term adds a I/A:+2 singular-

ity (the I/e divergence) to the quark propagator. Since
there are no transverse gluons in 1+ 1 QCD to cancel
this divergence, the boundary term recovers 't Hooft's
solution of the infinite quark mass pole [40]. In physi-
cal (zero color charge) states, the boundary term does
not contribute to physical observables because it is the
square of the color charge operators. Quark confinement
in gauge-invariant states arises purely &om the linear po-
tential. This implies that ignoring the boundary integral
in 1+ 1 QCD may not affect any observable. In 3+ 1
QCD, the existence of transverse gluons changes these
consequences.

2. Nonlocal interactions in the transverse direction.
For physical states, Gnite energy density requires that
the longitudinal color electric field strength must vanish
at longitudinal boundary (a similar requirement was used
by Chodos in axial gauge [20]):

E
~

— ~ ——0 (38)

or explicitly

O'A*
~

--~ = p —j dT p (x, 2:). (39)

A' = A'~ + A'~, (40)

where

Equation (39) is consistent with our choice of antisym-
metric boundary condition. Moreover, this condition ex-
plicitly shows that the transverse gauge fields at longi-
tudinal boundary are generated by the boundary inte-
grals [43]. Clearly, Eq. (39) is satisfied only for physical
states. In perturbation theory, we cannot use this condi-
tion because in perturbative QCD, we consider not only
physical states but also color nonsinglet states for which
Eq. (39) may not be satisfied. Therefore the main ef-
fect of Eq. (39) should be manifested in nonperturbative
dynamics, i.e. , bound states.

One of the nonperturbative approaches to solve bound
states in I FFT is the Tamm-DancoB' approach, which
truncates the Fock space to be a few-body state space
[44]. Such an approach becomes practically applicable
only when the vacuum is trivial. We have given a real-
ization of a trivial vacuum in this paper. However, to ad-
dress hadronic bound states, the existence of nontrivial
interactions, namely, confinement potentials, is crucial.
An explicit construction of such interactioiis from QCD is
still lacking. The LFQCD Hamiltonian contains linear in-
teractions only in the longitudinal direction [see Eq. (21)].
Quark and color confinement certainly require similar po-
tentials in the transverse direction as well. We suggest;
that these nontrivial interactions in LFQCD might hide
in the condition of Eq. (39).

From Eq. (39) we see that the asymptotic A' fields
at longitudinal boundary are proportional to the color
charge density in transverse space and also that they in-
volve nonlocal behavior in the transverse direction (in-
duced by the transverse derivative). Intuitively, we may
separate the transverse gauge potentials into a normal
part plus a boundary part:
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A'ivl — ~ = 0, O'A'~] — ~ = 0,

~'A'. el*-=+- = +2[p'.(») + p'. (z~)] .

(41)

(42)

In Eq. (42), p (xz) denote the color charge densities inte-
grated over z . The conditions of Eqs. (41) and (42) do
not uniquely determine the separation of Eq. (40). Gen-
erally, there are two types of separation for Eq. (40). One
is to consider A'& the long-distance fields generated. by
the boundary integrals and A' ~ the short-distance fields
determined by &ee theory. In this case, if we are only
interested in the low-energy dynamics, the effect of the
A ~ 6elds may be ignored. This separation is physically
very interesting but it is practically very difBcult to be
realized analytically. Another possibility is to choose a
simple solution for the A' & that satisfy Eq. (42). In this
case, the A'~ have the trivial boundary condition Eq.
(41) but are not determined by free theory. The Hamil-
tonian is then expressed only in terms of the A' ~, and
the boundary behavior of transverse gauge fields are re-
placed by the effective interactions. A convenient choice
for A'& which satisfies Eq. (42) is

A'.a(z) = —— dx' dx"s (x —x' )s(x* —x'*)

x[pg(x') + p~(x')], i = 1, 2. (43)

Substituting the separation of Eq. (40) with (43) into
the LFQCD Hamiltonian, we obtain a new Hamiltonian
in terms of A ~ that contains many effective interactions
induced by Eq. (39). All these effective interactions in-
volve the color charge densities and involve nonlocal be-
havior in both the longitudinal and transverse directions.
One of the lowest order interactions, for example, is given
by

Hi„oc ) Gx Jx Ix 2x 2x

x (c9'p~(z, x', x~))lz
x lx' —x" l(B*p&(z', z', x'&)), (44)

where q ~ = 1 (0) for i g (=) j. This is a linear in-
teraction in both the longitudinal and the transverse di-
rections. Hence, Eq. (39) leads to numerous many-body
nonlocal color charge interactions which may lead to con-
finement.

Still the Hamiltonian contains, in principle, an infi-
nite number of many-body interactions generated by the
boundary integrals (or obtained from the counterterms
of the in&ared divergences). This is a consequence of
the boundary integrals in a non-Abelian gauge theory
due to the existence of nonlinear gluon interactions. It is
also true in other gauge choices, such as Coulomb gauge
[45] or axial gauge [20]. Practically, as the first step,
we may only keep two-body interaction terms, such as
Eq. (44), in the new Hamiltonian. Because of the triv-
ial vacuum in the present formulation of LFQCD, using
such an approximate LFQCD Hamiltonian, we can ap-
ply the light-&ont Tamm-Dancoff approach [10] to find
hadronic bound states, where the bound states contain

only a few particles, such as one quark-antiquark pair,
one quark-antiquark pair with one and two gluons. This
is certainly one of the most attractive approaches for low-
energy QCD. A numerical investigation along this con-
sid.eration is in progress.

V. DISCUSSIONS

In the previous section, we have discussed some pri-
mary properties of boundary integrals which we think to
be important in understanding LFQCD. In the current
investigations of LFFT, one of the most active topics is
the problem of the k+ = 0 modes and the A+ = 0 gauge.
In this section, we have some remarks to make about the
relation of the k+ = 0 modes, the A+ = 0 gauge and
boundary conditions at longitudinal boundary.

In previous LFFT investigations, much attention has
been paid to how to construct a nontrivial vacuum from
the k+ = 0 modes. All attempts have focused on (1 + 1)
field models [11]. The motivation for these attempts, as
we have mentioned in the Introduction, is to try to und. er-
stand spontaneous chiral symmetry breaking in LFFT.
In instant form, the vacuum is, of course, crucial for
hadronic structure since we believe that axial charges Qs
create pseudoscalar particles (the lowest bound states in
strong interaction region) from the vacuum. However,
the role of light-front axial charges in hadronic struc-
ture is totally difFerent. The success of light-front cur-
rent algebra in describing low-energy hadronic structure
is based on the properties of light-front Q5 with a trivial
vacuum [46]. In this case, Qs annihilate the vacuum so
that the vacuum in LFFT itself is not essential in under-
standing chiral symmetry. The importance of light-front
Q5 lies in their matrix elements between hadronic states.
These matrix elements are proportional to hadronic de-
cay constants involving pseudoscalar mesons and are in-
dependent to the limit of m —+ 0. They therefore carry
the basic information of hadronic structure. In instant
form, Q5 cannot connect hadronic states with difFerent
4-momenta in the limit of m m 0 [47]. In other words,
the instant Qs itself is practically not useful for hadronic
structure except for the Nambu-C oldstone picture of
spontaneous symmetry breaking, where the important
ingredient is the axial-vector current. These totally oppo-
site properties of axial charges in light-front and instant
forms implies that to address dynamical breaking of chi-
ral symmetry in LFQCD, one may need to understand
the relation between light-&ont axial charge operators
and the Hamiltonian operator rather than the structure
of vacuum in LFFT.

Second, we discuss briefly the difference between
LFQCD and the canonical formulation of QCD in in-
stant form with axial gauge A = 0. The main difference
is as follows. In LFQCD, the finite energy density for
physical states results explicitly in the asymptotic equa-
tion for transverse gauge Gelds in longitudinal boundary
[see Eq. (39)] due to the fact that the conjugate mo-
menta of A' are dependent variables in light-&ont coor-
dinates, (E' = 28+A' is not a light-&ont time deriva-
tive). In axial gauge, A*, i = 1,2 and their conjugate
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momenta are all the dynamically independent variables.
Thus, a similar condition proposed by Chodos leads to
a very complicated formalism which may not be prac-
tically useful even for perturbation theory, as noted by
himself [20]. The second major difference is the vacuum.
In axial gauge, the QCD vacuum is still complicated re-
gardless of the boundary condition chosen. In such a
case, it is very difficult (if not impossible) to do nonper-
turbative calculations before knowing the vacuum struc-
ture. In LFQCD, with antisymmetric boundary condi-
tions, the vacuum is trivial and the nontrivial behavior
of QCD would be manifested directly in Hamiltonian op-
erators induced by the boundary integrals. Thus it is
straightforward to use quantum mechanical nonpertur-
bative approaches to compute bound states. Moreover,
in axial gauge, the boost invariance is not manifested
kinematically so that it is not a good framework to study
low-energy QCD, which deals with composite particles of
quarks and gluons. In LFQCD, as we have mentioned in
the Introduction, boost invariance is a kinematical sym-
metry which is very convenient in addressing hadronic
structures.

In summary, we show that a suitable choice of bound-
ary conditions for physical fields in LFQCD is crucial
because it determines whether the nontrivial behavior of
QCD can be decoupled from the vacuum so that the prop-
erty of the trivial vacuum in I FFT becomes useful for
solving hadrons &om QCD. We have derived the canoni-
cal formulation of LFQCD with great care for boundary
integrals, which have not been paid enough attention in
previous investigations. We show that the boundary inte-
grals are the source of the light-front infrared singularity
and involve color charge densities and nonlocal behavior
in the transverse direction that lead to nonlocal forces
generated by the boundary integrals. Clearly, our un-
derstanding of the physics from the boundary integrals
in LFQCD is far from complete and much work reznains
to be done. For example, it is very interesting to see
which terms among the numerous nonlocal interactions
are essential for hadronic bound states. However, be-
fore we turn to discuss the nonperturbative LFQCD, it
is necessary to study in detail the perturbative LFQCD
which has not be explored extensively beyond the tree
levels calculation of Lepage and Brodsky [9]. This will
be presented in the following two papers [23,24].
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APPENDIX: CANCELLATION OF LINEAR
INFRARED DIVEB.C ENCE

In this appendix we shall use the x+-ordered pertur-
bative rule which we developed recently [23] for the two-
component LFQCD to check the cancellation of linear
in&ared divergence in perturbative LFQCD. For a com-
plete list of the x+-ordered perturbative rules and Feyn-
man rules for two-component LFQCD and the detailed
calculations, see Refs. [23,24].

1. Tree level (qq scattering)

The lowest-order qq scattering amplitude is given by

Mf; ——Mf;+ M~, + Mf;, (AI)

which corresponds to the diagrams shown in Fig. 1. In
the x+-ordered perturbative theory, we have

M&; + Mf; —— gT4s 2i+—4 qo( p4) p3) k) +3

0(pi —p.+)
X+2 qo(P2)Pll )Xl

p; —p~ —p4 —& I+
~(p' —pi ) I

(A2)
p,

——p,
——p,

—+ k- k+

a a t & t—4g T2&T43+2+j [y+ ]+4+3 NB
(A3)Mf. ——~

2 a a t 1. t
2$T43X2X~ [A+]2 X4X3 WB,

where

k'
I",o(p2, pi, k) = 2

0 p2g —tm

[p.+]
. o- p&~ + xm—0

+] (A4)

p,. is the total energy of the initial state, k" = (pi+—
$2 2

term and WB means including the boundary term. It
follows that in the principal value prescription, Mf' +
M&, is free of infrared divergences, while Mf,. without

p1 p2 p2

p3

(s)
p3

FIG. 1. The x+-ordered graphs for the
lowest-order qq scat tering in per turbative
LFQCD.
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(a) (c)

FIG. 2. The x+-ordered graphs for the
one-loop correction to the light-front quark
energy in perturbative LFQCD.

2. Gne-leep cerrectian to the light-front
quark energy

Based on the x+-ordered perturbative theory [23], the
light-front quark energy (p ) correction up to one-loop
is determined by

hp (p = m ) = hp + hp~ + hp (A5)

The three terms on the right-hand side are denoted by
the three diagrams shown in Fig. 2. Again, using the
rules in Ref. [23], we find that

dk+d2k~ 8(k+) 0(p+ —k+)
16~s [k+]

xI"o(p, p —k, —k)—,(A6)
p

——k ——p —k — '

the boundary term has a I/e divergeiice when k+ ~ 0.
When the boundary term is included, the I/ez can be
canceled [see (A3)]. Therefore, it is necessary to include
the boundary term in order to obtain a finite amplitude
for the lowest-order qq scattering. A similar discussion
for e+e scattering in LFQED is given in Ref. [35]. (A10)

hp = d k~~1 — +ln
g2 CI 2 C 7rp+

8rr2 p+ q 2e p+
2m2dh. . . ~, (A9)

o k~2 + z2m2)

hps = — dk~[lng CI (
b 8~2 p+

';., P+ f d'k (-2) NB,

bp, = & ) (A11)

,~. p fd*k~( —t+ r )
which tells us that in the one-loop correction to the light-
front quark energy, the one-gluon exchange contains both
linear and logarithmic in&ared divergences. The instan-
taneous fermion interaction contains only one logarith-
mic divergence [see bp& in Eq. (A10)], which cancels the
logarithmic divergence in hp . The naive instantaneous-
gluon interaction (namely, the linear potential in the lon-
gitudinal direction) is free of infrared divergence. There-
fore, without boundary term, the quark mass correction
involves a linear infrared divergence, which is an incon-
sistent solution. By combining the boundary term with
the linear potential, we see that bp, has a linear infrared
divergence which precisely cancels the same divergence
in bp . Thus the quark mass correction is now free of
infrared divergences:

bpb
——2g Cf

dk+d2k~ 1
16rr2 [k+][p+ —k+] ' (A7) m2 A~

bm = p+bp = Cf ln + finite,
4~2 m2 (A12)

p dk+d k~f J 16~&

bn
p dk+d k~2

2g Cf J

(
1

[(s+-k+)']
1

[(J ++k+)~]

{ 1
[p+ k+]&

[2++k+]~ WB,

where Cf = 4/3. A direct calculation shows that

(A8)

where A is the transverse momentum cutofF. In Eq. (A9),
the coefficient (1/4) in the mass correction is difFerent
from the covariant result (3/8) because the regulariza-
tion scheme is difFerent. This coefFicient is the same as
that in the light-&ont calculation with dimensional reg-
ularization in the transverse direction and the explicit
cutofF in the longitudinal direction [48]. Note that in
their calculation, the expressions of Eqs. (A9)—(11) are
difFerent but the sum is the same as Eq. (A12) where the
linear divergence is also canceled.
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