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Thermalization and spectral distortions of the cosmic background radiation
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Thermalization under double Compton scattering, bremsstrahlung, and elastic Compton scattering of
an early energy injection of photons to the cosmic background radiation is examined both analytically
and numerically. We find that spectral distortions in the Wien region can include negative as well as
positive chemical potential distortions. The former must be evaluated numerically, whereas for the
latter we compare analytic and numerical solutions. Spectral distortions in the Rayleigh-Jeans region
are fixed by the Wien distortions and by the baryon density Q&h . Thus, the Rayleigh-Jeans region can
potentially provide constraints to Qzh should spectral distortions be seen in the cosmic background ra-
diation. From an analysis of the time evolution of chemical potential distortions and the observational
constraints on such distortions, significant energy injection at zz ~5X10'(Azh ) is ruled out in all
but a very small class of injection scenarios.

PACS number{s): 98.70.Vc, 98.80.Cq, 98.80.Es, 98.80.Hw

I. INTRODUCTION

The epoch of thermalization of the cosmic microwave
background is the earliest direct probe of the big bang.
The study of anisotropies probes the Auctuations that
gave rise to large-scale structure at a redshift z ~1000,
whereas spectral distortions are generated at z ~ 10 . The
proximity to a perfect blackbody spectrum, no deviations
being measured to a limit of 6I /I=0. 03% near the
blackbody peak [1], already guarantees that any depar-
tures from the canonical model of a homogeneous and
isotropic Friedmann-Lemaitre universe were small at the
thermalization epoch. Nevertheless, input of energy may
have occurred, due, for example, to exotic out-of-
equilibrium particle decays, to injection of primordial
turbulence associated with decaying density fluctuation
modes, or to early phase transition relics such as unstable
domain walls or strings. It is important to examine devi-
ations from a blackbody spectrum so as to be able to
search for possible signatures of such decays. There is al-
ways the possibility that an experimental determination
of distortions from a blackbody spectrum will be
confirmed: historically, there have been several false
alarms and, even at present, the low-frequency measure-
ments continue to show marginally significant evidence of
distortion. Perhaps, not least, there is the intellectual
challenge of understanding precisely how the blackbody
spectrum arises, and one can only achieve this by study-
ing its evolution with time. It is for these reasons that we
have undertaken a thorough study of photon injection
and thermalization in the early Universe.

Thermalization processes require nonconservation of
the photon number. The relevant interactions for
cosmology are bremsstrahlung and double Compton
scattering. An excellent review by Danese and De Zotti
[2] summarizes the role of the Kompaneets equation in
studying the spectral evolution under elastic Compton

scattering, the dominant process in coupling electrons
and photons at early epochs, and of bremsstrahlung in
achieving thermalization. Lightman [3] first showed
quantitatively that double Compton scattering was of
considerable importance in leading to thermalization, and
more extensive calculations were done by Danese and De
Zotti [4]. Burigana and co-workers [5,6] studied the nu-
merical evolution of the spectrum for a small class of dis-
tortions at low redshifts z =10 —10 as did Fukugita and
Kawasaki [7]. However, evolution during the thermali-
zation epoch, z =10 —10 has only been treated by ap-
proximating the eff'ect of photon creation [5,6,8]. In this
paper, we treat the thermalization process more precisely
by numerically evolving the spectrum. Moreover, we
consider a broader class of energy injection in which both
the energy and the number of photons injected are left as
free parameters. We find two new classes of distortions,
with Wien tails resembling a Bose-Einstein spectrum with
negative chemical potential, and discuss their evolution.
Furthermore, in all cases, there exists a certain universal-
ity in the spectral distortions that may in the future pro-
vide an independent measurement of the baryon density
of the Universe Azh .

In the interests of making this treatment comprehen-
sive and self-contained, we provide the analytic frame-
work necessary for understanding the numerical solu-
tions. The kinetic equations and equilibrium solution are
given in Sec. II. Thermalization time scales are derived
in Sec. III. We focus on instantaneous injection of pho-
tons and derive the high-frequency spectrum in Sec. IV,
the low-frequency spectrum in Sec. V, and the time evo-
lution of the chemical potential in Sec. VI. A final sec-
tion presents a comparison of models with observations.

II. KINETIC EQUATIONS
AND EQUILIBRIUM SOLUTIONS

By far, the dominant interaction coupling photons and
electrons before recombination is elastic Compton
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scattering, y+ e ~y+ e. The kinetic equation governing
elastic Cornpton scattering was first derived by Kom-
paneets [9] to be

Bn
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kT,
neo Tc

m, c2

X x, +n+nBn 2
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where n (x„t) is the photon occupation number, n, is the
electron number density o.T is the Thomson cross section,
T, is the electron temperature, and x, =hv/kT, is the di-
mensionless photon frequency. Equation (1) is commonly
referred to as the Kompaneets equation. Before recom-
bination, the electrons stay tightly coupled to the radia-
tion. The physical photon frequency and the electron
temperature scale in the same manner during the expan-
sion. Thus, aside from a small correction,
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added to the right-hand side of Eq. (1), the Kompaneets
equation remains unchanged by the expansion [10]. Here
Tp is the temperature of the cosmic background radiation
today. For our purposes, this correction term is always
negligible due to the tight coupling between photons and
electrons [2].

It is convenient for cosmological applications to reex-
press the Kompaneets equation as

x, +n+n, (2)
xe

where p is the dimensionless chemical potential. That
Eq. (5) is the equilibrium solution of the Kompaneets
equation can easily be verified by its insertion into the
Kompaneets equation (1). A true static solution to the
Kompaneets equation includes only p & 0 due to the un-
physical behavior of the negative chemical potential spec-
trum at frequencies x, ( ~p~. However, with the inclusion
of bremsstrahlung and double Compton scattering, we
shall see that it is possible to obtain quasistatic spectra
with p (0 for the high-frequency regime x, )) ip ~.

The electron temperature is given by [11,12]

1 h f v n(n+1)d v
T ——— (6)

4 k fvndv
where we have assumed that the electron temperature is
governed by the photons through elastic Compton
scattering. This equilibrium temperature is attained on a
time scale that is much shorter than any process con-
sidered here: namely,

3meC

40. e
=7.63X10' (1+z) ez 7 s . (7)

Here e is the energy density of the photons. Note that in
the presence of a Bose-Einstein spectrum, the electron
temperature does not change as is required of an equilib-
rium solution. The short time scale involved in Eq. (7)
simply reflects the fact that nr »n, . Thus, the time
scale for a given electron to Compton scatter off a photon
is much shorter than that of a given photon to scatter
with an electron. Alternatively, the heat capacity of the
photons is much greater than that of the electrons. Thus
the total energy density of the photons, ignoring expan-
sion, effectively does not change:

The kinetic equilibrium solution is therefore a Bose-
Einstein spectrum at the electron temperature:

1
n BE x, +p
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=0. (4)

for a fully ionized plasma. Here 627=Tp/2. 7 K and
h =Ho/100 kms 'Mpc '. The primordial mass frac-
tion of helium Y enters into the equation since
n, =(1—Y /2)nz for a H+He plasma with nz the num-
ber density of baryons. For numerical purposes, we will
always assume Y~ =0.23. We define T=(1+z)2.7 K so
that T represents the effective photon temperature for the
nonequilibrium photon distribution. Thus, the ratio
T, /T plays an important role only in cases where the
electron temperature is not tightly coupled to the photon
temperature.

Elastic Compton scattering cannot change the number
of photons, but only redistribute them in frequency. This
may be directly verified by integrating the Kompaneets
equation (1) to form the change in the total number den-
sity n

fdx, x,' =0, (8)

as we can see by integrating Eq. (1) twice by parts and
employing Eq. (6). Under elastic Compton scattering and
cosmological conditions, then, the number and energy
density of the photons changes only due to the expansion.

True thermodynamic equilibrium, of course, requires
that the photons form a Planck distribution. However,
an arbitrary spectrum cannot relax to a blackbody distri-
bution via elastic Compton scattering. It will not, in gen-
eral, contain the same number of photons as a blackbody
of the equivalent temperature. In order to obtain a black-
body distribution, number-changing processes, i.e., to
lowest-order bremsstrahlung, e +X~e +X+y
(where X is an ion), and/or inelastic, henceforth referred
to as double Compton scattering e +y —+e +y+y,
must be effective. We neglect higher-order Cornpton
scattering.

Much of the early work on this subject [13—17] as-
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sumed that bremsstrahlung is the dominant photon-
creating process in the early Universe. The kinetic equa-
tion for bremsstrahlung is well known [3]:

an =(n, cr Tc)Q- [1 —n(e ' —1)], (9)

where
—1 /2 3

ann, Z,
e

Here n; is number density of ions with atomic number Z, ,
and a is the fine-structure constant. For a H+He plas-
ma, gn; Z; =n~. The Gaunt factor g (x, ) is given by

ln(2. 25/x, ), x, ~0.37,
e l&3, x, ~0.37 . (10)

We will find it convenient to express these equations as

an
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where
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and

I(t)= fdx, x, (1+n)n . (15)

The kinetic equation (13) is only strictly valid for x, ( 1

since iis derivation assumes that the photon produced is
lower in energy than the incoming photon. Double
Compton scattering is, of course, inefficieni ai creating
photons above the mean energy of the photons in the
spectrum. However, we will only be concerned with the
effects of double Compton scattering in the low-frequency
regime where it is efficient. Comparing Eqs. (12) and (14)

As we can see from the scaling of Eq. (12), in a low
baryon density universe as implied by nucleosynthesis
constraints [18],0.011 ~ Ash ~0.016, bremsstrahlung is
rather inefficient. Double Compton scattering cannot be
neglected under such conditions. Lightman [3] first de-
rived the kinetic equation for double Compton scattering:

2
Bn 4a k~e 1—neo' Tc 2 3 [1 n(e ' ——1)]
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for the time scales, we see that in a low A~A universe
and at sufFiciently high redshifts, double Compton
scattering will dominate over bremsstrahlung.

The full kinetic equation to lowest order now reads

Bn Bn

at
= at. Bn ~ Bn

Bt 8
(16)

Notice that the equilibrium solution for the full kinetic
equation includes only the Planck distribution, i.e., a
Bose-Einstein spectrum with p =0.

We wish to examine the case in which an initial black-
body distribution of photons is perturbed by the injection
of energy at some epoch z&, specifically an arbitrary injec-
tion of photons. For simplicity, we take the injection to
be instantaneous. We then follow the evolution of the
perturbed spectrum until recombination z„„at which
time the number density of free electrons drops precipi-
tously and distortions are essentially frozen into the spec-
trum.

Evolution of an arbitrary spectrum under the full ki-
netic equation must, in general, be solved numerically.
We employ a fully implicit iterative modified Youngs ap-
proach to solve Eq. (16) numerically [19]. Analytic ap-
proximations do exist in various limiting cases (Secs. IV,
V, and VI) where quasiequilibrium holds. We shall com-
pare them to the numerical solutions and examine their
range of applicability. We shall also examine the case of
a negative chemical potential Bose-Einstein spectrum
which must be handled entirely numerically.

III. THERMALIZATION TIME SCALES

In order to discuss the thermalization and evolution of
spectral distortions, we must examine the relative and ab-
solute rates of these processes. A qualitative examination
of the full kinetic equation (16) shows that, at high red-
shifts, elastic and double Compton scattering will dom-
inate over bremsstrahlung. Furthermore, double Comp-
ton scattering, as well as bremsstrahlung, becomes in-
creasingly efficient as frequency decreases. The rate of
elastic Compton scattering is, on the other hand, in-
dependent of frequency. We therefore expect that at high
enough redshifts, double Compton scattering will be re-
sponsible for creating and/or absorbing photons at low
frequencies, while elastic Compton scattering will redis-
tribute them in frequency. The net effect will be that a
blackbody distribution is efficiently established. At lower
redshifts, we expect that double Compton scattering and
bremsstrahlung will be efficient only at very low frequen-
cies. Thus there will be an insufficient number of photons
to create a blackbody distribution except at the lowest
frequencies. Elastic Compton scattering will instead es-
tablish a Bose-Einstein spectrum at high frequencies. At
redshifts near combination, we expect that even elastic
Compton scattering will be ineffective at thermalizing
distortions. Spectral distortions at high frequencies will
be frozen in. At low frequencies, bremsstrahlung will
dominate and be able to return the spectrum to black-
body.

Now let us examine the rates quantitatively. We may
extend the analysis of Danese and De Zotti for brems-



488 WAYNE HU AND JOSEPH SILK

strahlung [2] to include double Compton scattering.
Consider a spectrum which at a given frequency x, has
no photons. We wish to find the characteristic time scale
for which bremsstrahlung and/or double Compton
scattering can create a Planck distribution. It is con-
venient to define the quantities

ybr= J dt tbr g(Xe)/(Xee

yDc — dt't DcI(t')/x, .
(17)

Bn =1 n(e —' —1) .
Bg

(18)

Assuming no photons initially, n(y* =0)=0, we find that
the solution of this equation is

In general, I(t) involves the integral over the spectrum
given by Eq. (15). However, the integral is dominated by
the high-frequency region x, ) 1. Since we are consider-
ing x, & 1 and assuming that an equilibrium distribution
has already been formed at high frequencies, we may as-
sume I(t) =const. For estimation purposes, we will use

I(t)=I~=25.976, the value for a Planck distribution.
Note that there is a fundamental difference between
bremsstrahlung and double Compton scattering. For
double Compton scattering to create photons, there must
already be photons present in the spectrum. Double
Compton scattering itself cannot create a Planck distri-
bution ex nihilo.

Considering the processes independently, we can now
write the kinetic equation for double Compton scattering
or bremsstrahlung as

lar. For estimation purposes, we have assumed that
7

On the other hand, the time scale for establishing a
Bose-Einstein distribution via elastic Compton scattering

~~ =t /4, (23)

is itself independent of frequency. We therefore expect
that the number-changing processes will dominate over
elastic Compton scattering below the frequency at which
the rates are equal. For x, « 1, we may approximate this
as

8 pXlpl ( )1/2(~ h2)1/2g —9/4 —3/4

3 0X10 61/2 1/2
Xc,DC

(24)

where 1b,(x, b, )=r.(x, b, ) and 7Dc(x, Dc)=7~(x, Dc).
Note that g(x, ) is only logarithmically dependent on fre-

quency. Let us define

2 — 2 L 2
Xc —Xcbr )XcDC (25)

Above the frequency x„ the spectrum will be Bose-
Einstein given sufficient time to establish equilibrium.
Below this frequency, the spectrum returns to a Planck
distribution. Thus, Eq. (25) defines the critical frequency
at which the spectrum assumes a form intermediate be-
tween the two equilibrium configurations. The shape of
the spectrum in this intermediate zone will be the topic of
Sec. V.

However, when the thermalization times become
longer than the expansion time these processes become
inefficient. The expansion time is given by

n =(e ' —1) '[1—exp( —
yb, /Dc)],

where

yb/DC yb/DC(

(19)
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a
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=4.88X10'(z+z )
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is the optical depth of the Universe to absorption by
bremsstrahlung or double Compton scattering. A Planck
distribution at frequency x, is thus established on a
characteristic time scale:

where z, =2.50X10 Q, h 627 is the redshift of matter-
radiation equality. When the thermalization time for
elastic Compton scattering is greater than the expansion
time, not even a Bose-Einstein distribution can be estab-
lished. This occurs for values of z less than

x3
ee '

+br exp/3 br g(X, ) "e

3
x~1

DC exp/X DC
——t DC

P e —1

(21)

zz ——7.09X lp (1 p /2)
—'/(~zh2) —1/2(}1/2 (27)

for z )&zeq Furthermore, we can also define the frequen-
cies at which the thermalization time scales of the
photon-creating processes are equal to the expansion
time:

where ~, is the expansion time. Note that the expres-
sion for the double Compton scattering thermalization
time scale is valid for x, & 1 only.

Above the redshift at which these rates become equal,
double Compton should dominate over bremsstrahlung
as the crucial photon-creating process. This occurs at

x,„b,=l. lX10 (1—F /2) ' g(x,„~b, )

g 2~ —11/4 1/4
B 27
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X~—1 3/2
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z, =869X105(Q h ) /0 — /g(x )
n x ((1
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where rbr(xe„~ b, ) =r,„and wDC(x, „'DC)=r,„. Again,
define

which is roughly independent of frequency due to the fact
that the frequency dependences of the two rates are simi-

X exp exp, br + exp, DC (29)

Thus, even at x, &x„ if x, &x
p

a Planck distribution
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eral type of injection. We can easily extend the treatment
to the case where the injection itself involves a significant
number of photons (e.g. , radiative particle decay and
free-free emission of a hot plasma).

The energy in a Bose-Einstein distribution can be ex-
pressed as

8~h 3eBE=, naEv dv=e~(T, )f(p),
C

where

(30)
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FIG. 1. Critical frequencies as a function of redshift for
Ah =0.25, Q&h =0.025. Solid line is x„dashed line is xe p,
long dashed lines represent critical redshifts as labeled.

may still not be established due to the ineffectiveness of
the number-changing processes with respect to the ex-
pansion. Note, however, that if z &zz a Planck distribu-
tion is not established for all x, &x„„despite the relative
effectiveness of the number-changing processes. This is
because x,„ is the frequency at which a Planck distribu-
tion would be formed in the absence of elastic Compton
scattering. If elastic Compton scattering is effective, it
will compete with the number-changing processes by
scattering upward in frequency photons which would
otherwise contribute to the establishment of a Planck dis-
tribution at x, &x,„.Thus for z &zz, the frequency at
which a Planck distribution is established is x, rather
than x„.

Figure 1 graphically displays these critical frequencies
and redshifts for the representative choice of
A~h =0.025. Notice the transition to double Compton
scattering dominance for z &zoc b, and small deviations
from the simple power-law approximations given by Eqs.
(24) and (28) for x, = 1 and z (z, . Here Ah =0.25, but
this parameter plays only a small role in the thermaliza-
tion process, entering only for z (z, (Qh ).

8~
n BE= nBEv dv=nrz(T, )P(p),

C
(32)

2
exp( —p), p)) 1,

2

P(p) =
I

1 —2 p, p«1,
2

(33)

with n~I (T)=(I2/I&)aT /k. Here the constants I„are
defined by the Reimann g function as follows:

n

I„=J dx =n!g(n+1),
e —1

e.g. , I ]
——1.645, I~

=2.404, I3 —6 494.
The number of photons in a Bose-Einstein distribution

decreases with increasing chemical potential. In particu-
lar, a spectrum with p & 0 has more photons than a black-
body, p=0; conversely, a spectrum with p&0 has fewer
photons. Parenthetically, note that we can express the
double Compton scattering integral [Eq. (15)] as

and e~( T, ) =aT, =4o ~ T, /c, the energy density of
blackbody radiation, with o.z being the Stefan-Boltzmann
constant. Similarly, the number density is given by

IV. HIGH-FRKQUKNCY SPECTRUM I„=fdx, x, (1+nBE)nBE=4I3f(p), (34)

As we have seen, at high frequencies, the spectrum
should resemble a Bose-Einstein distribution. In fact, if
the photon-creating processes are much slower than elas-
tic Compton scattering, the chemical potential is directly
related to the parameters of the injection. As shown in
Eqs. (4) and (8), under elastic Compton scattering neither
the energy nor the number of photons changes. There-
fore, we can relate the resultant chemical potential to the
number and energy density of the photons injected. In
prior treatments [2,16,17,20], it has been customarily as-
sumed that energy injection occurs with a neghgible
change in the number ofphotons This assumption . is true
for a broad range of injection mechanisms including
direct heating of the electrons and Klein-Nishina cas-
cades [21]. However, it does not describe the most gen-

5n=n p 1+y n

aT, I2 gn1+
k I3 n

(36)

for the case of a Bose-Einstein distribution.
Now if we require energy and number conservation,

Eqs. (30) and (32) tell us

e =aT, f(p)=e (T;)(1+6e/e)=aT~(1+5e/e), (35)
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where T; represents the temperature of the radiation be-
fore injection. For small chemical potentials, we may
solve Eqs. (35) and (36) simultaneously to obtain

p &(1,1 6e 5n
(37)

E' n

to first order in the perturbations. This is the chemical
potential established near the epoch of heating zh after a
time t &~~ but before photon-creating processes have
taken effect. We will discuss the action of such processes
in altering the chemical potential in Sec. VI. Equation
(37) has been checked numerically in epochs where
photon-creating processes are entirely negligible. For
such regimes, the agreement is excellent for 10 ') p & 0
and satisfactory for 0&p& —10 and 1)p& 10

Let us examine qualitatively the behavior of Eq. (37).
Injection of energy tends to heat the electrons and cause
T, & T, . Since the number of photons in a blackbody is
proportional to T, this would make the spectrum under-
populated with respect to the blackbody. However, this
deficit of photons can be partially or wholly compensated
by the number of photons involved in the injection. In
fact, unlike the case considered previously where
6n /n (& 1, the chemical potential can become negative if
the energy is injected at a frequency xh ~3.6. An even
more curious effect happens if energy is injected either at,
or symmetrically about, this critical value. In this case,
the number of photons and the corresponding energy in-
jected is just enough so that the electrons are heated to a
temperature at which there are exactly enough photons
to create a blackbody spectrum. This implies that an ar-
bitrarily large amount of energy may be injected at this
critical frequency and, given sufficient time for the pho-
tons to redistribute, still leave p=0; i.e., the spectrum
will remain a perfect blackbody. This effect will be con-
sidered more carefully in Sec. V. Presumably, however,
any physically realistic process will inject photons over a
wide range of frequencies and destroy this balance [22].

In the case of negative chemical potentials, we clearly
cannot ignore number-changing processes at any redshift
or baryon density since the spectrum becomes unphysical
if x, ( ~p . Although it may be that double Compton
scattering and bremstrahlung are ineffective near the fre-
quency of injection, they play a crucial role in the evolu-
tion of the spectrum. Elastic Compton scattering will
move excess photnns downward in frequency until they
can be absorbed by double Compton scattering and/or
bremsstrahlung. The case of low-frequency injection was
briefiy considered by Illarionov and Sunyaev [16] where
the down scattering was said to lead to "Bose-Einstein
condensation"; they, however, did not consider the form
of the spectrum that results from the inclusion of
photon-absorbing processes. Here we show that the spec-
trum is also Bose-Einstein at high frequencies x, ))x,
but with negative chemical potential. However, although
Eq. (37) tells us that these negative chemical potentials
should be possible, it cannot predict the value of the
chemical potential since it explicitly ignores crucial pro-
cesses. We expect, however, that a quasiequilibrium solu-
tion can only exist if ~p~ is less than or equal to the fre-
quency at which the photon absorbing processes are

effective, i.e., ~p~ (x,„~,(z„), where z„ is some charac-
teristic redshift at which such processes can affect the
overall spectrum. We will discuss these issues further in
Sec. VI. If this condition is not satisfied, elastic Compton
scattering will continue to scatter photons downward in
frequency. Thus the spectrum will evolve further as long
as elastic Compton scattering is effective or until this
condition is met. We expect then that the range of nega-
tive chemical potentials obtainable is far more limited
than that of positive chemical potentials. Given this
suppression of large negative chemical potentials, one
might worry that the presence of a small to vanishing
negative chemical potential in the cosmic background ra-
diation today does not serve to limit low-frequency injec-
tion scenarios. For example, naive constraints on parti-
cles that decay while relativistic [23] may be invalid. Al-
though relativistic decay cannot be simply modeled as in-
stantaneous energy injection, it results in a negative
chemical potential Bose-Einstein distribution. Thus our
study of the evolution of such spectra is relevant for this
as well as other processes. In Sec. VI, we will see, howev-
er, that in the limit of small present day distortions the
naive estimates can, in general, be employed.

Therefore, an examination of negative chemical poten-
tials requires a numerical analysis due to this instability
near x, = p~. Numerical analysis is also required to con-
sider the transition to a Planck distribution at low fre-
quencies. This is particularly important for comparison
with observation since a Bose-Einstein spectrum deviates
most strongly from a Planck distribution at low frequen-
cies x, ~

~p ~. It is thus important to determine at what
frequency the spectrum returns to a Planck distribution
and what deviations we might expect in this region. This
will be the subject of Sec. V. Furthermore, in order to ex-
amine the time dependence of the high-frequency spec-
trum, i.e., the chemical potential, in the general case, a
numerical treatment is required (Sec. VI).

Note finally that Eq. (37) tells us that the establishment
of the Bose-Einstein spectrum is independent of the pre-
cise form of the injection. It depends only on the total
number and energy density of the photons injected. This
is a very powerful result. For instance, direct heating of
the electrons is equivalent to injecting a negligible num-
ber of high-energy photons. Furthermore, an arbitrary
distribution of injected photons can be parametrized by
the single quantity p(5n In, 5e/e) alone. This has been
tested numerically and is valid for p, „d(z& ) )0. We will

discuss the "breakdown" of Eq. (37) for predictions of
zero and negative chemical potentials below (Secs. V and
VI, respectively). Given the independence of the evolu-
tion to the specifics of the injection for most cases, it is
convenient to employ injections which may be represent-
ed as "5 functions" (i.e. , peaked functions localized in fre-
quency) located at some frequency xh. For the above ar-
gument to hold, we must have xh & x, so that bremsstrah-
lung and double Compton scattering can be ignored dur-
ing the initial thermalization.

V. LOW-FREQUENCY SPECTRUM

Analytic work has been performed on the form of the
low-frequency spectrum [4,14,16]. However, the approxi-
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Bn Bn

at at
Bn

Bt b

Bn

i.e., the rate of change of the spectrum can be considered
slow. Equation (38) is valid for the entire spectrum only
when z )&z&.

Note that we may always reexpress the spectrum in
terms of a frequency-dependent "chemical potential, "

mations employed are only strictly valid for z ))zz. No-
tice that this also implies x, «x,„,and thus both elastic
Cornpton scattering and photon-creating processes may
be considered effective at the critical frequency. In order
to examine the low-frequency behavior of the present day
spectrum, we must evolve the spectrum numerically until
last scattering z =z„,(zx [24]. The approximations to
the low-frequency spectrum were originally derived [14]
to examine the time evolution of the chemical potential
(see Sec. VI below). In this case, it is valid to consider the
behavior up to z =z~ since it is elastic Compton scatter-
ing that is responsible for moving the photons produced
at low frequencies up in frequency or moving excesses at
high frequencies down. It therefore plays a crucial role
in the reduction of the chemical potential. If z &zz, the
chemical potential, i.e., the high-frequency distortion, is
effectively frozen in. However, even for a study of possi-
ble present day low-frequency behavior, it is still useful to
examine these analytic approximations in order to guide
the interpretation of the numerical solutions.

The basic technique, first employed by Zel'dovich and
Sunyaev [14] and extended by Danese and De Zotti [4] to
include double Compton scattering, involves the assump-
tion that one or more of the three processes are effective
enough to establish quasistatic conditions:

T

where

x„=x,(z) (43)

T=
TO ln[(1+ n )In ]

(44)

Notice that a spectrum of the form given by Eq. (42) ob-
tains its peak distortions in log, o( T/To) at

x „„—2x„, p(x, (z)

at a value

(45)

for redshifts at which quasiequilibrium can be main-
tained. We have taken the solution corresponding to
p'(0)=0, since at very low frequency the spectrum is a
Planck distribution.

At high frequencies, x, ))x„we expect that the spec-
trum will be Bose-Einstein with chemical potential p.
Thus if p &x„ the two solutions must match at the junc-
tion i.e., C, =p. Ifp) x„C, must be found numerically.
Illarionov and Sunyaev [16] give C, =3x, b„ for p) x,
and x, b, &)x, Dc. We have checked this for limiting
cases in which bremsstrahlung dominates over double
Compton scattering and z))z~ and found rough agree-
ment C& —-few Xx, b,. Given the observational constraint
on the chemical potential, we need not consider the case
of large chemical potentials for z & z~.

It is convenient to describe these distortions from a
blackbody spectrum as a ratio of the frequency-
dependent effective temperature to the temperature of the
Wien tail To. Assuming that the Wien tail is Bose-
Einstein in form, we require To= T, up until recombina-
tion, and thus

n(x, )= 1

exp[x, +p'(x, ) ]
—1

(39) l
T

Og]0
0

=logio 1+
xpeake

=log)0 1 +
2x e

+ I~E
tbr e e tDC

exp[@'(x, )]—1

exp[x, +p'(x, )]—1

If we make the further approximation
g(x, ) =g(x, b, ), we may express this as

exp[x, +p'(x, )]
x, «, '

Iexp[x, +p'(x, )]—lj
exp[@'(x, ) ]—1—4x,

exp[x, +p'(x, )]—1

(40)

that

(41)

for x, «1.
For p, '(x, ) ((x„Eq.(41) is easily solved:

p'(x, ) = C& exp( —2x„/x, ), (42)

without loss of generality. The complete kinetic equation
in the quasistatic approximation, i.e., Eq. (38), then be-
comes

exp [x,+p'(x, ) ]

x,' dx, '
jexp[x, +p'(x, )]—1]' «,

(46)

The quasi-static approximation must, however, break
down at redshifts z„,& z ~ zz due to the freeze-out of
elastic Compton scattering. Freeze-out, however, is not
instantaneous at z~ and photon-creating processes
remain effective at low frequencies. Thus the spectrum
should continue to evolve beyond this so called "freeze-
out" and display distortions from the form given by Eq.
(42). Figure 2 shows the evolution of a spectrum, with
p(zh)) 0 (5n~lnr =2.5X10, 6e/e=5 5X10 ) fro.m
the heating epoch zI, =6X 10 to recombination. In Fig.
2(a), the initial 6-function injection is thermalized by elas-
tic Compton scattering and forms a Bose-Einstein distri-
bution at high frequencies on a time scale comparable to

Figure 2(b) displays the further quasistatic evolution
of the spectrum and the gradual freeze-out of the process-
es for z ~zz-—5X10 . Notice that significant evolution
of the low-frequency spectrum occurs at z„,&z &z~
where quasistatic equilibrium cannot be maintained.

It is instructive to consider the evolution of this spec-
trum in some detail. Figure 2(a) displays the establish-
ment of a Bose-Einstein spectrum via elastic Compton
scattering. At the epoch of heating, energy is injected



492 WAYNE HU AND JOSEPH SILK 48

I I I I llli I I I I I III

Zs=6.00

—.02—

—.04—
Q

O
—.06—

I I I I III I I I I I I III

10 10

I

I I I I IIII I I I I I IIII J I I I I I I III I

hu/kTO

I I I I III I I I I I I III I I I I I

10 10
I I I

10

I I I I I II I I I I I I lli I I I I I I IIJ I I I I I I III I I I I I I II

—.02—

C)

O

—.04—

—,06—

'. i I I I ill I

10
I I I I I III I I I I I I III I I» llllll I I I I I IIII

10 10 10 10
—1

hv/kT0

I I I I I I II I II I I I I III I I I I I I II

10 10 10

FIG. 2. Time evolution of low-fre~uenc sp
rum: IJection at x =6 5

h

.5X10, for Qh =0.25y y o 7 5E'/6 5 5 X
.025. (a) Establishment of the Bose-E'

4.75 X10' &z (6.00X 10'
o e ose-Einstein spectrum,

0, where z 5 =z/10'.
represents z =5.0 X 10'

I 5]
= . Unlabeled curve

(b) Quasistatic evo'u

Einstein spectrum and the d
~ ~

Long dashes represents bess est fit Bose-
an e undistorted Planck distribution 4

which ra idl hp y eats the electrons. Initially, the tern era-
ture of the photons is lower than T acros

re, ere is a deficit of hr p otons in comparison
a anc distribution at temperature T . Elastic

Cornpton scattering off h 1 c
frequency photons to scatter u

ot e ectrons then ccauses low-
to scatter upward in frequency. The

ense
ig - requency deficit is consequentl d d

p of the low frequency until a Bose-Einstein
y re uce at the ex-

t d th hf

ing, su lies h
~ ~

si ere ere, to a lesser exxtent double Compton scatt
pp

'
p otons at low frequencies. Th h

x a er-

frequenc s ectr
us t e low-

s ectrum
y p c rum deviates from a perfect B -E'ose- instein

, z . e overall spectrum is described well by
For example, at z =4.75 X 10 x „k -—6X 10

whereas 2x, =5.6X10 . The peak value is sli
derestimated by (46)

ompton scattering. The peak am litu
(T/T )= .0 =7.99X 10 whereasw ereas Eq. (46) predicts

This deviation will row
'

y z„,. ote also that the chemical potential is ac-
curately predicted by Eq. (37). The hi h-fre u

9=3.05 X 10
has a chemical potential

whereas pp d 3 06X10
Figure 2(b) displays the subse uene su sequent quasistatic evolu-

are eff'ectively produced do uce an can be scattered u to a
cy spectrum i.e., reduce

ow- requency photons ro
() b bdb gor e y inverse brem

e ou e ompton scattering before the can be-.d-pn f-q--y Und hn er t e joint action of

ves un er Eq. (42). The eak

b b hl d d
o ig er requencies since hotons

reduce the low- r
ng an double Comd Compton scattering

e ow-frequency distortions. Hi h-fre
d;. ..;....,..l...ff...dso a ecte as the created hoton

ow re s ifts there is insufficient time to alt
chemical potential signifi 1

'
ni cant y see Sec. VI).

Near zN K, e astic Compton scatterin
h

Th h d'
moving p otons u

us, e istortions durin this eg i poch are larger than
wou imply. The peak of thp e distortion also lags
x, z and by recombination only attains a fre-

quency marginally larger than 2x (zr an x, zz). For the spectrum
and 2x (z )ig. 2, x (z

X10 . Thus a r, a reasonable approximation to the
low-frequency spectrum would be to em lo the f

h a quasistatic equilibrium
'

q
' ' '

m is strictly maintained
i zK w ereupon freeze-out occurs ins

uniformlm y across t e spectrum.
urs instantaneously and

Now let us examine the deviations r
1'~ua itatively we ex ect sip significant deviations

evolve und
a z zK t e low-frequenc sy spectrum can still

high-fre uen
un er p oton-creatin'

g processes whereas the
- requency spectrum is essentially frozen in

3 shows the spect 1 d'ra istortions obtaine r
spectrum with

'
e from evolving a

„=4X10) fo Ah =0.25,

w ich agrees extremely well with red'
(3)( =1 26

heating. However th 1

e ow redshift of

show significant d
owever, the low-frequenc s ey spectrum does
an eviations from the

h 1e ana ytic prediction with x =5.1X10
w ich re resents in'nstantaneous freeze-out at z =P

i.e., instantaneous fre
Curve A fi hts t e distortions above

eeze-out at z =zK'
ove the peak and shows

ese ig -frequenc distor
'

y
'

rtions begin to freeze in at
e s i t z =2zK. Below the peak, further evolution has



4g THERMALIZATION AND SPECTRAL DISTORTIONS OF THE ~ ~ ~ 493

I I IIIII' I I I I I III' I I I IIIII'

C)

O

—.005—

—.01

—.015—

—.0Z5
10

\

1

I

I

I

I

I
\
I

I

I

I

I

I , I

A', 't

,
'

~BE
j

l

I I I IIIII I I I I IIIII I I I I IIIII I II I I IIIII I I I I I I III I I I I I I III I I I I I I 11

10 10 10

O

O

I I I I I I I I I I I I I I I I I I I I

10 10 10

I I
I

I I

I
I

I
I

I I
I

I
'I /

/
/

I I I I III I I I I I I III I I I I I I III I I I I I I III I

-3
I I I III I I I I I III

10 10 10 10 10
I IIIIT

10

hut'kTO

FIG. 3. Presentesent day low-frequency spectrum for )0. Ini-
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FIG.G. 4. Low-frequency dependence on 0 h' I ' '
n & . nitial spec-

trum: injection with 5n /n = 1.2 X 10 6e @=2.7X10 at
x&=6, for Qh =0.25. (2) Qzh =0.0025, zz =1.2X10; (B)
Azh =0.10, z =1.5X10'.. Dashed lines represent the analytic
predictions for instantaneous freeze-out at z =ze-ou a z —z~.

taken place but not sufticiently rapidly to follow B. No-
tice that above the peak, distortions are greater than
those predicted by B due to the lack of evolution between
2z~ and z«, of the high-frequency spectrum. The low-
frequency distortions, on the other hand are small th

ose predicted due to the further creation of low-
requency photons. Recall that at sufficiently low fre-

quencies, photon-creating processes are effective all the
way down to recombination. The location of the eak

pep' 2 0 X 10 is again only slightly greater
than 2x (z )=1..8X10 . In this case, the approxima-
tion x„=x,(zx) with Eq. (42) gives an adequate order of
magnitude estimation of the distortions.

These effects are somewhat dependent on Q~h since,
or a universe with high O&h, bremsstrahlung is more

eScient. owever, the time between z d „, ' h' h
aryon density universe is smaller than that of a low

p ace. Furthermore, distortions at low frequenc th h
'g 'ficant in terms of effective temperature, are small in

y, oug

terms of the physically meaningful quantities, i.e., the
number and energy density of the photons. Thus, we ex-
pect that since the peak distortions in a low Qz h

universe at z~ occur at a low frequency, significant evolu-
tion of the temperature distortions can occur despite the

n examinationrelative ineSciency of bremsstrahlung. A
o ig. 4 supports these conclusions. The same initial
spectrum 5ny/ny =1-2X 10-2 56/6=2. 7X 10 2 is
evolved in an (A) Q&h =2.5X10 and (B) Qzh =0.10
universe. Dashed lines represent the d'e pre ictions of Eq.
42 with x„=x, zx). In the low baryon density universe,

the distortion peaks at low frequencies and represents a
comparatively small physical distortion. Thus durin the

bremsstrahlung can significantly
reduce low-frequency distortions and move the frequency
of the peak upwards. For 3, xp„k=8.3X10 whereas
2x (z )=3.6X10 . The high Qzh evolution, on the
other hand, resembles the case of 0, h =0.025 Fas in Fig.

3. As elastic Compton scattering begins to freeze out,
igh-frequency distortions cease to evolve, whereas low-

requency distortions are more sharply suppressed than
predictions. The peak shifting effect is, however, far less
dramatic than in the extremely low Azh case. Here

xppzk6 4 X 10 and 2x&(zz)=5. 4 X 10. Notice that in

the high baryon density universe the amplitude of the dis-
tortions is larger than predictions due to the
ineffectiveness of elastic Compton scattering at moving
photons. On the other hand, distortions in an extrernel

universe are smaller than predictions due to
subsequent evolution at z (zz. In all cases, however,
these considerations of peak shifting and the reduction of
distortions is a small effect as compared with the depen-
dence ofx, on Q h

In summary, employing x =x,(zx), we will underesti-
mate x bpezk y a factor of order unity. In a universe with

Q~h given by nucleosynthesis or larger, the amplitude
of the fluctuations is also underestimated by a factor of
order unity in log, o(T/To). For extremely small Q~h,
the distortions are overestimated. These fluctuations ap-
pear at such low frequencies that out of equilibrium evo-
ution significantly reduces them in comparison with pre-
ictions.
It is also interesting to examine what role double

Compton scattering plays in determining the low-
frequency spectrum. Let us return to the case described
for Fig. 4. In an Q& h =2. 5 X 10 universe,

x, „,(zx)=1.38X10 and x, Dc(zx. )=1.19X10 . This
yields x, = 1.8 X 10, a higher value than that predicted
by bremsstrahlung alone. Thus at redshifts near zz,
which is the crucial regime for determining the location
of the peak, these processes are equally effective. Of
course, the steep dependence of double Compton scatter-
ing on redshift makes it unimportant at z„, for any
reasonable value of Qsh . Figures 5(a) and 5(b) show a

spectrum 5nz /nz =2.5 X 10, 5e/e= 5.5 X 10, for
Qh =0.25 evolved with and without double Compton
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scattering for Qz h =2. 5 X 10, 0.015 and
zh =1.2X10, 4X10, respectively. As expected, in the
low Qzh case double Compton scattering plays a role in
shifting the peak of the distortion upwards in frequency.
I 1 h 1 to reduce the distortions at low frequenciest aso eps

lun stillby supplying photons. However, bremsstrahlung sti
plays the dominant role in defining the amplitude. For
the case of Q~ h =0.015, double Compton scattering
does not shift the peak since x, b,(zz))&x, Dc(zit. and
contributes a very small amount to the reduction of low-
frequency distortions. Thus for Q,~ h given by nu-

'
1-cleosynthesis or larger, bremsstrahlung alone is essentia-

ly responsible for determining the low-frequency
behavior.

For the case of small negative chemical potentials, a
very similar analysis holds. Figure 6 displays the time
evolution of a small negative chemical potential
(5n /n z

=7.5 X 10, oe/e= 2.7 X 10, zt, =4 X 10 ) for
Qh =0.25, Q~h =0.025. Labels are as in Fig. 2. In

Fig. 6(a), a 5-function injection of photons is thermalized
under elastic Compton scattering, and a Bose-Einstein
spectrum established. Here, an excess of photons is scat-
tered downward by elastic Compton scattering until
quasiequilibrium is established. It is essential to note that
for small negative chemical potentials, number-changing
processes are sufficiently effective at x, = IILt I to absorb the
down scattered excess. Note also that the high-frequency
spectrum fits well to a Bose-Einstein distribution of nega-
tive chemical potential and thus our qualitative analysis
in Sec. III is verified. Furthermore, Eq. (37) also gives a
reasonable approximation to the chemical potential in
this case: p= —9.8X10,p„„d=—1.0X10

Quasistatic evolution is shown in Fig. 6(b) and similar
deviations from quasiequilibrium occur at z ~zz as was
the case for the positive chemical potential spectrum.
During quasistatic evolution, a small negative chemical
potential behaves very much like a small positive chemi-
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FIG. 5. Comparison of low-frequency spectrumrum with (solid)
and without (without) double Compton scattering for (a)

Q&h =0.0025 and (b) Q&h =0.015. Initial spectrum: injection
x =6 with 5n /n =2 5X10 ', 5e/e=55X10 ' for

d 7X10' fo ( )Qh =0.25. Injection occurs at zz =1.2X10 and
and (b), respectively.

FIG. 6. Time evolution of low-frequency spectrum, p &0.
I ~ ~ ~ ~ =1 z =6X 10 withInitial spectrum: injection at xz-

5n~/n~=7. 5X10, 5e/@=2.7X10 ', for Qh'=0. 25,
0 h =0 025. (a) Establishment of the Bose-Einstein spectrumB
4.75 X 10' &z &6.00X 10' where zI,

~

=z/10'. Unlabeled curve
is z =5.00 X 10'. (b) Quasistatic evolution and freeze-out

z„,&z &3.5X10'.
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cal potential and obeys the form given by Eq. (42). After
zz, bremsstrahlung and double Compton scattering no
longer have to compete with elastic Compton scattering
and sharply reduce the low-frequency distortions leaving
the high-frequency spectrum untouched. Again, the evo-
lution of the spectrum between zz and z„, moves the
peak of the distortion slightly upward in frequency.

Figure 7 displays a typical fully evolved spectrum for
an initial injection of 5n /n r

=7.4 X 10
5e/e=SSX 10, at zh =4X10 in an Ah =02S,
0 h =0.025 universe. Dashed lines represent the pre-B
diction given by x„=x,(zz). Again the numerical result
has a peak distortion at a slightly larger frequency
x „&=1.86X10 )2x, (zz)=1.79X10 than analytic
preredictions. Distortions at the peak are also larger than
predictions due to the ineffectivenesss of elastic Compton
scattering. Furthermore, the low-frequency side is
suppressed more than predictions due to the evolution of
the spectrum under bremsstrahlung for zz (z. Thus
small negative chemical potentials behave entirely in the
same way as small positive chemical potentials. Large
negative chemica1 potentials as we shall see in Sec. VI are
suppressed due to their instability. They are, in any case,
ruled out by observations.

One exceptional case is worth considering. When Eq.
(37) predicts @=0, a more careful analysis is necessary.
For injection at the critical frequency, xh ——3.6, p van-
ishes to first order in the perturbations. Second-order
per urerturbations would require slightly different values for
5n /n and 5e/e in order for p to vanish. More impor-"r r

h htantly, there is a difference between a p =0 case in whic
5n In and 5ele are balanced so as to in effect cancel,"r "r

~ ~ ~and a case in which p=0 purely due to the intrinsic
smallness of perturbations. Given sufficient time, the two
will evolve toward the same final spectrum. However,
the spectrum may not reach equilibrium by recombina-
tion since in the balanced case we can inject an arbitrarily

large amount of energy. Large distortions take longer to
thermalize even under elastic Compton scattering.
Specifically, the spectrum does not relax down to the final
equilibrium configuration implied by Eq. (37) on a time
scale rJ, . Instead, another type of quasiequilibrium spec-
trum is established which in turn relaxes toward the actu-
al equilibrium at a slower rate. At injection, the electrons
are heated as in the case of a positive chemical potential.
Photons are then scattered up from low frequencies leav-
ing a low-frequency deficit of photons. However, just as
in the case of the negative chemical potential, there is
also an excess of photons at high frequencies. In fact,
there is exactly the number needed to fill in the deficit at
low frequencies. An intermediate spectrum forms in
which the high-frequency spectrum behaves like a Bose-
Einstein distribution with negative chemical potential
whereas the low-frequency spectrum mimics one of a pos-
itive chemical potential. Given sufficient time, the high-
frequency excess will fill the low-frequency deficit. How-
ever, it is quite possible that elastic Compton scattering
will freeze-out before this has occurred.

Figure 8 displays an example. A large injection,
5 / =0.16 5e/a=0. 22, is introduced at xl, =3.7 andn n

2=z =2.5 X 10 in a universe with Qh =0.25,zh

0 h =0.015. The small shift in the critical frequency is
due to the finite width of our so-called "6-function" injec-
tion and second-order effects. The high-frequency spec-
trum fits well to p= —2.89X10 whereas the low-
f quency spectrum can be fit to the positive chemical po-requenc —2 —3tential behavior of C, = + 1.13X 10, x„=7.0 X 10
Notice that in these cases a comparatively small distor-
tion at high frequencies can give rise to a large distortion
at low frequencies. Here the low-frequency spectrum
behaves as if p = 10 which is almost an order of magni-
tude greater than the actual chemical potential at high
frequencies.
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FICx. 7. Present day low-frequency spectra for p&0. Initial
spectrum: injection at xz =2,

a 4 ~ =2 z =4X 10 with

5n~/n~=7. 4X10 ', 5e/a=5. 5X10 ' for Oh =0.25,
Q h =0 025. Dashed lines represent analytic prediction for in-B
stantaneous freeze-out at z =z&.

FICx. 8. Present day spectrum for exceptional case of
5Ppred =0. Initial spectrum: injection at xz =3.7, zz =2.5X10

2= 2=with 5n~/n~ =0.16, 5e/@=0.22 for Ah =0.25, QBh =0.025.
Dashed lines are best analytic fit for high frequencies (Bose-
Einstein with negative chemical potential) and low frequencies
(exponentially suppressed positive chemical potential). See text
for discussion.
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If we inject this energy at an earlier time, we expect
that distortions will be reduced by the mechanism de-
scribed above. Figure 9 displays the dependence on z&

for the same initial spectrum described for Fig. 8. In or-
der of decreasing distortions, the curves represent
z~ =3.0X 10, 4.0X 10, 5.0X 10, 6.0X 10, and
7.0X10. The high-frequency regions can be fit to a
Bose-Einstein spectrum of p = —1.35 X 10—3.22X10, —8.02X10, —2.87X10, and p=0,
respectively. For a redshift of zh =7.0X10, the spec-
trum is fully thermalized under elastic Compton scatter-
ing, leaving essentially no distortions from blackbody.

Notice also that even these curious spectra retain the
same position, again within a factor of order unity, for
the critical frequency at which the peak distortions
occur, x~„k —-2x„(zx). This is because the analysis above
for the location of the peak depends only on the balance
between the number-changing processes and elastic
Compton scattering. This balance, in turn, depends on
Q~ h alone. Thus the peak frequency is related to Q~ h

in the same manner for all three cases: positive, negative,
and "zero" chemical potential. Equivalently, a measure-
ment of the peak frequency yields information on the
baryon density of the Universe.

Finally, for completeness, we should mention that solu-
tions also exist for the opposite limit where
p'(x, ) »x, &x, . We can extend the treatment of Il-
larionov and Sunyaev [16] to include double Compton
scattering. In this regime, the spectrum must be rapidly
changing with frequency, so that the kinetic equation
reduces to

(47)

2
2 xc,br 2.25n(x, )=— '3 ln C2—
3 X X~ br

2

Xe

ln(2. 25/x, ) ——,
'

ln(2. 25/x, b, )

(48)

VI. TIME EVOLUTION OF CHEMICAL POTENTIAL

In Sec. V, we have seen a special case in which the
chemical potential can evolve purely under elastic Comp-
ton scattering. However, in the general case, the chemi-
cal potential only evolves if photons can be produced or
absorbed. Furthermore, significant evolution of the
high-frequency spectrum, x, ))x„can only occur at
z )zz since elastic Compton scattering must be effective
to redistribute these photons. Therefore, the approxima-
tions given in Sec. V for the form of the low-frequency
spectrum are valid for these purposes. The low-
frequency behavior governs the rate at which photons
may be produced or adsorbed and thus is critical in deter-
mining the evolution of the chemical potential. If there is
no energy release after the epoch of heating zz, the rate of
change of the chemical potential can be derived in a
fashion similar to Eq. (37) for a static chemical potential.
If we consider the number and energy density in the spec-
trum to be dominated by the high-frequency Bose-
Einstein form, Eqs. (32) and (30) tell us

However, the observational constraint on p tells us that
the present day spectrum will not have such a form, i.e.,
p(5X10, so that x, ((p'(x, ) &p cannot be satisfied
simultaneously with x, )x, for any reasonable choice of
Q~h . In any case, such frequencies would be far below
the observational limit. However, such a form may be
realized at higher redshifts when p is not as tightly con-
strained.

for x, «1 and under the quasistatic conditions specified

above, with the solution

I I I I IIIII I I I I IIIII I I I I IIIII I I I I IIIII I I I I IIIII I I I I IIIII I I

7.0

dn
GABE

dt
dn~p dT,

d E'BE d E'P dT, df dp
dt

—
dT dt f(p)+ePd dt

—0

(49)

We may solve these two equations simultaneously to ob-
tain

—.05—
C&

D

O

dP 4 dn yBE

dt n&BE dt

where

B(p), (50)

I I I I I III I I I I I I III I I I I I I n I I I I I I i 111 I I I I I 1111 I I I I I I III I I
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hv/kTO

FIG. 9. Time evolution of an exceptional spectrum with

p„„d=0. Same spectrum and parameters as Fig. 8 for
zh =3.0X10', 4.0X 10', 5.0X 10', 6.0X10', 7.0X 10' in order of
decreasing distortions. See discussion in text.

IaE 1
(51)

d lnf(p) d In/(p)8 p =3
dp dp

Equation (50) was first derived by Sunyaev and
Zel'dovich [13]. The rate of change of the number densi-
ty is given by integrating the kinetic equation (16):

3
dn

GABE 1 8~ kT Bn BE
dXe Xe

n &BE dt n &BE q h at
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where IsE is defined in Eq. (34) and z„,=5.6X10 (1 —Y /2) (0 h ) e' / (61)

&~ dXe
JDC= 1 —n e' —1

Xe
(52)

Let us call the smaller of these two redshifts z„. The
characteristic redshifts for double Compton scattering
and bremsstrahlung are equal for a universe with

Jb. gx, e '1—ne —1
Xe (0 h ),=0.084(l —Y /2) '/ 8 (62)

We have introduced a cutoff xM = 1 in the integration for
the double Compton scattering source term since the ki-
netic equation (13) is not valid for high frequencies.
However, since double Compton scattering is extremely
inefficient at high frequencies, we expect that the error in-
volved in truncating the integral is negligible.

As we can see from Eq. (52), the change in the number
of photons depends on the integral of the low-frequency
spectrum. From Sec. V, Eq. (42), we employ

n(x„t)=
exp[x, +p( t)exp( —2x, /x, ) ]—1

(53)

dp p
dt t Dc(z)

by employing Eq. (50). Here,

(54)

1
t„DC(z)=—M2

tz tDc

II,

1/2

s

=209X10 (1—Y /2) '(Ash )

xe, '"
The solution at the present time is

p(z =0)=p(zz )exp[ —(zh /z„DC) ],
with

z Dc =4 Q9 X 1QS( 1 Y /2) 2/Sel/5(II h 2) —2/5

(55)

(56)

(57)

This solution was first obtained by Danese and De Zotti
[4]

For the case that bremsstrahlung dominates, a very
similar equation holds:

dp p
dt t„„(z) '

where

(58)

b, (z) = BI2—
2 g xqb~

=3 4X10 (1 —Y /2) '(0 h )

X 85/4 —13/427z (59)

where we have approximated g(x, b, ) =5.4. These equa-
tions yield the solution

and

p(z =0)=p(zh )exp[ —(zi, /z„b, )
/ ], (60)

which is valid for small chemical potential, p(t) &x, . In
the limit that only double Compton scattering is effective,
we obtain

For a universe with a higher baryon density, bremsstrah-
lung should dominate the evolution of the chemical po-
tential.

Note that these solutions are only valid in the case
p(z) (x, (z) ((1, for all z [25]. In many cases,
p(z) (x, (z) during some but not all epochs of interest
z &zz. Furthermore, a small chemical potential today
could have originated from a large distortion p~1 at
high redshifts. Thus we must examine the behavior nu-
merically and look for deviations from the forms of Eqs.
(56) and (60).

Let us now examine the evolution of the chemical po-
tential in a low Q~h universe as implied by nucleosyn-
thesis. Numerical solutions suggest that Eq. (56) is
indeed a good approximation for sufficiently small chemi-
cal potentials. Figure 10(a) shows such a case (the solid
line is the numerical result, the dotted line is the best fit)
for an initial spectrum p(zh ) =3. 15 X 10 with
Qh =0.25, Q&h =0.025. For comparison,
zp p ed 1 .9 X 10 whereas z„z,=2.0 X 10 . For very low
redshifts, the distortion has not completely thermalized,
even with respect to elastic Compton scattering, and thus
the apparent chemical potential deviates from the expec-
tations of Eq. (37). There has been insufficient time to
scatter photons upwards in frequency to establish a per-
fect Bose-Einstein spectrum. The result is a spectrum
that is very near Bose-Einstein in form but with a higher
effective chemical potential at high frequencies.

Figure 10(b) shows a case with an intermediate chemi-
cal potential p(zh ) = 1.84 X 10 for Qh =0.25,
Ash =0.025. We see that Eq. (56) still describes the
evolution adequately but not entirely. The best-fit value
of the critical redshift has shifted upwards, however,
z„„,=2.2X10 . This is because p)x, (z) for a
significant portion of the evolution and the spectrum
evolves more slowly than the exponential suppression
given in Eq. (56) suggests. An examination of the low
redshift behavior of Fig. 10(b) supports this assertion.
Consequently, the effective critical redshift also increases.
Comparing Figs. 10(a) and 10(b), we see that the evolu-
tion approaches the form of Eq. (56) and the predicted
value for z„ in the limit that the chemical potential is ex-
tremely small.

We can see this effect quite clearly for larger chemical
potentials. Figure 11 shows such an evolution again for
Qh =0.25, Q~h =0.025. Curve A has an initial spec-
trum with p(zI, ) =4.9 X 10 ' curve B, p(zh ) = 1.6 X 10
Dashed lines represent the predictions of Eq. (56). For
redshifts much less than z„, the chemical potential stays
roughly constant, evolving more slowly than predictions.
However, the fall off at high redshifts is correspondingly
much more precipitous than Eq. (56) would imply. The
effective redshift at which a substantial suppression of the
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chemical potential occurs is increased but only by a fac-
tor of order unity. e't Att mpts to fit the curves to the form

6 6

b
6j

'
ld =3.5X10, 3.0X10 for A and 8,

respective y. o e1 . N t that in these cases, unlike Fig. 10( ),
the form of Eq. (56), even leaving z„arbitrary, does not
accurately trace the evolution. In general, then, a large
positive chemical potential will exhibit stability up to a
redshift z =z„and then fall dramatically.

For the case of small negative chemical potentials, we
also expect that the redshift z„will play a critical role.
Ab this redshift, double Compton scattering hasove is r
enough time to significantly evolve the high-frequ y
spectrum. Furthermore, for negative chemical poten-
tials, the spectrum can only establish such a quasistatic
equilibrium as required for this analysis if jp (x,„p zp
F 1 rger negative chemical potentials andd z & z double

orb thisCompton scattering is sufticiently effective to absorb is
excess in p o onsh tons and return the distribution to

(z ). Thus regardless of initial input of photonsP j
—Xe~p Zp

I

j
I I I I

.003—

I5— I
j

I I I I
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2x10 Sx10

FIG. 11. Time evolution of large positive chemical poten-
tials. (A) Extremely large p. Initial spectrum: injection o
6n /n~=1. 5X10 ', 5e/@=5.5X10 '. (B) Large p. Initia
s ectrum: injection of 5n~/n~ =
Both injections at x& =6 with Qh'=0. 25, A~A h2=0. 025.
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h lution for z &z will be approximately the same.
Figure 12 displays this effect for Qh
Qzh =0.025. Here, we inject successively larger num-

bers of photons and energies at the same frequency xh = 1

(see fi ure captions for details). At high redshifts, we see~see gure cap i
ta pz sh t (z) saturates at some maximum value g
h

' 't'
1 input. For lower redshifts z z„,(z doublet e ini ia

e%cient. ElasticCom ton scattering is not suSciently e%cien . a
C ton scattering, as long as it is effective,

omp on
'

e will contin-
ue to scatter the excess down in frequency to e ae absorbed.
Quasiequili rium is never'1 b

' r established and deviations from
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FIG. 10. Time evolution of small positive chemical poten-
tials. (a) Small p. Initial spectrum: injection of

=2.5X10,5e/@=5.5X10 . (b) Intermediate p. In-
itial spectrum: injection of 5n ~ /n ~

=
6c/6=2. 0X 10 . Both injections at xh =6 with Qh =0.2
Qgh ~=0.025.

FIG. 12. Time evolution of negative chemical potentials.
(2) 5n~/n~ =7.5X10 ', 5e/t. =2.7X10
(B) 5n~/n~ =1.5X 10, 5E'/E'=5. 5X 10
(C) 5n~/n~ =3.8X10, 5e/@=1.4X10
(D) 5ny/n~ =7.5X10, 5e/a=2. 7X10
(E) 5n~/n~ =1.5X10 y

5E/6' 5 5X 10 j
(F) 5n /n =3.0X 10 ', $g/g=1. 1 X 10

All for injection at xz = 1 with Qh =0.25, Q&



48 THERMALIZATION AND SPECTRAL DISTORTIONS OF THE. . . 499

Eq. (56) are large. As can be seen in Fig. 12, large nega-
tive chemical potentials are rapidly evolved away under
such a process. Small negative chemical potentials (A)
exhibit the same stability as positive chemical potentials
at redshifts z &z„. Note also that this effect is only weak-
ly dependent on Qzh (assuming double Compton
scattering dominance):

.003—

.002—

I
I

I I I I

x,„DC(z„)=0.1(Q~h )
' ' 827 ' (63)

—.06

—.08

—.12

2x10
I

3x].0

Zh

5xi0 7x10
I

io

FIG. 13. High Q&h evolution of negative chemical poten-
tial. (2) 5ny /ny 1 5 X 10 y

5E/6' 5 5 X 10 (B)
6n~/n~ =3.0X10 ', 6e/a=1. 1X10 ', for injections at xq =1
with Ah =0.25, Q~h =0.10.

and so the critical chemical potential p, = —x,„~(z&) is
roughly independent of both energy injection and Qzh .
Figure 13 (curves A and 8) shows the evolution of the
same initial spectra as Fig. 12 (curves E, F) for
Q~h =0.10. Notice that p, is roughly the same in both
cases. Of course, we expect the estimate of the numerical
constant above to be extremely crude, since z„ itself is
only an order of magnitude estimate of the epoch of
effectiveness of double Compton scattering. Figures 12
and 13 show that the actual value is p, = —0.02 and is
reasonably independent of Q~h . Thus, elastic and dou-
ble Compton scattering conspire to eliminate negative
chemical potentials greater than a few percent. This re-
sult is approximately independent of the details of injec-
tion given reasonable choices of the cosmological param-
eters.

Now let us examine the effect of bremsstrahlung in a
universe with high Q~h . Figure 14 shows the evolution
of a positive chemical potential with Q~ h =0. 10
(5nr In~=2. 5X10, 5e je=5.5X10 ). Dotted lines
show the evolution under double Compton scattering and
bremsstrahlung individually, according to Eqs. (56) and
(60). Notice that at redshifts z & zDC b, —-6.7 X 10,
bremsstrahlung dominates the evolution. Near
z =zoc b„double Compton scattering begins to dom-
inate, evolving the spectrum rapidly with increasing red-
shift of heating. Note, however, that the combined
inhuence can roughly be described as the sum of the con-
tributions from the two processes considered individual-

.001

0—
10 2x10

I I I I I I

Sx10 10

Zh

I

2x10

FIG. 14. High A&h evolution of positive chemical potential,
Qh =0.25, A&h =0.10. Initial spectrum: xz =6 with
6n~/n~ =2.5X10, 6e/a=5. 5X10 . Dashed lines represent
evolution expected when only double Compton scattering or
bremsstrahlung is present.

ly, i.e., the interference between the processes is negligi-
ble. Thus, in a high Q~ h universe, the evolution
proceeds essentially as if bremsstrahlung alone were act-
ing until zDC b, ~hereupon double Compton scattering
and Eq. (56) play the crucial role.

In summary, Eqs. (56) and (60) describe the evolution
adequately (in order of magnitude) within the range—10 &p & 1. The existence of a small positive chemi-
cal potential would place tight constraints on the energy
injection mechanism. If the injection took place at
zz &z &z„, the energy injected would have to be corre-
sponding1y small. Only if the injection took p1ace in the
narrow region, z„&z & few Xz„, would a large energy in-
jection and a sma11 chemical potentia1 be consistent. Any
earlier, and an arbitrarily large injection would be
thermalized. On the other hand, the existence of a small
negative chemical potential is not a priori as restrictive,
since a large amount of energy can be injected and still
lead to a small value for I@I. However, for an extremely
small negative chemical potential, p = —3.3 X 10 as re-
quired by observation, these considerations do not apply
since we have determined numerically that the critical
chemical potential for stability is p= —10 . Extremely
small negative chemical potentials are stable and equally
as restrictive as small positive chemical potentials. The
nonexistence of p distortions of course would rule out
nonstandard cosmologies with energy injection in the
range zz & z &z„but say very little about the physics for
z & z„. The one case that escapes these considerations is
an injection where p „d=0 under Eq. (37). The chemical
potential is driven to zero not by photon-creating pro-
cesses but by elastic Compton scattering itself and thus
z„ is not the critical redshift for this process. Further-
more, an arbitrary amount of energy can be injected and
still maintain a small chemical potential even at compara-
tively low redshifts. However, even this case is likely to
leave a low-frequency signature which is potentially ob-
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servable (Secs. V and VII). Thus the lack of low-
frequency distortions would set tight bounds on all possi-
ble injections in this redshift range.

VII. COMPARISON WITH OBSERVATION

Recent results from FIRAS (Far Infrared Absolute
Spectrophotometer) have placed tight constraints on the
presence of a Bose-Einstein distortion in the Wien tail,
~p~ &3.3X 10 [1]. However, as we have shown in Sec.
IV, the Rayleigh-Jeans regime is also interesting. It is
there that we expect to see the largest temperature distor-
tions, specifically at the frequency x„„k-2x,(zz). For a
positive chemical potential, the effective temperature of
the Rayleigh-Jeans part of the spectrum is lower than
that of the Wien tail. Figure 15 plots the observational
results. Table I lists the actual points and the references
in which the original data can be found. As is immedi-
ately obvious upon examination of Fig. 15, the average
effective temperature of the cosmic background radiation
in the Rayleigh-Jeans region is apparently lower than
that of the Wien tail. Note that Fig. 15 is normalized so
that To is the temperature of the Wien tail, To =2.726 K
[1]. We have also plotted the results of our numerical in-
tegration for comparison. This marginally significant dis-
tortion implies a quite large chemical potential in the
Wien tail (dotted line, @=0.005) that is inconsistent with
the FIRAS results. If we were to require that the Wien
distortions be consistent with FIRAS (solid line,
p=3.3X10 ), the predicted distortions in the
Rayleigh-Jeans region would be far too small to explain
the effect of the systematically low effective temperature.

Even so, distortions of this type may eventually be
discovered, and it is therefore interesting to see what in-
formation can be gained from them. As described in Sec.
IV, low-frequency behavior is governed by the balance

TABLE I. Observational data for the effective temperature of
the microwave background as a function of frequency
x =hv/kTO where To=2.726 K.

T (K) o. (K) Ref.

between bremsstrahlung and elastic Compton scattering,
which is in turn sensitive to Q~h [see Eq. (24)]. At low
frequencies, bremsstrahlung returns the spectrum to a
Planck distribution. Thus, the critical frequency at
which distortions peak is a measure of Q~h . In light of
recent attempts to avoid nucleosynthesis constraints and
close the Universe with baryons [26], an independent
constraint on Azh is indeed desirable.

For illustrative purposes, Fig. 16 also displays the spec-
tra obtained numerically for Q~h =0.0025, 0.015, 0.050,
0.25, respectively, for a fixed Bose-Einstein Wien tail with

p =3.3 X 10 . Note that the distortions are independent
of the heating epoch, zz and of the details of injection as
long as the Wien tail is fixed in this manner (see below for
the one exception). On the other hand, the location of
the peak distortions is measurably different for various
choices of Q~h

It is also interesting to consider the exceptional case in
which both a large amount of energy is injected and Eq.
(37) still predicts a small chemical potential. The distor-
tions will typically freeze in before the spectrum has
reached even the kinetic equilibrium configuration of
@=0 (see Sec. V). Particularly interesting is the fact that
Rayleigh-Jeans distortions can be significant while Wien
distortions remain minimal. Figure 17 displays examples
with p= —1.3X10, —3.2X10, —8.0X10 in or-
der of decreasing distortions. Note that the distortions
on the low-frequency side are consistent with large devia-
tions implied by the low effective temperature of the mea-
surements to date even when high-frequency distortions
are consistent with the already restrictive

I I I IIII I I I I I I III I I I I I III I I I I I IIII I I I I I I III I I
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FIG. 15. Observational data given in Table I with numerical
results for p=0.005 (dotted) and p =3.3 X 10 (solid line) with

Q&h =0.015 and Qh =0.25. The point x =0.007,
loglo( T/To) =0.13 falls beyond the limits of the graphs.
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