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Perturbation dynamics for membranes and strings governed
by the Dirac-Goto-Nambu action in curved space
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It is shown how to set up a concise and fully covariant formalism, in terms of an appropriate (geodesi-
cally defined) displacement vector P, in such a way that the corresponding second order perturbation of
the Dirac-Goto-Nambu action itself provides the action for a convenient secondary variation principle
governing the linearized dynamics of first order perturbations of the relevant membrane and string mod-
els in an arbitrarily curved background, as well as determining the corresponding conserved symplectic
current associated with any pair of distinct solutions P and g ~ on the world sheet.

PACS number(s): 11.17.+y, 04.40.+c

This paper presents an efficient formalism for treating
perturbations in an arbitrary curved n dimensional space-
time background of the simplest kind of relativistic
string, membrane, or other "brane" [1] model, as
governed by an action J that is the world sheet integral
of a scalar Lagrangian X that is just a constant:

S= fI.dr, 1.= —m~+', (1)

using units with A=c =1, where dX is the surface mea-
sure element induced on the timelike world sheet by the
background metric, g„say, and m is a fixed parameter
having the dimensionality of a mass (which would be of
order of magnitude of the relevant Higgs boson mass
scale for a cosmic monopole, string or membrane ob-
tained from a spontaneously broken vacuum symmetry
[2]) while the power index p +1 is the dimension of the
relevant timelike world sheet, so that p =0 for an ordi-
nary point particle, p = 1 for a Goto-Nambu string, p =2
for a Dirac membrane, and so on for higher "p branes"
up top =n —2.

It is well known that in a Hat background spacetime
the dynamic equations for a Goto-Narnbu string (and a
fortiori for a free point particle) are expressible exactly in
a linear, and thus fully integrable, form, making it un-
necessary to bother about using a linearized perturbation
theory. However in a not so highly symmetric back-
ground, such as that of a rotating black hole in an asymp-
totically de Sitter universe [3], one can only hope to ob-
tain an explicit analytic solution for special cases (such as
configurations that are invariant with respect to residual
symmetries of the background) while for higher dimen-
sional cases, starting with the Dirac membrane, the dy-
namic equations are nontrivial even in Aat space.

In view of such considerations, Larsen and Frolov [4]
have recently developed a perturbation formalism that is
applicable to Goto-Nambu strings and their higher di-
mensional Dirac-type generalization, and that is covari-
ant in the weak sense of being expressed in terms of quan-
tities of the bitensorial kind introduced by Eisenhart ['5],
involving two kinds of indices A, B =0, . . . ,p and

p, v=0, . . . , n —1 respectively, referring to distinct
world sheet and background coordinate systems. The
purpose of the present work is to show how newer
geometrical methods [6] can be used to achieve the same
purpose by means of a more powerful formalism that is
covariant in the strong sense of being expressed in terms,
not of bitensors, but only of ordinary tensors, referring
just to external background coordinates x", whose physi-
cal significance is more directly interpretable.

Instead of working in terms of internal metric,
h zz =g„,x" z x"z (using a comma for partial
differentiation), the present treatment will be carried out
in terms of the (first) fundamental tensor of the (p+1)-
dimensional world sheet, i.e., the corresponding (rank
p + 1) spacetime pullback, whose coordinates
g" =h " x" &x &, like those of the complementary rank
(n —p —1 } orthogonal projection tensor l"„=g ", ri"„—
are quite independent of any choice of internal (world
sheet) coordinate system. Instead of the many internal
coordinate-dependent first differentiated quantities need-
ed for the Eisenhart formalism, the present approach
needs just the unique second fundamental tensor that is
given in terms of &he tangential covariant difFerentiation
operator V&=ri"~V, (where V„denotes Riemannian co-
variant differentiation with respect to g„,} by

which is characterized by the nontrivial symmetry prop-
erty [6] K„„t'=K,„t' (interpretable as the Weingarten in-
tegrability condition) and the obvious tangentiality and
orthogonality conditions I „X& ~=0,X„g~&=0.

The trace of the second fundamental tensor gives the
world sheet orthogonal curvature vector

K =K" =V„ii", ii"~ =0,

which plays a particularly important role in the present
context because the special "harmonicity" [7] condition
that K should vanish expresses the context of the well-
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known Dirac-Goto-Nambu dynamic equations that are
gotten, as shown below, from the action (1). The neat,
obviously vectorial expression (3) is to be contrasted with
what is obtained in the weakly covariant Eisenhart-type
notation scheme of the traditional approach [4] based on
the explicit use of the world sheet metric h „z, which in
terms of the corresponding internal Dambertian operator

, say on the world sheet, and of the components I z" of
the Riemannian background connection, gives
K~=Hx" +h I ~"~ ~x

We shall need to consider not only first but also second
order perturbations of the action, since according to a
very general principle it is the latter that will govern the
first order perturbations of the equations of motion with
which we are ultimately concerned. As with solid or
fiuid media [8], in dealing with strings and membranes it
is often most convenient in actual calculations to work
with perturbations that are Lagrangian in the sense of be-
ing defined with respect to a reference system that is
comoving with the relevant displacement. The relevant
finite Lagrangian difference operator 6 will be expansible
in terms of the corresponding infinitesimal Lagrangian
differential, 5t, say in the form b, =5t +5 t /2! +

"Lagrangian" variations (as opposed to the "Eulerian"
and "parallel" kinds described below) are particularly
convenient for dealing with an action integral of the gen-
eral form (1), whose first order variation specifies the cor-
responding surface stress mornenturn energy density ten-
sor T" via the formula [9] 5J'= —,

' IT"'(5t g„,)dX,
where

5J= f [(5tL)dX+L5t(dX)],

in which the induced variation of the surface measure ele-
ment is given simply by

5t (dX)= —,'ii" (5tg )dX .

In the present case the Lagrangian scalar in (1) is fixed, so
that its variation will be given trivially by 61 L =0. For
the corresponding Dirac-Goto-Nambu surface stress
momentum energy density tensor one thus obtains the
simply (internally Lorentz invariant) result

T Pv P+1 Pv

For a field, such as the metric, whose support is not
confined to a particular brane world sheet, there will be a
corresponding fixed point or "Eulerian" difFerential, 5z
say, given by 5E =5t —gX, where gX denotes Lie
differentiation with respect to the relevant infinitesimal
displacement uector field g, whose components can be
identified with the corresponding first order change in the
scalar coordinate fields x" of the background, i.e.,

In a more general analysis designed for evaluating the
efFect of incoming gravitational waves, one might wish to
allow for a nonzero Eulerian metric variation, but the
present analysis will be restricted to the case in which the
background metric is fixed, i.e., 5zg„,=0. This implies
that the corresponding first order Lagrangian variation of

the metric will simply be given by an expression of the fa-
miliar form

5tg„,=V„g +V„g
whose substitution in (4) gives

5J=f V (T" g )dX —fPV„T" dX, (9)

in which the first integrand is a pure surface divergence.
The condition that 5J' should vanish for any local dis-
placement P thus gives a dynamic equation expressible
as the vanishing of the relevant surface stress mo-
mentum energy tensor divergence, which is proportional,
in the present case (6), just to the curvature vector:
V' T" = —mp+'E"

V

Having thus recapitulated the standard results ob-
tained from the first order action variation, we are now
ready to move on to new ground by considering the cor-
responding second order action variation which is obtain-
able from (4) as

5 J= ,' f [—T"(5tg„)dX+(5t T" )(5tg )dX

+T" (5t g„)5t (d X)] . (10)

5i~g =2(V„P)V g —2%„Pg (12)

where A denotes the Riemann curvature tensor of
the background.

Using (12) to complete the evaluation of (10) leads to
the principal result of this work, which is the second vari-
ation formula

+2(V„P)V„P—A„.PP]d X,
(where square brackets. denote index antisymmetrization)

The last two terms in (10) can be evaluated using the for-
mulas given above together with the formula for the first
order Lagrangian variation of the fundamental tensor g"
itself which is given simply by

pv — pp~vo g

However the evaluation of the first term in (10) poses a
problem of a new kind, because it involves the second
variation of the metric, and so depends on 61x", which
has not yet been specified.

As can be seen from the example of the Bunting identi-
ty [10], a particularly convenient way of using a vector g
to provide a covariant specification of a spacetime dis-
placement hx", not just to first infinitesimal order but
also to higher order as required here, is to prescribe that
the displacernent be given by the end point of the corre-
sponding geodesic, so that, in particular, the second or-
der analogue of the first order coordinate variation for-
mula (7) will be given by 5t x"= —I ii' g~P.

When the displacement is defined in this way, it can be
seen to follow [11] (subject, as before, to the understand-
ing that the Eulerian variation is zero) that the second or-
der analogue of the first order contribution (8) to the La-
grangian variation induced in the metric will be given by
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552= J V„[T"(I /~V'g +2/( V P))]dX

+m~+' f g "(5~K„+K„Vg')dX, (15)

using the notation 6z to denote the parallel differential,
as defined with respect to a frame that is parallel pro-
pagated along the geodesic specified by the displacement
vector g.

The operator 5z is a sort of compromise between the
comparatively "subjective" Lagrangian differential 6L
and the more "objective" Eulerian differential 5E. For a
field (such as the background metric) for which the latter
is well defined, the parallel differential will be given by
5~ =5E +PV'„(so that in the case of the background
metric its parallel derivative will be the same as its Eu-
lerian one, which is postulated to be zero in the
present work). It can, however, be seen that the
derivative contributions to the equivalent expression
5~ =5t ++V„—gX will cancel out so that the total will
remain well defined, giving the correct result, even for a
quantity that is well defined only on the world sheet (so
that its Eulerian differential does not exist) as is the case
for the curvature covector L„,whose parallel differential
will be given in terms of its less objective but more com-
putationally convenient Lagrangian differential, by
5i,K„=5LK„—K,V„g".

Using (11) to work out the Lagrangian variation of the
formula (3) for the curvature vector, the corresponding
parallel variation is explicitly obtainable in the form

5pK„=l„iV,V g —2K' „V g

—Ki V„g +J.„ig A

which again (unlike 5L K„)has the property of depending
only on the values of p on the world sheet. It can be
verified (using the generalized Codazzi identity satisfied
by the third fundamental tensor [6]) that the eff'ect of a
gauge adjustment whereby p undergoes a modification of
the form (14) for a displacement g" that is tangential to
the world sheet is given simply by the corresponding
tangential covariant derivative, i.e.,

in which it is important to notice that (as indicated by the
tilde on the symbol V') the only derivations involved are
tangentially projected. This makes it manifest that [un-
like the variations (8) and (12) of the metric, which de-
pend on the way the displacement is extrapolated over
the background] the final result (13) depends only on the
value of the vector field g on the world sheet itself, which
is all that is physically relevant.

According to the general principles of second order
variation theory [8], one expects the second order action
variation 5 2, to be utilizable as an action in its own right
for the corresponding dynamic equations governing the
vectorial perturbation components P on the world sheet.
This can be confirmed explicitly by considering the
change 5 ~5 +255+5 in (13) due to an alteration

P 0"+P . (14)

By an integration by parts of the usual kind, the bilinear
contribution is convertible to the form

I",g '=0:-5@K„~5~K„+g 'V+' .

It was already apparent from (9) that, since the diver-
gence term gives no contribution for a variation with
compact support, the unperturbed dynamical equations
of motion of the Dirac-Goto-Nambu system character-
ized by (1) are expressible as the simple harmonicity con-
dition

(17)

in which the terms on the right-hand side allow for the
respective effects of the curvature of the unperturbed
solution and of the background, in terms of the corre-
sponding second fundamental tensor and Riemann ten-
sor, in a fully covariant manner whose geometric mean-
ing is more patent than that of the series of only weakly
covariant terms needed for the equivalent formula in the
Eisenhart formalism [4].

It is to be noted in conclusion that, since the bilinear
variation (15) must be invariant under interchange of P
and g", the difference between the term within the diver-
gence on the right and its analogue under this inter-
change will evidently give a symplectic Noetherian sur-
face current

C"=(2T"( ri'
)
—T" I )(g V,P gVgt')—(21)

that will automatically satisfy the surface current conser-
vation law V„C"=0 whenever both P and g" are solu-
tions of the dynamical perturbation equations (20). As a
particular application, this formula can be used to obtain
the conserved currents associated with any (continuous)
symmetries of the background, using the new solution
generated from a previously given solution by the
action of the relevant Killing vector k". The expres-
sion (21) can be considerably simplified by the use of the
orthogonal gauge, which reduces it just to
C"=T" (g V„g~ gV,P). —

E„=O . (18)

It can now also be seen in the same way [from the re-
quirement that the surviving second term on the right of
(15) should be independent of P] that the linearized sys-
tem characterized by the action (13) will, as promised,
give rise to dynamical equations of motion that are ob-
tainable, using the zero order condition (18), in the form

5pK„=O, (19)

so as to provide a correct description of first order pertur-
bations of the original system (18). It is evident, in view
of (18), that the linearized system is invariant with
respect to gauge transformations of the form (17), i.e., the
equations of motion (19) are automatically satisfied in the
trivial case of a displacement g that is tangential to the
world sheet. This gauge invariance can of course be re-
moved so as to obtain a dynamical perturbation vector
that is physically well defined by imposing the ortho-
gonality condition il~ g' =0. Whether or not one chooses
to work in this orthogonal gauge, it is to be noted that, by
further use of (18), the perturbation formula (16) can be
further simplified so as to allow the linearized dynamical
equations for the perturbation components P to be final-
ly expressed in the compact form

J." V' V "g =2K' "V,g J"ri~ A —ig. , (20)
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