
PHYSICAL REVIEW 0 VOLUME 48, NUMBER 10 15 NOVEMBER 1993

Twistor formulation of the nonheterotic superstring
with manifest world sheet supersymmetry
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We propose a new formulation of the D = 3 type II superstring which is manifestly invariant under
both target-space N = 2 supersymmetry and world sheet X = (1, 1) super reparametrizations. This
gives rise to a set of twistor (commuting spinor) variables, which provide a solution to the two
Virasoro constraints. The world sheet supergravity fields are shown to play the role of auxiliary

fields.
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I. INTRODUCTION

During the last few years a new formulation of the
superparticle and the heterotic superstring with a D =
3, 4, 6, 10 target space has been developed [1—10]. It has
N = 1 target supersymmetry and at the same time man-
ifests world line (or world sheet) X = D —2 local super-
symmetry. The latter replaces the well-known v symme-
try [11,12] of the superparticle (string). Thus K symme-
try finds its natural explanation as an on-shell version of
the ofI'-shell local supersymmetry of the world sheet.

The key to such formulations is the use of commuting
spinor ("twistor") variables, as proposed in the pioneer-
ing work of Sorokin et al. [1]. These variables emerge
in a natural way as the world sheet supersymmetry su-
perpartners of the target superspace Grassmann coordi-
nates. In this context one obtains a twistorlike solution
for the null momentum of the massless superparticle (or
for one of the Virasoro vectors of the heterotic super-
string) as a bilinear combination of the twistors. Thus,
the twistor variables turn out to parametrize the sphere
S associated with the above null vector. All of this is
achieved as a consequence of one of the equations of mo-
tion of the twistorlike superparticle (string), the so-called
geometrodynamical constraint. It specifies the way the
worM sheet superspace M is embedded in the target su-
perspace M. Namely, one requires that the odd part
of the tangent space to ~ lie entirely within the odd
part of the tangent space to ~ at any point of JM. The
conditions for this particular embedding are generated
dynamically from a Lagrange multiplier term in the ac-
tion.
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It is very natural to try to extend the above results to
the nonheterotic superstring. This means solving both Vi-
rasoro constraints in terms of twistor variables and inter-
preting the K-symmetry of the theory as a nonheterotic
X = (D —2, D —2) world sheet supersymmetry. However,
changing from one dimension (the case of the superparti-
cle) or essentially one dimension (the case of the heterotic
superstring) to two dimensions of the world sheet is far
from trivial. An attempt in this direction has recently
been made by Chikalov and Pashnev [13]. There only
the first half of this program was achieved. Considering
an K = 2 target superspace, but still only K = (1,0)
world sheet supersymmetry, Chikalov and Pashnev ob-
tained two twistor variables and solved both Virasoro
constraints. At the same time, their world sheet pos-
sessed only one supersymmetry, which could not explain
the full r symmetry of the theory and in addition broke
two-dimensional Lorentz invariance. An interesting fea-
ture of their formulation was the absence of any world
sheet supergravity fields.

In the present paper we shall make a step further to-
wards the realization of the full twistor program. We
present a twistor formulation of the D = 3 type II (i.e. ,
with % = 2 target-space supersymmetry) nonheterotic
superstring. On the world sheet we have N = (1, 1) local
supersymmetry and thus are able to completely elimi-
nate v symmetry. At first sight our construction closely
resembles the one in the heterotic case [10]. However, sig-
nificant differences appear in the analysis of the twistor
constraints, which follow Rom the geometrodynamical
embedding of M in M. If in the heterotic case it was rel-
atively easy to show that as a result of these constraints
the twistor variables parametrized the space S,here a
careful study is needed. The solution to the twistor con-
straints now consists of two sectors, a regular one, which
corresponds to nontrivial superstring motion, and a sin-
gular one, in which the superstring collapses into a super-
particle. Another big difference is that one needs the full
set of world sheet supergravity fields in order to make
the superfield action super-reparametrization invariant
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[14]. However, at the level of components one discovers
that the world sheet gravitino is in fact an auxiliary field
and can be eliminated via its algebraic field equation.
The world sheet metric and the twistor variables com-
pete for the role of reparametrization gauge fields. Al-
gebraic elimination of the twistor variables leads to the
familiar Green-Schwarz action. Finally, in the heterotic
case the formalism worked equally well in all the cases
D = 3, 4, 6, 10. However, in the nonheterotic case the at-
tempt to go beyond D = 3 (thus having extended world
sheet supersymmetry) causes a problem, namely, the ge-
ometrodynamical constraint starts producing equations
of motion. Understanding this crucial point will proba-
bly give us some new nontrivial insight into the geometric
nature of the superstring. It will also help us achieve a
complete twistor formulation in all the dimesnions where
the classical superstring exists.

The paper is organized as follows. In Sec. II we explain
the notation and introduce the basic geometric objects
of the world sheet and target superspaces. In Sec. III we
present the twistor formulation of the D = 3 superparti-
cle with N = 2 target-space and N = (1, 1) world sheet
supersymmetry. This is a simplified version of the su-
perstring theory, which helps illustrate some of the new
features encountered here. In Sec. IV the two terms of
the superstring action, the geometrodynamical and the
Wess-Zumino ones, are given and it is shown how the for-
mer allows one to establish the consistency of the latter.
In Sec. V we study in detail the component structure
of the action. We find out which component fields are
auxiliary and by eliminating them arrive at the standard
Green-Schwarz action. This analysis crucially depends
on which solution of the twistor constraints we use, the
regular or the singular one. In the latter case we ob-
serve the string shrinking to a particle. In the Appendix
we find the general solution to the algebraic twistor con-
straints, which consists of a regular and a singular sector.

II. TWO- AND THREE-DIMENSIONAL
SUP ERGEOMETRY

DA —EA M + ~A. (2)

Equation (1) means that we have imposed the torsion

In this section we shall introduce some basic concepts
concerning N = 2 superspaces in two and three dimen-
sions. These superspaces will serve as the world sheet
and the target space of the superstring, respectively.

The world sheet of the type II D = 3 superstring is a
(2l2)-dimensional superspace parametrized by two even
and two odd real coordinates Z = ((,q"), where m =
(0, 1) and p = (1, 2). We assume that it is endowed
by N = (1, 1) two-dimensional supergravity. The latter
is described by a vierbein E~ and a SO(1,1) Lorentz
connection w~ which satisfy the constraint [15]

(D, Dp) = 2i (p'C) pD, + R p.

Here A = (a, n) with a = (0, 1) and n = (1, 2) be-
ing SO(l, l) vector and spinor indices, and the covariant
derivatives are

constraints

T p'=2i(p'C) p, T p =0.

The complete set of N = (1, 1) supergravity constraints
and their consistency have been studied in [16]. There it
has been shown that two-dimensional N = (1,1) super-
gravity can be considered superconformally flat (ignoring
moduli problems). This means that there exist supercon-
formal transformations of the vierbeins and. connections
which leave (1) invariant and which can gauge away all
the torsion and curvature tensors. For our purposes we
shall need the infinitesimal form of the super-Weyl trans-
formations of the vierbeins:

~EM —~EM )

hEM = AEM —— EM (C— p ) pDpA.
2 2

(4)

In what follows we shall often use two-dimensional
light-cone notation. There one employs p++ =

2 (p +p )
as projection operators for the two irreducible halves of
the spinor. Then the light-cone form of (1) is

(D+, D+) = 2iD++,

(D,D ) = 2iD

(D+, D ) =R+~ (5)

Our final point about two-dimensional supergravity
concerns the structure of the covariant derivatives (2)
taken at the point g = 0. They will be used in Sec. V for
evaluating the superstring component action. From [16]
we learn that in a certain gauge for the super-Weyl and
tangent Lorentz groups one has

EA dZM E A. (Z)

Here EM+ (Z) are the vierbei-ns of the target supergeom-
etry. The Bat D = 3 N = 2 superspace is characterized
by the one-farms [20]

E =dX——id8p —0 ——id Op —8, E =d0 . (8)——
These forms are invariant under target-space D = 3, N =
2 supersymmetry and with respect to the world sheet
local symmetries. The puBbacks of these forms onto the

(6)

where e (() and @ ~(() are the two-dimensional gravi-
ton and gravitino fields.

Now we pass to the target superspace of the D = 3,
2 superstring. It is a 3l4-dimensional super-

space parametrized by [17] Z = (X,8—",0—"), where
m. = (0, 1, 2) and p = (1, 2). Note that the Grassmann
variables are combined here into a complex doublet 0—"

and its conjugate 8" (hence N = 2). Our formulation of
the superstring will be of a o model type [18]. In such a
context one treats the target-space coordinates as world
sheet superfields Z (Z ). Then one can define the dif-
ferential one- forms
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world sheet are

A. D @ME A(g) (9)

Acting on (9) with the covariant derivative DB and
performing graded antisymmetrization in A, B we obtain
an important relation which involves the world sheet and
target-superspace torsions:

DA @B ( ) DB@A —TAB @C

(io)

The explicit form of the Hat target superspace torsion is

T p
' —T p

—' —2-i(p——') p, the rest = O.

A characteristic feature of the superstring considered
as a o model is the presence of a Wess-Zumino term in
the action. It is based on another target-superspace geo-
inetric object, the super-two-form BM~(Z ). In th—e flat
case it is given by

B„„=—(p„8)„, B„„=—(p„-8)„,
2 — —' 2

&P- = —2(~-"8)P(~=8)= &P= = —2(~-"0)P(~=0)-,
(i2)

the rest = 0.

Its field strength is a three-form:

respects the automorphism group U(1) of D = 3, N = 2
supersymmetry. The latter rotates 0 by a phase factor.
A peculiarity of the type II superstring is that its Wess-
Zumino term violates this U(l) symmetry, as can be seen
from (12). As shown in [21], this is the only way to have
a closed three-form in a type II superspace. An interest-
ing geometric interpretation of this fact has been given
in [22].

III. THE D = 3, K = 2 SUPERPARTICLE

In this section we shall present a twistor formulation
of the superparticle moving in D = 3, N = 2 super-
space. It is the one-dimensional simplified version of the
superstring. It shares some new features with the su-
perstring and can thus serve as an introduction to the
superstring. Moreover, as we shall see in Sec. V C, a spe-
cific solution to the superstring twistor constraints leads
to a degenerate form of the superstring, which is just the
superparticle.

In the traditional Brink-Schwarz formulation [23] of
the D = 3, N = 2 superparticle one finds two v sym-
metries which gauge away half of the target-space Grass-
mann coordinates. In a twistor formulation one expects
to have two world line local supersymmetries. So we
consider a super world line parametnzed by w, g', where
i = 1, 2 is a doublet index of the SO(2) automorphism of
the N = 2 supersymmetry algebra,

IIMNK —[M +NK) ) (13) (D;, D, ) = 2iS,,B . (18)

where [MNK) means graded antisymmetrization. Using
the D = 3 p matrix identity

The action we propose for the D = 3, N = 2 super-
particle is given by

(i4) drd qP; (D;X —iD;8p 8——iD;8p —0—). (19)

one can show that

p=H y, =i(p )„g, therest = O.

In what follows we shall also need the expression for the
three-form with tangent space indices,

HABC —( ) EC @B EA HM1v K ~

It contains the pullback E,—of the invariant one-form
of target-space supersymmetry [cf. (8)] and a Lagrange
multiplier. All superfields in (19) are unconstrained. As a
kinematical restriction we require that the pullback E,—
defining the commuting spinor (twistor) variables be a
nonvanishing matrix,

D;8 $0. (2o)

Its projections are similar to those in (15):

H p~ = H p =i(p )p~, the rest = O.

Note that the part of the target-space geometry in-
volving only the pullbacks (one-forms) and the torsion

I

We note that this action is invariant under the N = 2
superconformal group. [24] Our aim is to study the com-
ponent content of the above action and to show its equiv-
alence to the Brink-Schwarz superparticle action [23]. In-
tegrating over the world line Grassmann coordinates we

get

S = d7. [D1D2P, (D,X —iD;8P—8 —iD—;8P—8) +iD2P1 (B X —iB 8P—8 —iB OP——0 —2D1OP—D10)

iD1P2 (B X ——iB 8P—0 —i—B OP —8 —2D28P —D20)
+D1Pia(D1D2X 1D1D28 Y 0 &D1D28 Y 0 + iD18 Y D20 + 1'D10 Y D20)
+D2P2~ (D1D2X —xD1D28j0 —x—D1D28P 8 —iD18P—D20 ——1D10P D20)—
—iP1 (2B D2X——iB D28p —8+iB Op D28+ 2D1D28p~D18—+ H.c.)
+xP2O, (2B~D1X —xB~D18p—0 + xB7—-8p D28 —2D1D28p D—28 + H.c.)]„=p. — (21)
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The variation with respect to the component DqD2P;
produces the auxiliary field equations (we omit the sub-
script g = 0)

Further, varying with respect to the sum D2P& + D&P2
we get the other twistor constraint

D;X——iD Op —0 —iD, Op —0 = 0. (22)
DgOp —DgO™ —D20p —D20 = 0. (24)

Dg Op —D20 + Dg Op —D20 = 0. (23)
I

The variation with respect to the components DqPq and
D2P2~ defines the auxiliary component DqD2X —and also
leads to one of the twistor constraints

The difference i(D2Pi —DiP2~) is identified with the
particle's momentum p .

Finally, the last two terms in the component action
[(21) can be simplified by using the auxiliary Beld equa-
tions (22)] and the resulting action take the form

S= d~[p (0 X —iB 8p—8 —iB Op —0 —D,8p D, O)—

+2P,~(D28P 0~8 +—D2OP 0~8 —-~D, 8P D,D2—0 —~D, OP-D Di82)
2P2~(D—iOP 0~0 +—Di8P 8~8 +—iD28P —DiD20 + iD28P —DiD20)]. (25)

Here the twistor variables D, O—and D, O are re-
stricted by the constraints (23) and (24). Our next step
is to solve these constraints. Using the explicit represen-
tati. on for the D = 3 p matrices in the light-cone basis

p (p—A) = 0 m p—= p, (r)Ap A. — (32)

The fact that the particle momentum is real and
nonvanishing then implies

(

0 01) + ((0 ll p(r)Ap —A = p(~)Ap —A.

The solution to this equation is

(33)

(26)

we easily find the general solution to the twistor con-
straints (23) and (24) under the assumption (20):

D&0—= A— D20—= isA — s = +12

where A—is an arbitrary complex nonvanishing spinor.
Substituting this solution into the action (25) we get

d~ [p (8 X —iB 8p —0 —iB 8p—0 —2Ap —A)

2P yp A —2—P yp A—], —

where

P = Pg —isPg, y = 0 0—+ sDgD20 —.

Now we remark that the trilinear term in this action
is purely auxiliary. Indeed, the variation with respect to
P leads to the equation

~~-A = 0. (29)

Since the commuting spinor A is nonvanishing, the only
solution to this equation is y = 0. The variation with
respect to y in (28) implies

A—= e'&A, p = e
—"&p. (34)

IV. THE D = 3) K = 2 SUP ERSTRIN G AC TION

The twistor superstring action consists of two terms

s' = S'GD+ Swz.

The first one resembles very much the superparticle ac-
tion of Sec. III:

It implies that on shell the complex spinor A—becomes
reaI modulo a phase. The arbitrary phase P corresponds
to the SO(2) subgroup of the superconformal invariance
of the action (19) and can be completely gauged away.
Then we can replace the twistor combination Ap —A in
(28) by ~p,

~
p—and obtain the standard Brink-Schwarz

superparticle action.
The conclusion is that the action (19) is equivalent to

the Brink-Schwarz action upon eliminating the auxiliary
fields (including the twistor variables) and fixing certain
gauges. An unusual feature compared to the twistor su-
perparticle of [1] is the presence of two twistors (the real
and imaginary parts of A) instead of only one. As we
shall see in Sec. VC, it is this form of the superparticle
which appears as a degenerate case of the nonheterotic
superstring.

P.(q-A). = 0. (30) d2(d2 P cx@ 0, (36)
The general solution of this twistor equation is

P = p(v. )Ap —A, (31)

with an arbitrary complex function p(7). However, the
right-hand side of (31) is an obvious gauge invariance of
the action (28) due to the p matrix identity (14). Hence
the two last terms in (28) vanish.

Finally, we vary with respect to the twistor variable A:

E —= 0. (37)

The meaning of Eq. (37) is that the pullback of the
target-superspace vector vierbein onto the spinor direc-

The variation with respect to the Lagrange multiplier
P leads to the following geometrodynamical [25] con-
straint on the target-space coordinates treated as world
sheet super6elds Z (Z ):
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tions of the world sheet must vanish. In other words, if
one considers the world sheet as a (2~2)-dimensional hy-
persurface embedded in the 3~4 target superspace, then
there should be no projections of the target-space even
directions onto the world sheet odd ones. Using (10), (3),
and (ll), we obtain the important consequence

2(P'C) PE =E— P E13—+ E P EP.— (38)
In two-dimensional light-cone notation (38) reads

E+V—E+ = E++-
~~E

E+p—E + E p—E+ ——0.

(39)
(40)
(41)

These equations are constraints on the sup erfields
Z—(Z ). In particular, they imply algebraic restric-
tions on the first components in the g expansion of the
spinor-spinor pullbacks:

~++- = E++-~,=0 . g++-) ' = (8 —
)
' = 0.

In other words, one of the main purposes of the geometro-
dynamical constraint (37) is to provide a solution to the
Virasoro constraints of the superstring in terms of the
twistor variables (42).

The presence of the geometrodynamical term (36)
makes it possible to introduce the leading term in the
superstring action in the form of a generalized Wess-
Zumino term. The latter requires certain consistency
conditions, and we shall show that they are satisfied as a
consequence of the geometrodynamical constraint (37).

The Mess-Zumino term has the form

g2(d2 (—)
MN+M+N PMN

x(BMN EM EN F- bA ~MQN) ~ (44)

Here P is a grad. ed-antisymmetric Lagrange mul-
tiplier, QM is another Lagrange multiplier, BMN
( )( + )EN— EM—BMN—is the pullback of the target-
superspace two-form, and EM are world sheet vierbeins.

(42)

These are commuting spinors (with respect to the two-
and three-dimensional Lorentz groups), which we shall
call "twistor variables. " In Sec. V we shall show that as a
result of these restrictions the first colnponents in the g
expansion of the vectors E~+—defined by (39) and (40)
are lightlike,

The quantity A is to be found from the consistency con-
ditions below. Varying with respect to P leads to the
equation of Inotion

BMN —EM EN'& bA = ~(MQN). (45)

The meaning of this equation is that the pullback of the
two-form becomes almost "pure gauge" on shell. The
consistency condition following from (45) is that the
graded curl of the left-hand side of Eq. (45) must vanish.
Thus we obtain

JIM~~ —t~+M~)
= 28tx EM E~) ~~gA

+( )K(M+N) E E b g

—(—)AB(A w B), (47)

one can rewrite (46) as:

HABC ——(—T(BA + 2cu(BA")hC)eg~A+ h(BhC~d~DA) A,

(48)

where H~~t- is the pullback of the three-form,

(
)(B+B)A+(C+C)(A+B)E CE BE AH

(49)

Let us study the different projections of the condition
(48). First we consider the projections of its left-hand
side. If we take al1. the indices spinor and use the ge-
ometrodynamical equation (37) I26], we find

H p~
——E —Ep~E~~H p~+3E —Ep~E~~H p~+c.c. = 0

as a consequence of (17). In accordance with this the
right-hand side of Eq. (48) vanishes identically for this
choice of the indices.

Further, let us take one vector and two spinor indices
in (48). Substituting (17) into (49) and using (39)—(41)
and (14), we find

where HM~~ is the pullback of the three-form. It is
convenient to pass to tangent space indices in. Eq. (46),
i.e., to multiply it by two-dimensional vierbeins. Using
the expression for the world sheet torsion,

TAB = ( )"' +——'EB EA ~MEN +~AB

H+~(+~+ =i(E+p E+)E++ +c c =i(E+p. .E—+)(E+p E+) + c.c. = 0, —

H++~+~ =i(E p E+)E++ +c.c. =i(E p E—+)(E+p E+) + c.c. —

(51)

2
(E+p E+)(E p E—+) + c.c. = —(E+—p E+) (E+7 E) + c.c. = 0. —

2
(52)

Similarly, we obtain

0
~ ~

= H ~+(
——0.

The only nonvanishing pullbacks with one vector and two spinor indices are
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H ~+~+
——i(E+p E+)E +—c.c. = i(E~p E+)(E p E—) + c.c.

2i—(E+p E )(E+p E—) + c.c., {54)

H++~
~

——i(E p E )E++ +—c.c. = i(E p E )(E+p E+—) + c.c.
2i(—E p E+)(E p E+—) + c.c. = H— (55)

If we compare these expressions for the pullbacks of' the
three-form with the right-hand side of Eq. (48) and use

(3), we see complete agreement, provided that the quan-
tity A is given by

A= s(EP P E+c.c.)e Eb (56)

The remaining possibility in Eq. (48) is to have two
vector and one spinor indexes. This does not lead to new
relations, since the component H g~ of the pullback of
the three-form is determined by the Bianchi identity

D[aH~pp) + T[~p H+p$) —0 (57)

and thus automatically agrees with the right-hand side
of (48).

This concludes the verification of the consistency of
our Wess-Zumino term. We have seen that the pullback
of the two-form itself is not closed (dB g 0), but this
can be corrected by an appropriately chosen term with
A given in (56).

We note that the action term (44) is invariant under
the superconformal transformations (4). Indeed, we see
that the vierbein factor in front of A in (44) transforms
as a density of weight +2. The twistor vector Ep p E
and its conjugate are densities of weight —1. As to the
vectors E —, their transformation laws are less trivial.
Take, for instance,

I

duces the equation

PNM 0

Its general solution is

PMN g gMNK + gMpN klT 2 (60)

0++T=O T=0. (61)

Inserting the solution (60) back into the action term
(44) and doing the g integration with the help of the
Grassmann h function g present in (60) we obtain

~wz= d(T~ "~B~~ — EE eb—A~),=p

It consists of two parts. The erst one has the form of
a pure gauge transformation with graded antisymmetric
parameter Z . We are sure that this is an invariance
of the action because the consistency condition (48) holds

[27 . It is easy to see that almost all of the components of
P N can be gauged away by a Z transformation with-
out using any parameters with space-times derivatives.
Hence, one is allowed to use such a gauge in the action.
The only remaining nontrivial part of P N is the sec-
ond term in the solution (60). It contains a coefficient T,
which is restricted by (59) to be an arbitrary constant:

~E++—= —AE++ —+ iD+ AE+ —. (58) (62)

The first term in (58) provides the weight —1 needed to
compensate the other two factors. The second term is
proportional to E , which vanis—hes according to (37).
In other words, this second term can be compensated by
a suitable transformation of the Lagrange multiplier P
in the action term (36). As to the term (36) itself, its
super-Weyl invariance is assured by ascribing a certain
weight to the Langrange multiplier.

Another remark concerns the U(1) automorphism of
D = 3, N = 2 supersymmetry. The term SGD of our
action respects this symmetry, whereas S~2, does not.

V. COMPONENT ACTION

In this section we shall obtain the component expres-
sion of the two terms (36) and (44) of the superstring
action. We shall show that the Wess-Zumino term (44) is
reduced to the usual superstring action of Green-Schwarz
type. The geometrodynamical term (36) will turn out to
be purely auxiliary.

A. Mess-Zumino term

We begin with the Wess-Zumino term (44). The vari-

ation with respect to the I,agrange multiplier QM pro-

To evaluate the various objects at g = 0 we use Eq. (6).
Thus, E ~p

——e ((), and so the factor in front of A
becomes simply dete. The quantity A from (56) takes
the form

A~„P ——s~ (fP P 8+ c.c.) e ~Zb

where

(63)

=E —
~p

—— (e —0 + vP D„)Z EM-
~a Bm Z EM 0 (64)

Note that the only place in (62) where the gravitino field

@ ~ could occur is in (64), but even there it dropped
out as a consequence of the geometrodynamical equation
(37).

At this point we are going to use the solution to the

g = 0 part of the constraint (38). This is the constraint
on the twistor variables F —and appears as a compo-
nent of the geometrodynamical term (36) (see Sec. VB).
As explained in the Appendix, the twistor constraint has
two solutions: a regular and a singular one. The regu-
lar solution is obtained under the assumption that the
twistor matrix 8' —is nondegenerate,
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det
II 8-—

llano

and has the form

,p (A+
(66)

Here P(() is an arbitrary phase. The spinors A in (66)
are real,

(67)

and satisfy two further relations

A+p —A+ ——E'++—, A p—A = E' (6s)

These equations give expressions for the vectors F~~—in
terms of the twistor variables E Us—in.g (14), one sees
that the vectors in (68) are lightlike:

(E'++ )' = (8— —)' = 0. (69)

d ( (c B —
2 det e cos 2$ E++ Z) . —

Thus, we see that the lowest-order component of the
twistor constraint (38) has reduced the 2 x 2 complex
twistor matrix to two independent real twistors A~ —,in
terms of which the superstring Virasoro constraints (69)
are solved. .

In this subsection we shall restrict ourselves to the reg-
ular solution (66). The case of the singular one (which
corresponds to the case of a string collapsed into a par-
ticle) will be treated in Sec. VC. So, putting the above
expressions in (63) and then in (62), we obtain

(74)

A —
g M@ A cxD ZME

I

exp A

From the geometrodynamical equation (37) follows

bz —=0 bz —=e 8 —.
)

(75)

(76)

Let us now introduce an anticommuting parameter v.

carrying a D = 2 vector and. a D = 3 spinor index by
substituting

Putting this in (76) and using the solution to the con-
straints on the twistor matrix, Eq. (73) and the Fierz
identity for the three-dimensional p matrices, we obtain

This is the action of a type II D = 3 Green-Schwarz su-
perstring. In it the twistor variables are not present any
more; they have been eliminated through the algebraic
relations (68).

We have seen that in the process of derivation of the ac-
tion (74) the two-dimensional gravitino field dropped out
[see (64)], although in the original superfield form (44) it
was needed to maintain the invariance with respect to the
local supersymmetry transformations on the world sheet.
Despite the absence of the gravitino, this local supersym-
metry is still present in the component term (74), but
now in the nonmanifest form of K symmetry. In order to
see how local supersymmetry is transformed into r sym-
metry on shell let us consider the supersymmetry varia-
tion of the target-superspace coordinates z = Z—I„

hz —= (p ) p(E'++ Kp++ —8 —vp ). —(7s)

sin 2P E++ 8= 0. — (71)

Using the twistor expressions (68), it is not hard to show
that

We see that this expression is almost identical with the
usual Green-Schwarz type II superstring action, if the
constant T is interpreted as the string tension [28]. The
only difFerence is in the factor containing the auxiliary
scalar field P((). In Sec. V 8 we shall see that P does not
appear in the geometrodynamical term (36) of the super-
space superstring action. This is not surprising, since P
appears as the parameter of a U(1) transformation, and
SGD respects this symmetry. Therefore we can vary with
respect to P in (70) and obtain the field equation

Equation (78) coincides with the r. symmetry transfor-
mations of the type II superstring [12].

Note an interesting feature of the transition from the
action term (70) to the final form (74). The former is not
invariant under the U(1) automorphisrn of D = 3, K = 2

supersymmetry. In the first term in (70) this is due to
the U(1) noninvariant two-form. In the second term in
(70) the only object which breaks U(1) is the phase P.
Indeed, looking at (66), one sees that P is shifted by the
U(l) transformation of the index n. However, once this
field has been eliminated from the action, one obtains the
peculiar mixture of a noninvariant and an invariant term
in (74), characteristic for the type II superstring.

E++—Z = (A+p —A+)(A p A ) = (det II A —
II) B. Geometrodynamical term

= —e '*~(det
II

~-= II)'.

Note that the First term in (72) is in fact proportional to
the determinant of the induced two-dimensional Inetric of
the superstring. Since in this subsection we assume that
the twistor matrix is nonsingular [see (65)], we conclude
that the solution to (71) is

= 0.

Putting this solution back into the action (70) we obtain

In the previous subsection we saw that the usual super-
string action is essentially contained in the Wess-Zumino
term. Here we shall show that the role of the geometro-
dynamical term (36) is purely auxiliary, i.e. , that it only
leads to algebraic constraints on the component fields.
Among them are the twistor constraints reducing the
twistor matrix to the two lightlike vectors from the Vira-
soro constraints. Another of these constraints will allow
us to express the two-dimensional gravitino field in terms
of the derivatives of the Grassmann coordinates 0—of the
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target superspace. Other equations will put the Lagrange
multipliers P to zero on shell. We shall also show that
the scalar field P appearing in Swz is not present in S~D,
and so the derivation of its field equation from S~z in

I

Sec. VA was correct. Thus the superstring action (35)
will be reduced to the Green-Schwarz one (74).

In two-dimensional light-cone notation the term S~D
becomes [see (8)]

SGD = d D+D— P D+X——iD+Op —0 + c.c. + + ~—

d ( D+D P (D+X —iD—+Op —0) —D+P (D D+X —iD— D+8p 0 —i—D+8p DO—)
~ ~ ~

+ D P (iD++X +D—++8p 8 —i—D+8p D+—8)

+ P (D+D D+X —i D—+D D+8p 0—
+ D++8p D8—+ 2iD D+8p D+8)—+ c c —(.+.~ —)] —o. (79)

The variation with respect to the components D+D P
and D+D P+ gives two equations for the auxiliary odd
components of the superfield X—:

D~X—= iD~Op —0+ iD~Op —0 (80)

This is just the lowest-order component of the constraint
(41). The other two constraints, the i1 = 0 components
of (39) and (40), follow from the terms with D P and
D+P+ . This set of constraints was discussed in Sec. V A.
Postponing once again the investigation of the singular
solution of the constraint until Sec. V C, we consider only
the regular one (66):

(from here on we shall drop the indication q = 0). The
variation with respect to the components D+P and
D P+ gives equations for the auxiliary even component
D D+X—and also leads to the twistor constraint

D+0&—D 0+ D+0&—D 8 = 0

D+0—= e'@A+—, D 0—= ie'@A (82)

Next we shall simplify the term with P in (79). Us-

ing (80) and the anticommutation relations (1) we find
that the first two terms after P equal the third term.
Further, the covariant derivative D++ in this third term
can be written out in detail according to (6):

D++Op —D 0 + D++Op —D 0
= ie++ (—e '~B 8 + e'~B 8)p

+2/++ (S3)

where we have used (81) and (82). Note that the covari-
ant derivative D++ in the D P term in (79) does not
contain the gravitino field, as a consequence of (80) [see
also (64)].

Now we are going to put all this back into the action
term (79). The purely auxiliary terms drop out and SGD
is reduced to

d ( (P (E'++ —2A+p-A+)—

+2P [imp —A+ + ie++ (—e '~0 0 + e'~B 8)p A+ 2—@++ A p—A ]
—(+ ++ —)), (84)

where 8++ was defined in (64) a—nd we have introduced
the notation

iD P = P, y = e '~D D+0+ e'~D D+0

[and similarly in the (+ ++ —) sector]. The field equation
for y is a typical twistor equation,

so its field equation is

P (A p—A ) = P s(A+p A+)(A p A) = 0. (8—8)

As explained in (72), under the current assumption of
nonsingularity of the twistor matrix the twistor factor in
(88) is nonvanishing, and so we conclude

P 3 ——0 w P =0.
P (p A+) =0,

which has the general solution

P = P s(A+p —A+)

(86)

(87)

Before inserting (89) back into (84) and thus eliminating
the P term from the action, we have to study the field
equation for P itself:

imp —A++ ie++ (—e '~0 8+ e'~B 8)p—A

with an arbitrary odd scalar field P s((). Further, the
gravitino field g++ appears only in (84) [see (70)], and + 2@++ A p—A = 0. (90)
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These are three equations (as many as the projections of
the vector index a). Two of them can be used to solve for
the auxiliary field g—(because here we assume that the
matrix A~ —is invertible). The third one enables us to
solve for the gravitino field Q++ [to this end one multi-
plies Eq. (90) by A+p A+ and uses the nonsingularity of
the twistor factor (A+p A+)(A p—A )]. Thus we see that
the gravitino field is an auxiliary field. It is expressed in
terms of the derivative e++ 8 8 (where 0 = 0~0). This
is possible since 0 transforms inhomogeneously under the
world sheet local supersymmetry, 80—= e A —[see (76)].

So far we have shown that the term with P in (84)
is purely auxiliary and drops out of the action. Now we
shall show that the term with P vanishes on shell as
well. First we shall vary with respect to the twistor Beld
A+. It appears only once [we have already put P = 0
and in the Wess-Zumino term (84) we have eliminated
the twistors in favor of the vectors fg~ —], and so we get
an equation similar to (86):

P (7 A+) =—0 m P = P 4(A+p A+).

Further, the variation with respect to P gives

simplicity we shall only consider the bosonic fields in the
action.

As explained in the Appendix, the singular solution,
for which det

~~
8 ~~= 0, has the form

~+——A—, (96)

Here A—is an arbitrary complex spinor and r is an ar-
bitrary real factor. Let us insert this solution into the
Wess-Zumino term of our string action. The quantity A
(63) vanishes due to the p matrix identity (14):

A (Z p E'+)(Z— p f+) + c.c.
= r (Ap —A)(Ap A) + c.c. = 0. (97)

Further, the two-form term in (62) is proportional to 0,
and so it does not contribute to the bosonic terms in the
action. Thus, S~z vanishes in this case.

I et us now turn to the geometrodynamical term (36).
Dropping the fermion fields and using the solution (96),
we see that the component expansion in (79) is reduced
to two terms only:

t++———2A+p —A+ . (92)
SGD = d P~ D++X —Ap A

P E — e ++8'++—E —f —E' (93)

Finally, we vary with respect to the vierbein fields e
They appear both in S~D [(84)] and in Swz [(74)]. The
variational equation for e is

+P (D X —i. Ap ——A)]. (98)

The variation with respect to the following combination
of Lagrange multipliers bP~ —r bP~++ shows that the
two vectors D++X—and D X—tangent to the string
surface are linearly dependent:

Multiplying Eq. (93) by e~~ we find r D++X——D X—= 0. (99)
P .E++- —0, P .E (94)

C. Case of a degenerate twistor matrix

Inserting the solution (91) and the ——analogue of (92)
into (94), we finally obtain

P4(A+&A+)(A p A)=0 M —P4 ——0 m P =0.
(95)

Once again, we see that the zweibeins play the role of
auxiliary fields (like the gravitino above). In the standard
superstring theory they produce the Virasoro constraints
(69). In the twistor theory these constraints are already
solved in terms of twistors. Therefore the zweibeins just
give rise to auxiliary equations such as (93), which help
eliminate some of the Lagrange multipliers.

This concludes our demonstration that the term SOD
[(36)] in the superstring action is purely auxiliary. It does
not lead to any new equations of motion for the physical
fields x and 0 and thus the on-shell component action is
just the Green-Schwarz one (74).

=pf' 6

bP = —pP++ —pr P, bP++ = 0.

(100)

The appearence of new gauge invariances is observed in
the fermionic part of the superstring action too. Thus,
for example, the world sheet gravitino drops out &om
the action. This is in agreement with previous twistor
formulations of the superparticle (see, e.g. , [3]), where
one does not need a gravitino field to achieve the local
world sheet supersymmetry invariance.

Using all these gauge invariances along with world
sheet reparametrizations, tangent space Lorentz and
Weyl transformations, we can gauge away the zweibeins
and the field r. Then with the help of (99) we find

This means that the dependence on the one of the world
sheet coordinates drops out and the string collapses into
a one-dimensional object (particle). The degeneracy of
the world sheet leads to an additional gauge invariance.
For instance, the action (98) has the gauge invariance

be++ ——p(()r e, bA = 2pr A

In Secs. VA and VB we studied the component con-
tent of the twistor superstring action under the assump-
tion that the twistor algebraic constraint (38) (taken at
q = 0) has the regular solution (66). Here we shall inves-
tigate the alternative singular solution. We shall show
that in this case the string collapses into a particle. For

SGD= d P~O~X —Ap A) (101)

where P corresponds to an orthogonal combination of
the Lagrange multipliers. Integrating out the inessential
world sheet coordinate (0), we see that this is a twistor
particle action of the type described in Sec. III.
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The conclusion of this subsection is that when one em-
ploys the singular solution of the twistor constraint (38),
the superstring action becomes degenerate. The gauge
invariance widens, leaving a number of component fields
arbitrary. The remaining physical fields do not depend
on 0 any more, and so the superstring becomes a super-
particle. Since the ordinary Green-Schwarz superstring
formulation does contain the superparticle as a certain
singular limit, we see that both the regular and singular
solutions to the twistor constraints have to be taken into
account.

to a D = 11 superparticle with N = 16 world line su-
persymmetry. There the geometrodynamical constraint
reduces the twistor variables (i.e. , the bosonic physical
fields) to the sphere Ss (modulo gauge transformations).
At the same time, the 32 components of the fermion 0—
are brought down to 16 after taking into account the
16 local world line supersymmetries. It is clear that 9
bosons and 16 fermions do not form an o8'-shell super-
multiplet; therefore, the geometrodynamical constraint
must involve equations of motion.

VI. CONCLUSIONS

In this paper we have shown how the nonheterotic
D = 3 type II superstring can be formulated with man-
ifest K = (1, 1) world sheet supersymmetry. The cen-
tral point in the construction was the geometrodynamical
constraint (37) and its corollary (38). In particular, they
reduced the initial 2 x 2 complex twistor matrix E' —to
the two null vectors from the Virasoro constraints. The
rest of (37) gave rise to purely auxiliary equations.

The geometrodynamical principle is common for the
twistor formulations of the superparticle [3], the het-
erotic superstring [9,10], and, as we have seen here, the
nonheterotic D = 3 type II superstring. One would be
tempted to extrapolate this to the nonheterotic type II
superstring in higher dimensions as well. Indeed, analyz-
ing the lowest-order component of Eq. (38), one can show
that the D = 3 situation is reproduced. For instance, in
D = 10 the 16 x 16 complex twistor matrix is once again
reduced to the two null vectors from the Virasoro con-
straints. However, starting from D = 4 [and N = (2, 2)]
there is an unexpected difBculty at the next level in the q
expansion of Eq. (38). One can show (most easily in the
linearized approximation) that some of the constraints
are equations of motion for 0. This is inadmissible, since
the geometrodynamical constraint is produced by a La-
grange multiplier, which implies that some of the com-
ponents of the latter will propagate as well. One clearly
sees that the case D = 3 is the only exception, due to the
trivial algebra of the transverse p matrices in D = 3. In
fact, the same problem is also encountered in the frame-
work of the type II superparticle discussed in Sec. III.
So, the main open problem now is to fi.nd a modification
of the geometrodynamical constraint such that it would
not imply equations of motion in D ) 3. We hope to be
able to report progress in this direction elsewhere.

Note added. After this paper was completed, we re-
ceived a new paper by Pasti and Tonin [30], in which they
claim that a similar construction applies to the D = 11
supermembrane with full N = 8, D = 3 world sheet
supersymmetry. This would be very surprising, since
they impose the same type of geometrodynamical con-
straint. As we mentioned above, in the case of extended
(% ) 1) world sheet supersymmetry this constraint is
most likely to produce equations of motion and the corre-
sponding Lagrange multiplier will contain new propagat-
ing degrees of freedom. One simple argument explaining
this phenomenon has been proposed to us by P. Howe.
The supermembrane theory of [30] could be truncated
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APPENDIX: SOLUTION TO
THE TWISTOR CONSTRAINTS

In Sec. IV we derived the geometrodynamical con-
straint (38) or, in light-cone notation, (39)-(41). The
lowest-order terms in the g expansion of this constraint
gives restrictions on the twistor matrix

~~
8

~+&-~+ = ~++-

E+~-8 +f ~-E+ —O.

(Al)
(A2)

(A3)

In fact, the fi.rst two equations define two vectors f~~-
and only the third equation constrains the twistor vari-
ables. Here we are going to solve (A3) in a general way.

We start by writing out the components of the twistor
matrix:

(~ B~
(A4)

A basic kinematic assumption about the twistor variables
is that they can never vanish identically. This means that
at least one element of the matrix (A4) is nonvanishing.
It is convenient to write down the constraint (A3) using
the light-cone basis (26) for the p matrices. There the
three projections read

(++): AC + CA = 0;

(——):BD+DB=0;
(+—):BC+ CB+ AD+ DA = 0 .

(A5)

(A6)

(A7)

The general solution to Eqs. (A5) and (A6) is given by

A = ae', C = ice', B = be'~, D = ide*~, (A8)

where a, b, c, and d are reaL Substituting this into (A7)
one gets

(ad —be) sin(a —P) = 0. (A9)

Now, there are two possibilities: The matrix E' —can be
either degenerate or nondegenerate. With the help of
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(A8) we evaluate the determinant of this matrix:

det [[ t [[=—i(ad —bc)e'( +~&. (A10)

where the spinors A+ and A are real and restricted by
the condition

Hence if the matrix 8 is—nondegenerate, ad —bc g 0,
and (Ag) implies in turn o. = P. In the degenerate case
ad —bc = 0 [and hence (c, d) (a, b)] and the phases n
and P are independent.

In summary, the general solution to (A3) consists of
two sectors. In the first sector, the matrix E' —is nonde-
generate and is represented as

A+A =—ad —bc g 0. (AI2)

(ae' be'~ & (Af ~=
I

The second sector consists of the degenerate matrix

b ~I,~ (' A

pic id) (iA ) ' (AII) where A is now an arbitrary comp/ex spinor, and r is
real .
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