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We consider the QED process involving the breakup of a neutral, spherical object into a charged inner
core and equal, but oppositely charged expanding outer shell, such that a substantial amount of pair
creation occurs. We show, under certain conditions, that semiclassical electrodynamics gives a good
description at late times, when pair creation has ceased to good approximation. We also outline a
method for testing the semiclassical approximation during the dynamical stage, when pair creation is
taking place. The underlying motivation for this investigation is to understand better some of the issues

concerning semiclassical gravity.

PACS number(s): 12.20.Ds, 04.60.+n

I. INTRODUCTION

The semiclassical theory of gravity treats the metric
classically and matter quantum mechanically:

G =87G(T,) . (1)

Here, G,, is the Einstein tensor and { T, ) is the expecta-
tion of the energy-momentum tensor operator with
respect to some quantum state. This theory may account
for a wider range of gravitational phenomena than can be
described by either the classical Einstein equations or
quantum field theory on a fixed curved spacetime. A pos-
sible example of one such phenomenon is black-hole mass
loss due to the Hawking effect.

There are several problems which must be addressed,
however, before semiclassical gravity can be considered a
viable theory [1].

(1) A calculation of (f‘ab) requires a regularization
and removal of a divergent part. However, demanding
that the remaining finite term satisfy all physically
reasonable conditions (covariant conservation, etc.) does
not uniquely specify the infinite part to be removed: the
resulting finite ( 7, ) turns out to have a two-parameter
ambiguity.

(2) These ambiguous terms involve higher derivatives
which give rise to unphysical, “runaway’’ solutions to the
semiclassical equations.

Let us suppose that we are somehow able to overcome
these two problems: we have an unambiguous procedure
for extracting well-behaved solutions from the semiclassi-
cal equations.! We should then address the following
problem.

(3) Given that the correct theory is quantum gravity,
under what conditions do we expect the semiclassical
theory to give an accurate description? In other words,
what is the domain of validity of semiclassical gravity?

To date, there has been little progress in finding
a solution to these problems. Perhaps the main reason

1Simon [2] has given a possible resolution to problem (2).
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for this is our lack of understanding of dynamical
gravity/particle production processes, a consequence of
the extreme difficulty in calculating (7,,) for curved
spacetimes. Furthermore, to provide a proper answer to
(3) would require knowledge of the full quantum theory
of gravity.

Recognizing the difficulties in trying to directly address
the above problems, a possible line of attack might be to
first consider a simpler, better understood quantum field
theory whose associated semiclassical theory has similar
properties to semiclassical gravity, such as particle pro-
duction. If, for this analogous theory, we can find con-
crete examples of a process involving a substantial
amount of particle production (so that back reaction
effects are important) which is well described semiclassi-
cally, then we will have a little more confidence that
problems (1) and (2) can be overcome and that the result-
ing semiclassical gravity theory can accurately describe
nontrivial processes such as black hole evaporation.
Most importantly, such an investigation may give us
hints concerning the nature of the resolution of these
problems.

As analogues of quantum gravity and semiclassical
gravity, we shall consider Minkowski spacetime quantum
electrodynamics and the associated semiclassical electro-
dynamics theory which treats the vector potential classi-
cal and Dirac field quantum mechanically.?> With black-
hole evaporation in mind, we shall investigate the follow-
ing quantum electrodynamics process: at early times we
have an electrically neutral spherical object which should
be thought of as comprising equal number densities of
positive and negative charges. At a later time, the nega-
tive charges leave the object as an expanding spherical
shell. When the potential energy difference between the
outer shell and core center exceeds 2m, where m is the

2The idea of using semiclassical electrodynamics as a model
for semiclassical gravity has been considered before [3]. See
also Ref. [4] for investigation of another model system: two-
dimensional dilaton gravity. An electrodynamic analogue of
this model is given in Ref. [5].
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electron mass, the charge-zero vacuum becomes unstable
and spontaneous pair creation occurs. This should be
viewed as an analogue of the Hawking effect. We sup-
pose that the created field in the region of the positively
charged spherical core is such that a substantial amount
of e /e™ pair creation takes place. Over a period of
time the produced electrons will screen the charged core,
while the positrons will stream radially outwards from
the core towards the outer shell. The decrease in the net
charge in the core region is analogous to black hole mass
loss.

The full QED and semiclassical descriptions of this
process are obtained from the following respective equa-
tion pairs:?

ajV#=e$7#$+J“ ’

~ A (2)
(id—eA—m)p=0,

and
3, F=(0|(edy P)|0) +J* ,

~ (3)
(id—eA—m)yP=0.

In these equations, f“:=e1’/;y"f/1\ is the electron-positron
current operator. The semiclassical Maxwell equation (3)
is the analogue of the semiclassical Einstein equation (1),
with (7" ) and ( T*") playing the same roles: namely, as
back reaction producing sources. Note, however, that
problem (1) does not arise for (7*) (see, e.g., [6]). J*is a
classical background charge/current density which we
assume can well approximate the bare core and expand-
ing shell charges. At early times, J#=O0, and the full
QED and semiclassically described systems are in their
respective vacuum states [0).

Our aim will be to try to find examples of the above-
described process for which the full QED expectation
value (F**) is well approximated by F* determined
from the semiclassical equations. The process can be
controlled to the extent that J* can be varied (but
without violating current conservation). Important pa-
rameters will be the degree of spatial variation of charge
density of the inner core, and the rate at which the outer
shell expands.

When we approximate full QED by its semiclassical
theory, we neglect certain pair and photon production
contributions. Similarly, when we use semiclassical grav-
ity, we neglect certain pair and graviton production con-
tributions. Even if we begin with a solar mass black hole
for which the mass-loss rate is extremely low, it is not ob-
vious that neglecting the nonsemiclassical contribution
will not produce a significant error over long enough
times for substantial mass loss. However, we can be a lit-
tle more hopeful that this will in fact be the case if for the
analogous “slow” QED process we find that the semiclas-
sical description is accurate.

After carrying out the investigation outlined above, we
will have a better idea of the domain of validity of semi-

3We work with units fi=c=1; a:=e?/4r=11; e=—|e|.
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classical electrodynamics. The specification of the
domain will take the form of a certain set of conditions
on the space-time variability of { #**). Considering oth-
er theories as well, such as scalar electrodynamics, and
comparing the various obtained conditions may point out
common and hence more universal physical criteria for
validity. With such knowledge, we can then perhaps
make a more sensible guess of the domain of validity of
semiclassical gravity. An attractive possibility is that
problems (1)-(3) are not independent: the problems of
ambiguous and unphysical behavior can only be over-
come provided one is within the range of validity of the
semiclassical approximation. Clearly, then, to be able to
make an educated guess concerning problem (3) would be
helpful.

A cautionary remark: we should be careful not to draw
too close an analogy between electrodynamics and gravi-
ty. Experience has taught us that gravity is rather
unique. As a model, we expect semiclassical electro-
dynamics can only tell us so much concerning the prob-
lems of semiclassical gravity.

In the present paper, we will mostly be concerned with
the latetime stage of the above-described electrodynamics
process, when pair creation and other dynamical effects
have ceased to good approximation. We will show that
the semiclassical theory can give an accurate description
at late times. We shall discuss the dynamical stage in a
future paper. By itself, the late time stage of the electro-
dynamics process has little relevance for black-hole eva-
poration and so we will not have much further to say
about semiclassical gravity in this paper. Despite this, we
believe it is a good strategy to concentrate on understand-
ing the late time stage before tackling the more difficult
dynamical part: first, we have been able to learn about
certain methods of analysis and techniques to estimate
the semiclassical part and QED correction which may
usefully generalize to the dynamical problem. Second, we
have gained some knowledge about spatial conditions for
validity of the semiclassical approximation.

In the next section the late time results are presented,
together with a discussion of them. In Sec. III, we derive
the results and in the concluding section we map out, in
brief, a plan of attack for the dynamical problem.

II. THE RESULTS

Subsequent to the shell expansion, we generally expect
the behavior of ( F**) to be very complicated. However,
as long as (F uv) is changing in time, the region of the
core will lose energy through photon and e /e~ emis-
sion. Semiclassically, the core region can only lose ener-
gy through e /e ™ emission. This situation is atypical,
however, since an arbitrarily small departure from spher-
ical symmetry allows energy loss through Maxwell radia-
tion. Thus, after a sufficiently long time, we expect there
to be no dynamical effects to good approximation.

We shall address the question of the validity of the
semiclassical approximation at late times in the region of
the inner core. The sole function of the expanding outer
shell is to produce an electric field which is such as to
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give rise to a substantial amount of pair creation. We
suppose that at late times the shell is at rest and with
sufficiently large radius that the measured potential
difference between the inner and outer surfaces of the
shell is negligibly small compared to the potential
difference between the core center » =0 and the outer sur-
face of the shell. The shell can therefore be ignored.

Since at late times there are no dynamical effects to
good approximation, we can choose a gauge such that
only the time component of the vector potential is
nonzero as t — + o . Denote

Viry=e{A%r, ), 1o,

where ( 4*) is the full QED expectation of the vector
J

1
n(r)m——

3

1 3 1/3 1
1/3 _
Viritn, (r)lZ lrr ‘ -

In (4), n, is the background number density. The V term
on the right-hand side of relation (5) is the semiclassical
contribution, while the n!”? term is the full QED correc-
tion. The semiclassical result was obtained in Ref. [7].*
Since the second term of the series in a is smaller than
the first by a factor of alna, it is reasonable to assume
that keeping only the first term in the series gives a good
approximation to the QED correction. From (5), we
therefore have

l—ia

2 [V(r)r, 6)

1
ne(r)z —?7;2-

and substituting this into (4), we obtain

3
1____
21ra

V2V ~—e? -L
3772

Vs—nb ] . (7)

(8)
From (8), we see that the semiclassical approximation is
generally a good one. However, the approximation may
break down if the difference between n;, and the semiclas-
sically determined n, is of order an, (or less) throughout
the region 0=<r'<r.
We now explain the meaning of conditions (i)—(iii) and
also demonstrate that they are attainable.
Recall that we want to find examples of processes with

Gauss’ law gives for the measured electric field

3
1___._
21ra

3_
V ny

1
|E(r)|= =

r
f dr'r'?e
0

1
372

4A nonrelativistic estimate of the correction to the semiclassi-
cal result is also given in Ref. [7]. Since we are in the ultrarela-
tivistic domain with the above conditions on ¥V, such an esti-
mate is not well justified a priori. See also Ref. [8] where the
semiclassical result is given without derivation.

1/3
3
T
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potential. Fix the remaining gauge freedom by demand-
ing that V(r)—>0asr— + .

Now, suppose V satisfies the following conditions in
the region of the core: (i) |V (r)| >>m, (i) AXr)|V"(r)l,
ANV (I S|V(R; Me)=|e/mV(r)|7, ie., V(r) is
slowly varying on the scale A(r), and (ii)
a/37In|V'(r)/m?| <<1; then V is obtained from

ViV =—eXn,—n,)
[boundary conditions¥’(r)=0 at »=0
and V(r)—>0 asr—+w], @)

with the produced electron number density n, expressed
as a function of ¥ through the key relation

3
a’lna+()a?+ - - - ] j . (5)

[

a non-negligible back-reaction effect and which are well
described semiclassically. Now the background bare core
will have a total charge much larger than |e| (we are as-
suming that it can be well approximated classically).
Since a background potential difference of 2m between
r=0 and o0 must be introduced in order to spontaneous-
ly create just two e " /e ~ pairs (because of Pauli’s princi-
ple), the background charge density should be such that
the background potential satisfies |V, | >>m in the region
of the core in order to spontaneously create a large num-
ber of et /e ™ pairs and thus have the possibility of a sub-
stantial back reaction. Using Egs. (3), it is then straight-
forward to show that condition (i) holds.®> Note that even
for |V, | S m, it may be possible to have a large number of
electrons in the core region if the field had previously
been time varying sufficiently rapidly so as to stimulate
the production of large numbers of e * /e ~ pairs. How-
ever, in the case of non-negligible back reaction, it is not
clear whether the final measured field would be well ap-
proximated semiclassically. With such time varying
fields, the final number of produced electrons in the core
region determined semiclassically may differ substantially
from the actual full QED determined number. Also, the
full QED final state will always be a degenerate ground
state, whereas semiclassically we will typically expect an
excited state since spontaneous photon emission (which
makes the excited state unstable and hence decay to a
ground state) is not taken into account. With condition
(i), the final semiclassical and full QED-determined field
strengths do not depend to a good approximation on the
way in which the final background ¥V, is achieved. We
will show this in the next section. It is this fact which en-
ables us to investigate the semiclassical approximation at

5If, on the contrary, we had |V(r)| Sm in the region of the
core, then from Dirac Eq. (3), we would obtain n, <<n, in the
region of the core. But then Maxwell Eq. (3) becomes
V2V =~e?n, = | V| >>m, a contradiction.
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late times. From now on, we suppose V), satisfies
|V, | >>m in the region of the core.

With condition (ii), the derivation of the approximate
dependence of n, on V is considerably simplified. This
condition justifies several approximations having similar
form but different origin. For example, when deriving
the semiclassical contribution we neglect a spin part since
it contains terms such as (V')2/V*and V"' /V3. Also, the
QED correction is approximated as a local term. Actual-
ly, we can only make such an approximation if we have
the stronger condition with “<” replaced by “<<” in
(ii). In general, the QED correction is nonlocal, probing
the functional dependence of n, in a volume having di-
mensions A(r) about a given position r. Nevertheless, we
shall assume that the correction term in (5) is still a
reasonable order of magnitude estimate when the weaker
condition (ii) holds. Equation (7) prevents us from impos-
ing the stronger condition. We now argue that solutions
V obtained from (7) can satisfy condition (ii), given suit-
able choices for n,.

First, we need to show that V satisfies

V,(r)<V(r)<0. 9)

Integrating (7) we have, neglecting the QED correction,

v Lo, o €2 s /

Vi =— S dss (31T2V(s) + V() (10)
and

Vir=— [ 9 (4552 |2 p%s) | +¥,) . (D)

(r)= fr 2 fo sst S5 Vs »(F) .

Now, suppose we had ¥(0)=0. Because V;(r)=0 (and is
strictly positive for some r), using (10) to generate the
solution V(r) we would find V(r)—+ o« as r— + .
Thus, we must have V(0)<0. In fact, we have V(r)=0
for all r, because if ¥V (r) were to become positive then
there would have to be a turning point at which V' <0
[so that we might have V(r)—0 as r— + o], but from
(7) V"' >0 at any turning point where ¥ > 0. Finally, with
V(r) <0 (and strictly negative for some r), it follows from
(11) that also V(r)> V,(r) for all r.
Choose n,;, such that in the core region V), satisfies

2
v2Vb<=e2nb>zf;;|Vbl3 YRI ARV AR

From (7) and (9) we then have
2 e’ 3 3 e’ 3 3 e’ 3
0<V¥V =—(V*+ |V, ) <5V +|V, Py == VI?,
3 T T

(13)

where we have used the fact that |V,|3, |V|%, and
[V, 1>*—|V|® must be of the same order of magnitude, for

otherwise we would get a contradiction solving (7). Since
V2¥ >0, from (10) and (12) we have
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0< V'(r)<Vg(r)sf;V,3= % (14)

£
T
[with V'(r)=V,(r)=0 at r=0]. Condition (ii) on ¥ im-
mediately follows from (13) and (14).

From the preceding analysis we see that, for ¥, satisfy-
ing (12), the resulting V describe solutions where
n,(r)<ny(r), n,(r), n,(r), and n,(r)—n,(r) are compa-
rable in magnitude, and both n,(r) and n,(r) are mono-
tonically decreasing with increasing r. Condition (12) is
just a special case of condition (ii) for V. It would be of
interest to study other types of solutions to (7) and also
determine whether, given any V, satisfying (ii) (with
A,=|(e/m)V,| 1), it follows that the solutions V satisfy
(i) [with A=|(e /m)V|7'].

Condition (iii), together with condition (ii), allows us to
neglect the “virtual” vacuum polarization contribution to
n,, as is evident from the following estimate of this con-
tribution [7,9]:

| 2488 a
+ —
1272 3w

v

m2

n (n,—n,) (15)

~
evac ™

Condition (iii) places an upper limit on the allowed
electric-field strength.

Note that in the derivation of Eq. (5) giving n, as a
function of V, the various terms which are neglected can
be comparable to the full QED correction. In light of
this, we make the following crucial remark concerning
our various approximations and assumptions, which
should be kept in mind while reading this paper: since we
are concerned solely with investigating the validity of the
semiclassical approximation, we do not need a precise
calculation of the semiclassical part and QED correction.
Order of magnitude estimates are sufficient. Such an ap-
proach does make life easier. Some work is required,
however, since confidence in the validity of the semiclas-
sical approximation can only be achieved if some
justification is given for the estimates.

When conditions (ii) and (iii) are violated, all our vari-
ous approximations break down and we know longer ex-
pect relation (5) to give reasonable estimates for the semi-
classical part and QED correction. We might speculate
that, given V satisfying condition (i), conditions (ii) and
(iii) are not only sufficient, but also necessary for the semi-
classical approximation to be a good one. We are unable
to provide evidence to support this, though; very little is
known about QED for such rapidly varying and intense
fields.

III. THE DERIVATION

A. Preliminaries

We now derive the results of the previous section.
Several of the required calculations have been given else-
where, so we shall try to be concise, referring the reader
to the relevant papers. We assume throughout this sec-

" tion that conditions (i), (ii), and (iii) on ¥ hold.

At late times, the produced positrons are either con-
centrated in the region of the outer shell or escaping to
r= o and therefore their effect on the measured electric
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field throughout the region of the inner core is negligible.
Thus, to a good approximation we can take as our system
the static (i.e., having existed for all time) charged core
only, in a certain bound state. Of course, the choice of
bound state depends on what happens during the dynami-
cal stage: we expect a rapidly expanding shell to cause
more pairs to be produced, and hence more bound elec-
trons in the core region, than a slowly expanding shell.
We shall show at the end of the section, however, that for
the given conditions on ¥ the error involved in working
with an incorrect bound state is small.

Recall one of the main reasons for studying the late
time stage first is to learn about possible fruitful methods
for addressing the validity of the semiclassical approxi-
mation during the more difficult dynamical stage; clearly
a method of approximation which is inadequate for inves-
tigating the late time stage has little chance of usefully
generalizing when there are dynamical effects as well.

From Eq. (4), the potential ¥ and hence the electric
field can be readily determined once we know the elec-
tron charge density. The latter quantity can in turn be
obtained from some (connected) electron two-point
Green’s function which we denote as G(x,p)
[=G(x,y;t, —t,)]. How are we to determine G(x,y)? In
the usual method, one develops a series approximation in
a, the background charge density and the free electron
and photon Green’s functions. This method is inade-
quate, since it amounts to perturbing about the usual
J

Gx,y)=i|6(t,—1,)
(sp >ep)

Such a decomposition results if the Dirac field operates in

a Fock representation. This is allowed semiclassically.

However, in full QED we expect this is okay only if the

QED correction turns out to be small and hence can be

treated perturbatively. Substituting this decomposition

into the DS equation for G (x,y), we obtain a (rather non-
linear) differential equation for the functions ¢,(x) [13]:

[, +ivoy-Vi—vom —V(Ix])]g,(x)
— [yofdzM(x,z;ep ),(z) =0, (17)
where
VIV =—e?{i tr[y°G(x,x)]—n,} , (18)
and
M(x,z;ep)=fd(tx—tz)M(x,z)eiG"(t"th) ,

with

M(x,z):=—ie27/“fdy dy'G(x,y )F"(y,z,y’)Dm(y’,x) .
(19)

Let us now say a few things about these equations, be-
ginning with (16).
In (16), the sums are carried out over a complete set of
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zero-field vacuum which is unstable for the conditions be-
ing considered: we expect the series to diverge badly. A
less approximate method [10] involves developing a series
approximation in a, the free photon Green’s function and
the background field electron Green’s function. We do
not expect that much of an improvement, however, since
the actual net charge density will differ substantially from
the background charge density. (Recall there is a non-
negligible back-reaction effect.) We expect the series to
converge only slowly, if at all. What is required is a
method of approximation whereby the semiclassical con-
tribution and QED correction can to some extent be ana-
lyzed separately: the semiclassical part is handled nonper-
turbatively, while the QED correction is treated with a
combination of perturbative and/or nonperturbative
techniques.

The coupled Dyson-Schwinger (DS) equations [10 (Sec.
2.3)], [11 (Sec. 5.34)], [12 (Sec. 10.1)] for the various elec-
trodynamics Green’s functions meet these requirements.
Note, however, that, because of problems to do with re-
normalization [12 (Sec. 10.1.2)], there is at present no
effective method for solving the DS equations nonpertur-
batively. Nevertheless, given that we are only concerned
with obtaining order of magnitude estimates (see remark
previous section), we shall assume that our investigation
of these equations is meaningful.

Assume G (x,y) can be decomposed as follows:

AR ¢p(x)$p(y)exp[—iep(tx—ty)]—G(ty——tx) > ¢p(x)$p(y)exp[—iep(tx~ty)] . (16)
P P

(ep<eF)

f

“single-particle” wave functions. We choose to work
with these wave functions rather than with the whole of
G (x,y) since our various estimates require only a deter-
mination of the ¢,’s with €, in a finite interval about €.
The “Fermi level” €, which determines the particular
bound state being considered, can take any value between
—m and +m (see, e.g., Ref. [14] for more details con-
cerning the present discussion). If €z = —m, then we are
in what might be termed the ‘“vacuum” state, the state
with the smallest possible number of bound electrons.
Note that the vacuum state is still highly negatively
charged. It is not possible to reduce the negative charge
further, since removal of an electron produces an unsta-
ble state: spontaneous pair production occurs and a posi-
tron is ejected from the core, allowing a return to the vac-
uum state. If instead, €z =0, then we are in the state with
lowest measured total energy, which we call the
“ground” state. Observe that the vacuum and ground
states do not coincide: to get from the vacuum to ground
state requires a filling of all the (discrete) levels in the in-
terval [—m,0] and the energy expended in creating an
electron at » = co (which is just m) is more than recovered
by putting it into one of these orbits around the core.
Charge conservation prevents states with —m <ep <0
from decaying into the lower-energy ground state: elec-
trons cannot actually be created singly, but only through
spontaneous pair production which is energetically im-
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possible unless € < —m. As has already been promised,
we later show that the precise choice of € is not impor-
tant. For definiteness, however, we shall take € =0.

Equation (17) will be the key equation in our investiga-
tion of the semiclassical contribution and QED correc-
tion. If we neglect the self-mass term, that is, the term
involving M(x,z;€,), then from (18) we see that (17)
reduces to just the semiclassical approximation. With the
self-mass term included, the full QED correction is taken
into account. In (19), D,w(x, y) is the (connected) two-
point photon propagator, while I'*(x,y,z) is the (irreduc-
ible) three-point vertex function. There are additional,
coupled DS equations for these Green’s functions. We
shall give these equations when we come to estimating
the contribution of the self-mass term.

B. Semiclassical part

We first neglect the self-mass term in (17) and estimate
the semiclassical contribution. This part of the problem
has been analyzed in Ref. [7] and so we shall be brief,
presenting only the essential steps.

Without the self-mass term, we have the time-
independent Dirac equation with semiclassical, spherical-
ly symmetric potential V' (r). Angular momentum is a
good quantum number and we can choose, as basis for
the wave functions [12 (Sec. 2.3.2)],

G, (r)
i Yo (0,6
¢nxm(r):= an(r) > (20)
—_¢—Xm(6’¢)

where n denotes the (yet to be determined) discrete
and/or continuous radial quantum label, y==(j+1)
with j=1, 2 , - . . the total angular momentum quantum
number, m is the J, eigenvalue and 4,,, denotes a spinor
harmonic. For this basis, the Dirac equation reduces to
two coupled first-order differential equations in the radial
functions F and G. Making the substitution
G =(m +€e—V)!/2 4, these two equations can be replaced
by a single second-order Schrodinger-like equation for A:

A"+2AE—-U)A=0, (21)
where the effective energy E is given by

E:=L—m?), (22)
and the effective potential U is

U.=

eV—~%V2+-—X(x+1) ]

+ )—lV:

X mte—v S imte—v) AR
2r 8

+%(m +e—V) ly” (23)

We approximate U as
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U~ eV——V2+—)((X+1) (24)

Equation (21) then becomes just the radial equation for a
scalar field and so we are neglecting the electron spin
contribution. This approximation will be justified short-
ly.

Suppose the single-particle energy € is in the range
—m <e<+m. Then the effective energy E is negative
and from condition (i) on V, the effective potential U is
also negative for a large part of the region of the core,
provided |x| is not too large. Since U(r)—0 as r—» o,
we therefore have the possibility of confined wave func-
tions with € taking discrete values. For single-particle en-
ergies in the range |e| > m, E is positive and therefore the
wave functions are unconfined with € continuous. Note,
however, that since V <0, for € < —m the effective poten-
tial has a barrier. Therefore, if for given € and y the bar-
rier is wide enough (a precise criterion is given below),
then the associated wave function can be approximated
as being confined.

In terms of the single-particle wave functions, the elec-
tron number density is

S bhm(Duym(r)

nym
(en <0)

- 2 ¢n)(m r)¢n)(m(r)

nym
(enx>0)

va—‘

n,(r)=

, (25)

where we have used (16) and the first term on the right-
hand side of (18). Recall we have chosen € =0. It is as-
sumed that (25) is well approximated by

n(r~ 3
nym
(well confined)

¢nxm O)nym(r), (26)

where the sum is only over wave functions which are
confined to a good approximation and the wave functions
are normalized to 1 in the region of approximate
confinement. We are therefore neglecting the ‘“‘virtual”
vacuum polarization contribution to n, (see previous sec-
tion).

Let us now estimate the sum (26). Solving (21) using
the WKB approximation (which we justify shortly), we
obtain, for the radial functions,

172
G(r)=C e‘—‘;((’r%i—”i sin6(r)
12 @7
F(r)=C 6";‘(;’)”’"] sin[0(r)+n(r)] ,
where
p(r)={[e—V(rNP—m*—x*/r}!/?, (28)
or)= [ ptridr+7 29)
r

with 7, the innermost turning point and
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n(r)=arcsin{p(r)[(e—V(r))*—m?]71?} . (30)

The transmission coefficient of the effective potential bar-
rier for a given wave function is

vle=exp =2 [ *lptrilar |, (31)
2

where r, and r; are the inner and outer turning points,
respectively, of the barrier. If we have

viex)<<1, (32)

then the wave function can be approximated as being
confined, and we have the following quantization and
normalization conditions:

[ pur)dr=n+LHym (33)
1
172
1 ae,,x
== 34
Cox= |~ 5. (34)

Summing over m and replacing the oscillating func-
tions sin’0 and sin’(6+m) by their averages (=1), (26)
becomes

(2j+1)C?
ne(r)zzj——x

V(). (35)
2 gt N

If we fix x¥ and integrate € [note from (34), we have
2,,C3X . zl/ﬂfde- -+] over the range e (r)=<e€
<ep(=0), where €, (r) is the energy at which r coincides
with the turning point r,, we obtain

172

2
virp—X

ne(r)zzll—— ) (36)
r

2.2
Y 2mr

[where, because of condition (i), we have neglected the
m? term compared with ¥2]. Summing y over the range
O0<|y|<rV(r), not forgetting the factor 2 degeneracy
(x==lx]), we finally obtain

1
n(r)=——=vp, 37
32V (] 37
which is just result (5) with the full QED correction

neglected.

Not all the wave functions satisfy (32) in the sums over
X and € carried out above: for given Y, the wave functions
throughout the range €, (7) <€ =<0 (with the exception of
€=~0) become less confined the smaller |y| is. However,
for the given conditions on V, one typically finds that the
contribution to n, from wave functions violating condi-
tion (32) is small.

The condition for the WKB approximation to hold is

(e—V)V'—x2/r?
l(e—V)2—m2—y2/r2|32

For the range of € and y giving the main contribution to
n, (see above), this condition becomes |V'|/V?<<1 and
therefore, from conditions (i) and (ii) on V, the WKB ap-
proximation gives a reasonable estimate.

Similarly, conditions (i) and (ii) ensure that the electron
spin part is small compared to the first part of (23) for the
range of € and Y giving the main contribution to n,.

«<1. (38)

MILES BLENCOWE 48

C. QED correction

We now estimate the QED correction. The stronger
version of condition (ii) [i.e., V(r) is approximately con-
stant on the scale A(r)=|(e/7)V(r)|"!] is assumed
throughout this subsection.

The Dyson-Schwinger equations for the photon and
vertex Green’s functions are given diagrammatically as
[10,11]

O = T +/\/<2}’\O/V (39)

:»\< + oo (40)

In (40), the sum is over irreducible vertex diagrams. The
coordinate space Feynman notation is being employed
here:

A~ - iD‘;W(X—y) "
o~ -— Dy (x,y) >
“—Q—<—y -— -iG(x,y) ,
y
z«< -— —ie y*8(x-y) 8(x-z) ,
X
y
z% -— ~ie M(x,y,2) , (41)
where
d4k e"ik-x
DY (x):=— -
w 2 2m)* k2 +ia

is the free photon propagator.

From (39) and (40), we can obtain a series expansion of
D, and T'* in terms of the free photon propagator D,
the bare vertex ey* and the electron Green’s function
G(x,y). Substituting these expansions into (19) gives us a
corresponding expansion for the self-mass operator
M(x,z). Now, this series contains divergent diagrams
(see below). We do assume, however, that the diagrams
in the expansion can be grouped into classes and that
each such class of diagrams can be formally summed to
give a single finite contribution. Since we only require an
estimate of the QED correction, we do not need to substi-
tute into the self-mass term in (17) the sum of contribu-
tions from all the classes; the sum can be truncated after
the first few terms.

To motivate the correct grouping of diagrams for the
given conditions on ¥, consider the following polariza-
tion tensor diagram:

X y
Q : (42)

From (41) and (16), this is
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AR(xy310)=—e? [ d(t, —t, r[y*G (x, "G (p,x ) e’

=—i S (g, —¢)+ia]l =
Pa
(Ep>0,eq<0)
X {tr[y¥ e, (x)d, (y)1 ", (y),(x)]} .
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te—t,)
S [l—(e,—¢)—ia]l™!
P
(Ep<0,eq>0)
(43)

For our purposes, it will be sufficient to determine the A%(x,y;/,) component using the semiclassical wave-function

solutions ¢,, with |[x—y|=0(A(s)) and Iy<O(LA™Y(s)), where A(s)=[(e/m)V(s)]”!, s=L(x+y). After some calcula-
tion, we find
d3l l0 ILy—=1(1=m?2V)) +ia ly—ia .
A (x, ,l y=~iA~ S) tl~(x~y)_ 44
y:lo f(21'r 2|I| I+ 1(1—m?2/2VH)—ia Iy tia € (44)

Very briefly, the derivation of (44) from (43) proceeds as
follows: we assume that the main contribution to (43)
comes from wave functions for which

le, —¢,| <O(A"Ys)) .

This, together with the fact that €, and ¢, are separated
by the Fermi energy (=0) in the sums and also (strong)
condition (ii) on ¥, imply condition (38) and we can
therefore use the WKB approximation obtained above for
the wave functions. The resulting sums over the radial
and angular momentum quantum numbers n,, By, X, Xg>
m,, and m, can be simplified (by approximation) using
extensively the fact that the main contribution to the
sums comes from | X,,l | X,|>>1 with their difference
[lx,1—Ix,!| at most an order of magnitude smaller. We
can also show that (43) depends only on ¥ (r) in a neigh-
borhood of x and y with dimensions A(s). From (strong)
condition (ii) on V, (43) therefore depends to good ap-
proximation only on the difference x—y. We can change
the above-mentioned simplified sums over the radial and
angular momentum quantum numbers to integrals over
linear momenta. One of the integrals can be readily car-
ried out and (neglecting various terms small compared to
|V|) we obtained (44).

The important property to note is that, in contrast
with the corresponding vacuum polarization diagram, the
integrand of (44) is nonzero for 1%(=13—1?)—0. Since
ng(l ) behaves as 1/12, we therefore expect self-mass dia-
grams with ‘“‘rings,” such as

& m 45)

to be singular. Now, (44) coincides with the correspond-
ing contribution to the polarization tensor for a static,
uniform density, zero-temperature electron gas with Fer-
mi energy €= |V(s)|, which is stabilized by an equal
density of positive background charges [15]. One of the
objectives of these references is to calculate the ground-
state energy of an electron gas. This involves summing
all “bubble” diagrams. It is found that a finite result is
obtained by formally summing a class of bubble diagrams
formed by taking a bubble with a single free photon prop-
agator and replacing the free photon propagator with

propagators involving any number of rings. We therefore
assume the self-mass operator in (17) can be approximat-
ed as follows:

@@%

where

with each term in (46) denoting the finite contribution ob-
tained by formally summing the class of diagrams deter-
mined by (47). [For example, the first class contains dia-
grams such as (45).]

Since we are in the ground state, the Hohenberg-Kohn
theorems [16] imply that the self-mass operator
M(x, Z;€, ) is a unique functional of the electron number
density n (r). Now, given the form of (44) for /=0, we
expect the above formal sums to give rise to a “large-
distance” cutoff: we suppose M(x,z;€,) is short range and
in fact approximately depends on n,(r) only in a neighbor-
hood of x having dimensions A(lx]). ( A partial demon-
stration of this can be obtained by straightforwardly gen-
eralizing to the relativistic case an argument given in [17]
for the corresponding property of a nonrelativistic elec-
tron gas.) We shall approximate the self-mass term in
(17) by replacing M(x,z;€,) with M(x,z;ex=0) for all p.
Applying (strong) condition (ii) on ¥ and dimensional
analysis, we have (neglecting dependence on m)

yofdzsze)d;p

where C(a) is a dimensionless matrix. Assuming C(a)
acts approximately diagonally, (17) is approximately the
time-dependent Dirac equation with potential

Vir):=v(r)+nl3r)Cla) .

~n!(|x])C(a)g,(x) , (48)
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We can therefore use the same analysis as for the semi-
classical part to obtain relation (5).

Let us now estimate C(a). From the above discussion,
the wave functions can be approximated by solutions to
the time-independent Dirac equation with constant po-

J

b, (2,1,)=—

)

where €, =+(m?+p*)!2+ 7,

po:i=¢€,—V,
1 0
and u:= ol |1

(27)3/2 [2(61) —V)m +e,— I7)]_1/2%1’[—i(p'z—€ptz)](‘zf+m)

MILES BLENCOWE 48

tential

V:=—[3n*n,(|x])]3.

Working with linear momentum, we have

’ (49)

(eI

Substituting (49) into (16) (with ez =0), we obtain, for the electron Green’s function,

., —iVt .
e lpze z_l

d'p p+m
G(z)=—
‘ f 2m)* pt—m?+ia

Ipl <(P2=m)12 (277)} 2E,

3 i
d’p p+tm o —iP7 7, (50)

’

where, in the second integral, p, EEP:=(p2+m2)1/ 2. Keeping only the first diagram in (46), we have, for the self-mass

term (at the Fermi level),

vof d’z M(x,2;6,=0)¢(2) =7y, [[d’z [d(1,—1,)[ —iey*G (x —2)y"Dis(z—x)14, (2) , (51)

where G is given by (50), D;}L‘g by (47) and ¢pF(z) by (49)
with €, =€, =0 and

lppl=(V*—m?172 .

The part of (51) involving the first integral in (50)
diverges. We treat this by subtracting off an identical
part with D JE replaced by ng. This ensures that (51)
vanishes when | V| —m and hence n, —0. Estimating the
order o term, we replace Dl‘j{,‘g by Df“, in (51) and there-
fore the renormalized first part does not contribute, while
the part of (51) involving the second integral in (50) gives
approximately (after extensive use of the condition
| V| >>m)

- 1/3
V 113
- sz—ﬂ by, (X)= 21 an}’3(|x]) ¢p(X) . (52)
Thus, to order a,
13 173
C(a)z*z- . (53)

This disagrees with the result obtained by Migdal, Popov,
and Voskresenskii [7] by a factor of —1. Their estimate
can be obtained by repeating the above calculation with
0<|V|—m <<m. This is clearly incorrect, given the ac-
tual condition on ¥. Migdal, Popov, and Voskresenskii
arrived at their estimate by using the (less direct) varia-
tional method [16] to obtain the self-energy from the non-
relativistic ground-state energy. If, however, the ultra-
relativistic expression for the ground-state energy is used,
then the variational method gives the same result as ours
(cf., e.g., MacDonald and Vosko [16]). Applying the

[

variational method to obtain the next order correction to
(53), we find

1/3 1/3

C(a)z% a?lna , (54)

1

3
27 | T

where the order a’lna ground-state energy correction can
be found in, e.g., Ref. [15] [Akhiezer and Peletminskii
Eq. (32)]. An estimate of the order a? correction to (54)
would require consideration of both the first and second
diagrams in (46).

Finally, how are the above obtained results modified if
we choose some other bound state €;70? The key obser-
vation is that we must have |e;| <m (see earlier this sec-
tion). This, together with condition (i) on ¥ means that
lep| <<|V| and therefore, in the derivation of the semi-
classical contribution, we still obtain (37) to good approx-
imation. For the same reasons, the QED correction in
relation (5) remains a good approximation.

IV. CONCLUSION

We considered the process involving the breakup of a
neutral spherical object into a positively charged inner
core and negatively charged expanding outer shell, result-
ing in a substantial amount of pair creation. We ad-
dressed the question of validity of the semiclassical ap-
proximation in the region of the core at late times, when
pair creation has ceased to good approximation, and ar-
gued that the semiclassical description is a good one
when certain conditions on the vector potential hold [see
conditions (i)—(iii), Sec. II].

The next problem which must be addressed is the va-
lidity of the semiclassical approximation during the
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dynamical stage. This will, in particular, involve deter-
mining how rapidly the outer shell can expand. If the ex-
pansion is slow enough such that to good approximation
the system evolves through a succession of vacuum states
and, in addition, conditions (ii) and (iii) hold when (i)
does, then the present results guarantee that the semiclas-
sical approximation will be a good one throughout the
whole process. [At early times, when (i) does not hold,
we can neglect the produced electron contribution: this
part of the process is well approximated classically.]
Thus, we have an example of a dynamical process which
is well-described semiclassically and which can have a
non-negligible backreaction. [Note that with condition
(i), the vacuum states are highly negatively charged and
hence there is a backreaction.] However, we are really
interested in the validity of the semiclassical approxima-
tion in less trivial situations. A process more analogous
to black-hole evaporation will be to have the shell expand
just fast enough so that most of the pair production
occurs subsequent to the expansion and at a low rate over
a long period of time. Addressing the validity of the
semiclassical approximation throughout this process will
only require that we obtain rough estimates for the semi-
classical and full QED descriptions. The simple form of
the late time estimates [see Eq. (5)] gives us some hope
that, at least for some range of evolution rates, the prob-
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lem will be tractable.

If the expansion of the shell is so rapid as to cause
large amounts of pair production immediately following
expansion, then we might expect the semiclassical ap-
proximation to hold only for a short time. We should
also try to obtain estimates for these time scales.

The Feynman Green’s function Dyson-Schwinger
equations proved a useful framework within which to in-
vestigate the full QED and semiclassical descriptions of
the late time (equivalently static) stage. When there are
dynamical effects such as pair production, we must work
with the expectation value Green’s functions. There are
also a corresponding set of Dyson-Schwinger equations
for these Green’s functions [10 (Sec. 3.3)]. The expecta-
tion value Dyson-Schwinger equations are therefore an
obvious starting point in an investigation of the validity
of the semiclassical approximation during the dynamical
stage.
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