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Positivity of entropy in the semiclassical theory of black holes and radiation
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Quantum stress-energy tensors of fields renormalized on a Schwarzschild background violate the clas-
sical energy conditions near the black hole. Nevertheless, the associated equilibrium thermodynamical
entropy AS by which such fields augment the usual black hole entropy is found to be positive. More pre-
cisely, the derivative of AS with respect to the radius, at a fixed black hole mass, is found to vanish at the
horizon for all regular renormalized stress-energy quantum tensors. For the cases of conformal scalar
fields and U(1) gauge fields, the corresponding second derivative is positive, indicating that hS has a lo-
cal minimum there. Explicit calculation shows that indeed b S increases monotonically for an increasing
radius and is positive. (The same conclusions hold for a massless spin-2 field, but the accuracy of the

stress-energy tensor we employ has not been confirmed, in contrast with the scalar and vector cases. )

None of these results would hold if the back reaction of the radiation on the spacetime geometry were ig-
nored; consequently, one must regard AS as arising from both the radiation fields and their effects on the
gravitational field. The back reaction, no matter how "small, " is therefore always significant in describ-
ing thermal properties of the spacetime geometries and fields near black holes.

PACS number(s): 97.60.Lf, 04.20.Cv, 05.70.Ce

I. INTRODUCTION

A black hole can exist in thermodynamical equilibrium
provided that it is surrounded by radiation with a suit-
able distribution of stress energy. In the semiclassical ap-
proach, such radiation is characterized by the expecta-
tion value of a stress-energy tensor obtained by renormal-
ization of a quantum field on the classical spacetime
geometry of a black hole. One can use such a stress-
energy tensor as a source in the semiclassical Einstein
equation

G"=8m( T")„„
to calculate the change effected by the stress-energy ten-
sor in the black hole's spacetime metric. This is the
"back-reaction" problem associated with the spacetime
geometry of a black hole in equilibrium.

In this paper we use solutions of back-reaction prob-
lems of the above type to compute the thermodynarnical
entropy hS by which quantum fields augment the usual
Bekenstein-Hawking black hole entropy SBH =

4 AHA
where AH is the area of the event horizon. (Units are
chosen such that G=c =ks =1, but ih'Wl. ) We consider
explicitly the case of a Schwarzschild black hole sur-
rounded by either a massless conformal scalar field or a
U(1) gauge field (Maxwell field). (A massless spin- —,

' field
is treated in the Appendix, but the accuracy of its stress-
energy tensor has not to our knowledge been checked, in
contrast with the conformal scalar and vector fields. ) We
show in all these cases that AS is positive.

Our investigation shows rigorously that for all possible
regular stress-energy tensors, the radial derivative of hS

vanishes at the horizon for fixed black hole mass; that is,
AS has there a local extremum with respect to the radius.
The form of the second derivative gives the criterion for a
local minimum, which indeed occurs in all the cases we
have considered. Then by explicit calculation we show
that AS is positive and monotonically increasing for an
increasing radius. Therefore the local minimum of AS at
the horizon is the only one and is its global minimum. As
a consequence, the entropy is amenable to statistical in-
terpretation. None of these features holds if the back re-
action of the fields on the spactime metric is ignored. In
this sense, AS must be regarded as arising from both the
quantized radiation fields and from their effects on the
gravitational field.

We shall see, from the properties of the renormalized
stress-energy tensors we employ and of the semiclassical
Einstein equation, that we can obtain accurate fractional
corrections to the metric only in 0(e), where K=AM'
Mp~ A is the Planck mass, and M is the mass of the
black hole. Because the usual black hole entropy
SiiH=(4trM )A '=0(e '), corrections to SaH can be
obtained in 0 ( e ) —1 from fractional corrections of 0 ( e)
in the metric. It turns out that these corrections are of
the same order as the naive Rat-space radiation entropy
4, aTHV, where a=(m I15itt ), TH=A(8mM) ' is the un-

corrected Hawking temperature of a Schwarzschild black
hole, and V is the Aat-space volume. From this fact
alone, it follows that the back reaction cannot be ignored.

II. STRESS-ENERGY TENSORS

Stress-energy tensors renormalized on a Schwarzschild
background have been obtained in exact form for confor-
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mal scalar fields and for U(l) gauge fields, respectively, by
Howard [1] and by Jensen and Ottewill [2]. Both results
can be written in the form

( TI," )„„=( T" ),„„„,,+ fi

vr'( 4M)'
(2)

where the analytic piece, in the case of a conformal scalar
field, was given by Page [3]. The term 5" is obtained
from a numerical evaluation of a mode sum. The numeri-
cal piece is small compared to the analytic piece, and we
do not include it in the calculations in this paper. This
does not change any of our results qualitatively because
both pieces separately obey the required regularity and
consistency conditions. The analytic piece has the exact
trace anomaly in both cases.

The stress-energy tensors satisfy V„(T", ) =0 on the
Schwarzschild background with the metric

2M 2M
g =diag 1, 1pv r ' r

r r sin0

(3)

+18w —99w ), (4)

T„"=—,'aTH( —,
' )(1+2w+3w

These tensors represent the stress-energy distribution re-
quired to equilibrate the black hole with its own Hawking
radiation. Each satisfies ( T,') = ( T„") at the horizon
r =2M, which is required for regularity of the spacetime
geometry [3]. Each has the asymptotic form of a fiat-
spacetime radiation stress-energy tensor at the uncorrect-
ed Hawking temperature at infinity of an ordinary
Schwarzschild black hole, denoted here by
TH =A(8~M )

Dropping the angular brackets and displaying the ana-
lytic piece, one has, for the conformal scalar field [3],

T,'= —
—,'aTH( —,')(3+6w+9w +12w +15w

III. BACK REACTION ON THE METRIC

We obtain fractional corrections h to the metric by
setting

g„=g „[5 +eh ]

in the semiclassical Einstein equation (1). We work in
linear order in e as required by V„T"=0 and
V„(5G") =0, where 5G" is the Einstein operator linear-
ized on a background satisfying G", =0. The corrected
geometry will be taken to be static and spherically sym-
metric. Working out the equations as in [4], we find that
the corrected metric can be written as

ds~= — 1 — [I +2'(r))dtr

2m (r)
r

dr +r (12)

where dec is the standard metric of a normal round unit
sphere. To obtain m (r) and p(r) requires only simple ra-
dial integrals involving T,' and T„". The angular com-
ponents enter linearized Einstein equations that hold au-
tomatically by virtue of V„T"=0 in a static spherical
geometry.

The mass function m (r) has the form

Te = T&~ =
—,'aTH( 1+2w+3w2+44w3

—305w +66w —579w ) .

In both cases, T,"&0 and the energy density —T,' is nega-
tive in the vicinity of the event horizon, thus violating the
weak energy condition. For the scalar field, the energy
density is negative from r =2M to r =2.34M and for the
vector field from r =2M to r =5.14M. Both tensors also
violate the dominant energy condition in a region sur-
rounding and bordering on the horizon.

+4w +Sw +6w +15w ),
Tss = T& = 'aTH( ,' )(1+2w—+3w —+4w

+Sw +6w —9w ),

(5)

(6)

m (r) =M [1+ep(r)+ eCK '],
with

p(r)= J ( —T,')4vrr dr,1

EM 2M

(13)

(14)

where w =2M/r. We have displayed the factor —,
' explic-

itly because the scalar field has one helicity state while
the vector field below has two. It is convenient in what
follows to write

1
a TH

48 KM
(7)

where K =3840vr. For the U(1) vector field, we have [2]

T,'= —
—,'aTH(3+6w+9w2

+ 12w —315w +78w —249w 6), (8)

T„"=,'aTH(1+2w+3w2—
—76w +295w —54w +285w ),

and so p(r) vanishes at the horizon. In (13), C is an un-
determined integration constant that inspection of (12)
shows is to be absorbed into M to obtain a renormalized
mass for the black hole. Thus setting g""=0shows that

r =2m =2M(1+eCK ')=2M„„
locates the event horizon. Note that, to the order we are
working, we can write

m(r)=M(1+eCK ')[I+ep(r)]=M„„[1+ep(r)] .

The renormalized mass will not be distinguished nota-
tionally from the original Schwarzschild mass M in what
follows, as the bare Schwarzschild mass has no physical
meaning in the back-reaction problem. Therefore we
write



48 POSITIVITY OF ENTROPY IN THE SEMICLASSICAL. . . 481

m (r) =M[1+op(r)] —=M+M„d(r), (15)

—8ln(w) —10w —6w +22w —~4'] . (16)

For the vector field, denoted by a subscript V, one finds

[51

Kp~ =—'w +2w +6w

—8ln(w)+210w —26w +—',"w —248 . (17)

In both (16) and (17), we note that the first term on the
right, multiplied by @MAL, gives the naive flat-space
value a a TH V for the radiation energy.

The metric is completed by a determination of p which,
like p, can be found from an elementary integration.
Defining

where, using (14), we see that M„d =AM@ is the usual ex-
pression for the effective mass of a spherical source.

For the scalar field, denoted where necessary by a sub-
script s, one finds [4]

Kps =
—,'[ —,'w +2w +6w

wavelength characteristic of Hawking radiation, which in
turn is associated with the least-damped quasinorrnal
mode of the lowest angular momentum for the field in
question, then this effect should be negligible. This wave-
length A,, is about 42M for the conformal scalar field and
is smaller for the higher-spin massless fields. Also, if
ro) A,„the explicit nature of the walls of the box (e.g.,
adiabatic versus diathermic) should not be important.
For these reasons we shall assume throughout the
remainder of this work that A,, & ro (r~. [Of course, one
must also assume that M ~Mp& in any treatment based
on (1).] If the radius ro were to approach the horizon,
then explicit size and boundary effects would have to be
taken into account in the construction of ( T" ), as shown
in the work of Elster [6,7].

One convenient way to fix the constants kz and k~ is
to impose a microcanonical boundary condition [4). We
fix ro and imagine placing there an ideal massless perfect-
ly reflecting wall. Outside ro, we then have an ordinary
Schwarzschild spacetirne

2m (ro)
ds = — 1— dt'

Ep=—Kp+k,
where k is a constant of integration, we have

(18)

2m (ro)+ 1— y2+ r2d~2 (22)
rp= — (T„" T,')(r —2—M) '4m. r dr .

E 2M

For the scalar field, one finds [4] (KP s =Kps+ks)

Kps =
—,
' [—', w +4w

—8 ln( w) ——"w —10w ——"w + —"]3 3 3

(19)

(20)
k = Kp(ro) —. (23)

for r ~ro. Continuity of the three-metric induced by
metrics (12) and (22) on the world tube r =ra fixes the
constant k, i.e., kz or kz, in p by the relation

Note that at the horizon r=2M, or w =1, we have
ps(1) =0. The constant k for the scalar (vector) is denot-
ed ks (kr) and will be determined below by a boundary
condition. Similarly, for the vector field we have
Kpi =Kpr+kr, where [5]

Kpy —
3 w +4w

There are finite discontinuities in the extrinsic curvature
of the world tube r =ro [4], but these, and other proper-
ties of the box wall, are of no interest in the present
analysis, as we argued above. The spacetirne geometry,
including back reaction, is now completely determined by
(22) for r ~ ro and for r ~ ro by

—8 ln( w ) + —", w + 10w +4w —32, (21)
ds = — 1 — [1+2e[p(r) p(ro)]]dt-

r

and p i (1 ) =0 at w = 1.
Because both radiation stress-energy tensors are

asymptotically constant, it is clear that the system corn-
posed of black hole plus equilibrium radiation must be
put in a finite "box." Otherwise, the fractional correc-
tions eh to the metric would not remain small for
sufficiently large radius. Physically, this means that the
radiation in a box that is too large would collapse onto
the black hole, producing a larger one. Hence we must
choose the radius ro of the box such that it is less than
the second positive root r, for r in g""=0 (the first zero
corresponds to the horizon r =2M). We shall also as-
sume that the box radius ro is sufficiently large that the
stress-energy tensors we employ, which were constructed
for infinite asymptotically flat spacetime, are a good ap-
proximation. Clearly, a finite radius would cut out some
of the radial modes that were used in these calculations.
However, if ro is somewhat greater than the longest

2m (r)
' —1

dr +r dc' (24)

IV. TEMPERATURE

~~A
T~

2
(25)

where ~H is the surface gravity of the event horizon. For
an ordinary Schwarzschild black hole (ignoring the radia-
tion), one finds +H=(4M) ' and T = TH =Pi(8aM)
However, the stress energy of the radiation changes the
surface gravity of the horizon to

If we release a small packet of energy from a closed
box containing a black hole through a long thin radial
tube, it will undergo a redshift and approach the asymp-
totic temperature
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KH — [1+e(p—p)+8trr T, ]l,=/M4M
(26)

T„= [1—ep(ra)+enK ],—1

8aM
(27)

where n takes the value n, =12 for the scalar field and

n, =304 for the vector field. The local temperature at the
boundary of the box is obtained by blueshifting (27) from
infinity back to r0. We find from

T„,=T„[—g„(r0)] (28)

as a straightforward calculation shows [4]. With the mi-
crocanonical boundary conditions, we can use (23) to ob-
tain, from (25) and (26)

dS=PdE (dr=0, r ~ra) . (32)

Choosing M and r as independent variables and fixing r,
we can readily integrate (32) to obtain S up to a function
of r and a constant. From (29) we have

py, as it certainly should not. (This "normalization" is
intended to make E approach the ADM mass in an
asymptotically fiat region, if such a region exists. ) Simi-
larly, the inverse local temperature P(r)—:T&„'(r), r ~ ra,
is independent of the boundary conditions, as mentioned
above H. ence the value of the entropy depends neither on
the zero of energy nor on the existence of an asymptotic re
gion.

Therefore, to obtain S (r), in place of (30) we can write

that

T&„(ra)= [1—ep(r0)+enK ]
—1

8~M

1/2

P(r) = [1+ep(r) —enK ] 1—8mM 2m (r)
r

and from (15), (24), and (31) holding r fixed,

(33)

2m (r0)
X 1—

—1/2

(29)
dE = 1 —op+ gM Bp

—1/2
2m (r)

r

—1/2

The temperature T1„,unlike T, is actually independent
of the boundary condition that determines the constant k,
as explained in detail in [4]. Indeed, it can be readily
verified by the reader that k cancels out in 0 (e) in the ex-
pression (28) for T„,. Either measure of temperature,
T or T1„,can be used to calculate the same entropy in
conjunction with an appropriate measure of energy. This
is quite important: It means that the specific boundary
condition chosen does not affect the calculated entropy,
as we shall see below.

V. THERMODYNAMICAL ENTROPY

One way to calculate the entropy is as follows. Fix the
radius r0 of a closed box. The measure of the energy in
the box conjugate to the asymptotic inverse temperature
P —= T„' is then the Arnowitt-Deser-Misner (ADM)
mass m (r0) determined at spatial infinity. The first law
of thermodynamics for slightly differing equilibrium
configurations tells us that

dS =f3„dm (dr0 =0), (30)

where S(ra) is the total entropy in the box. By this
method we seem to obtain only the total entropy S ( r 0 )

rather than the distribution of entropy in the given box,
S(r), for r ~ra, where S(r) denotes the total entropy in-
side the radius r. However, the latter can be obtained by
using the quasilocal energy E [8—11], which for static
spherical metrics such as those treated here is given for
any radius r ~ r0 by

(34)

4 4—aTH v=—
15k

3
4—mr
3

8
w

9
=const X w (35)

The A's in (35) cancel out, leaving only a function of
w =2Mr

Combining (33) and (34) yields

One can see directly for any r ~r0 that P dm =PdE
where, of course, one replaces r0 by r in the formulas for
I3„and m to establish this result. This equality means
that we can calculate S(r) for any r ~ r0 The k.ey point
of this discussion is that one can think of adding layer
upon layer of entropy, associated with the black hole and
a given ( T" ) that is valid from r =2M to r =ra, begin-
ning at r =2M and ending at r =ra. (Additivity of entro-
py in configurations analogous to this case is established
in [12],but our method here establishes it independently. )

Observe that from fractional changes of O(e) in the
metric, which affect the surface gravity and temperature
in this order, we are able to calculate from (32) depar-
tures of O(e )-1 from the usual black hole entropy
SBH=(4vrM )A '=4~e ' But, in fa.ct, all of the correc-
tions to the entropy are of the same order as the naive
fIat-space entropy itself:

E(r)=r r[g""(r)]'~— (31)

with g""(r) determined by (24), the metric for r ~ r0. This
energy, unlike m, does not depend on asymptotic Aatness
in its definition or even on the existence of an asymptoti-
cally fiat region [10,11]. Furthermore, even the "normal-
ization" of the zero of energy [10,11] that is incorporated
in E as given in (31) does not affect the calculated entro-

dS= dM+8m w '(p —
p, )+ —nK 'w ' dw,8mM p

Bw

(36)

with dr =0. Integration of (36) gives an expression of the
form
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4 MS= +bs(w)+f g1/2

(1 ~ w ~ wo =2M/ro), (37)

@~s), a~= 8m w (p —p)+ nK w-
ow w

(38)

vanishes at the horizon w =1. Therefore, for a fixed black
hole mass M, the derivative with respect to r of AS van-
ishes at the horizon. Thus AS has a local extremum with
respect to r at the horizon. This result follows from
several general features that will be enjoyed by all regular
renormalized stress-energy tensors on the Schwarzschild
background and the back reactions they induce, not just
the cases analyzed here. First, p vanishes at the horizon
by virtue of the black hole's mass having been suitably re-
normalized. Second, p vanishes at the horizon, as follows
from (19) and the regularity condition T,'= T„"at the hor-
izon [3]. More precisely, we have that

where the first term is the usual Bekenstein-Hawking ex-
pression SBH for the black hole entropy, the second term
is a function of w determined up to an additive integra-
tion constant by the second term on the right of (36), and

f is a dimensionless function of r that does not depend on
M. The appearance of a function f in (37) can be under-
stood as follows. Since our problem involves three mass
or length scales Mp1 '6 the mass of the black hole, M,
and a radius r ~ ro, there are, for a given r, exactly three
dimensionless parameters one can define, namely,
E =AM, w =2M/r, and r/A' . However, the first two
terms on the right of (37) depend only on e and w, respec-
tively. Thus, if the entropy S depends on r/A', it can
only do so through a separate function of this parameter.

Let us first dispose of the dimensionless function f,
which clearly can depend only on (r/A'~ ), where fi'~ is
the Planck length in our units. It seems that such a term
could only arise in a theory taking quantum gravity into
explicit account because the semiclassical theory has in-

corporated the dimensionless terms involving fi/M and
2M/r. (Of course, quantum gravity could modify terms
of these latter two types quantitatively. ) On dimensional
grounds, therefore, we take f =0 in the semiclassical
theory (a formal argument that f =0 based on [9] can be
constructed [13]). The possibility of an additive constant
will be discussed when we treat AS below.

In considering b S, which will be given explicitly below,
we first note the significant property that

minimum? To answer this we calculate

i) (b,s) 2 i Bp Bp=8' —w (p —p)+w
Bw Bw Bw

Q2

+ "",+nZ- 'w-'
ow

(40)

which becomes, at the horizon w = 1,

i3 (b,s) Bp i3 p
BW QW2

(41)

or, equivalently, with M fixed,

a'(as)
29r =2

4M
2

I

T„"—T,'

1 —2M /r r =2M

(42)

b,ss = — —w +—w +8w + ln(w)
8m 1 8 3 8 2 1 32
K 2 9 3 3

40 2 104 3 16
3 '+9 9

w —8w+ w (43)

for 1 ~ w ~ wo. Similarly, for the electromagnetic or U(1)
gauge field we find

r

b,s~= —w +—w +8w —961n(w)
8m 8 3 8

K 9 3

Hence we need only examine the stress tensors. In all the
cases we consider (conformal scalar, vector, massless fer-
mion), (41) and (42) are positive so that ES takes a local
minimum with respect to radius at the horizon. This sug-
gests, but does not prove, that AS is non-negative.

The local minimum of hS at the horizon and the fact
that SBH in the expression (37) for the total entropy S
contains the renormalIzed mass M of the hole motivate
the choice of the remaining additive constant in AS,
which can only be a pure number, to be such that AS =0
at w =1. For w =1, with no "room" for the fields to
contribute anything further, one then obtains only the
Bekenstein-Hawking entropy 4 AHA ', as would be ex-
pected. With the choice b,s (w = 1)=0, we obtain, for
the conformal scalar field [14,15],

Tt Tr

1 —w
(39)

40 2 344 3 496+3 ' +9 9
w —8w + (44)

exists. Third, the last term terms on the right of (38) add
to zero at the horizon because there the Hamiltonian
constraint (G,'—8irT,'=0) holds. Furthermore, note that
if the fractional effects of O(e) in the temperature in-
duced by the back reaction were neglected, the derivative
(38) would not vanish at the horizon, a property that the
reader can verify.

Is the local extremum of AS at the horizon a local

In both expressions, the naive flat-space radiation entro-
py term (35) appears as the first term on the right. Both
AS~ and AS& are positive for 1~w wo) w =2Mr, '

and vanish at w =1. Hence, in that they are positive,
both are amenable to arguments relating thermodynami-
cal and statistical entropy. It has not heretofore been evi-
dent that this desirable feature would be present in the
semiclassical theory. The reader can verify, by omitting
the back-reaction terms in the inverse temperature (33),
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that not only is the vanishing slope of AS at m =1 lost,
but also that the value of the resulting ES, normalized as
above, is no longer positive for the range jI ~ m ~ wo. In
this fundamental sense, we conclude that the back reac-
tion, however small quantitatively in its effects on the
metric near a black hole, can never be regarded as negli-
gible.
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APPENDIX

T„"=—,'aTII( —,')(1+2W+3w ——"w

—5w ——", w'+ —", w'),

Ts = T~ = ,'aT—&(', )(1—+2w +3w2+ —", W3

+ 85 W4+ 102 W 5+ 87 6)
7 7 7

We find, for p and p,

Epf =—,'[—', w +2w +6w ' —8 ln(w)

90 ~ 62 ~2+ 46 ~ 3 16 ]
7 7 3 7 ~

&pf = ', [ ', w —'+—4W ' —8ln(w)

200 ~ 50 ~2 52 ~3+ 136 ']

21 7 7 J

(A2)

(A3)

(A4)

(A5)

Here we outline the calculation of AS for a massless
spin- —,

' field. We use the stress-energy tensor given in
[16]. As far as we have been able to determine, its accu-
racy has not been verified by an exact numerical analysis,
unlike the two cases we treated in the body of the text.
This tensor has also been used in a calculation similar to
the one presented here in [17], where qualitatively
different results were obtained for the entropy AS.

The stress-energy tensor is given by

where the subscript f denotes fermion. The formulas for
temperature and inverse temperature have the same form
as before with nf = —4. The quantity AS enjoys all the
same basic properties as for the conformal scalar and vec-
tor fields. It is given by

b,Sf = ( —,')[8W + —,'w +8w '++''ln(w)

T,'= —
—,'aTH( —,

' )(3+6w +9w + 12w

+—'"w +—'"w —69W )7 7 (A 1) and is positive.

200 w 8W2+ 488 w3 16
]21 63 9 (A6)
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