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The contribution to gravitational radiation from the gravitational wave “tail” is studied using
an expression previously obtained by Blanchet and Damour. The expression for the tail of the
radiation contains integrals over the past history of the system, thus exhibiting the backscattering
nature of radiation in curved spacetime; however the dependence on the remote past of the system
is shown to be weak for relevant astrophysical systems. In the cases of circular orbits and high-
speed, low-deflection (bremsstrahlung) encounters, the integrals can be evaluated analytically. For
circular orbits the frequency of the tail radiation is twice the orbital frequency, just as for the
quadrupole radiation, but is phase shifted from it. Using explicit two-body multipoles of the radiation
we have published elsewhere, along with the tail terms developed here, we present gravitational
waveforms which are accurate to (post)?/?-Newtonian order [i.e., O((Gm/rc2)3/2) = O((v/c)?)
beyond the usual quadrupole radiation] for a coalescing binary system of compact objects in a nearly
circular orbit. For the case of two orbiting neutron stars very near coalescence we estimate the tail
contribution to the waveform to be roughly half the amplitude of the usual quadrupole radiation.
We also compute the correction to the radiation energy flux produced by the tail radiation. We show
that this results in an increased rate of decay for a binary in a circular orbit. We show that the
same orbital decay rate can also be obtained directly from the tail-transported part of the near-zone
radiation reaction force. In the Appendix we give a heuristic, “physical” explanation of the behavior
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of the tail radiation.

PACS number(s): 04.30.+x, 97.60.Jd, 97.60.Lf, 97.80.Fk

I. INTRODUCTION

General relativity is a nonlinear gravitational theory,
but because of the inherently weak nature of gravity in
such places as the solar system, most experimental tests
of gravitational theory do not probe or only mildly probe
the nonlinear aspects of the theory. However, this situ-
ation is likely to change when laser interferometric grav-
itational wave detectors that are currently under devel-
opment are operational [1]. The detectors will ultimately
observe gravitational waves emitted from highly nonlin-
ear, dynamical spacetime regions, such as near the coa-
lescence of two compact objects such as black holes or
neutron stars. In this paper we explore some theoretical
and observational aspects of a particular nonlinear phe-
nomenon in general relativity, the gravitational wave tail,
which may have important observational consequences in
gravitational wave astronomy.

To date, our best laboratory for strong field gravity
and gravitational waves has been the binary pulsar PSR
1913+16 (and other similar systems). Indeed the chang-
ing orbital period of this system has given excellent con-
firmation of the “quadrupole” energy loss formula [2],
and thereby given good (albeit indirect) evidence that
gravitational waves exist. In spite of the high precision
of the observations of this system they do not require
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the full nonlinearity of general relativity for their expla-
nation. The quadrupole energy loss formula, and thus
the orbital decay and orbital period decrease, can be
computed from the lowest-order multipole contribution
to the gravitational radiation [3]. Although nonlineari-
ties are encountered in this low-order calculation, they
are relatively benign. For example, the lowest-order con-
tributions (and even the first post-Newtonian correction
term) to each of the radiative multipoles are very “elec-
tromagnetic” in nature: (1) As in the electromagnetic
case, they can be expressed as functions of only the re-
tarded time; (2) they can be expressed as integrals over
only the material source (just as electromagnetic mul-
tipoles can be obtained from integrals over the charge
distribution), if the formalism of Blanchet, Damour, and
Iyer [4-9] is used. (This is in contrast with the formalism
of Epstein and Wagoner [10] which does require integrals
over the infinite extent of the external fields even at low-
est order.) However, at higher order these two statements
no longer hold true. It is the failure of the first statement
that we wish to explore here in detail. The failure of the
second point is illustrated by the effect recently discussed
by Christodoulou [11], where the outgoing gravitational
radiation itself serves as source for the gravitational ra-
diation. (See Wiseman and Will [12] and Thorne [13] for
discussion.)

The fact that the radiative multipoles ultimately de-
pend not only on the motion of the source at the re-
tarded time, but also on the integrated past history of the
source, has a simple physical interpretation [14]. As the
radiation propagates outward from the source, it scatters
off the background curvature of the spacetime. In other
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words, the radiation interacts with the monopole field of
the source. Thus there is a component of the radiation
that observers see which did not propagate directly to
them; rather it left the source prior to the retarded time.

This “tail” contribution to the gravitational radiation,
while formally a higher-order effect, could have signif-
icant observational consequences. For example, Fig. 1
shows the contributions to the gravitational radiation
from the usual quadrupole radiation and the contribution
from the tail of the radiation for a binary system of two
1.4Mg neutron stars very near coalescence. Although
the tail radiation is very weak well prior to the coales-
cence, it is roughly equal to (half of) the amplitude of
the quadrupole radiation at separations of r = 6m (9m),
where m is the total mass (i.e., at separations very
near coalescence). This illustrates the possibility that a
Laser Interferometric Gravitational Wave Observatory-
(LIGO-)type detector may be able to detect the tail radi-
ation or, conversely, that tail effects may have to be con-
sidered in order to interpret observed waveforms of bina-
ries near coalescence. Also notice that the tail radiation
has basically the same frequency as the quadrupole radi-
ation; however, it lags in phase by approximately 61.1°.
The tail radiation also carries energy away from the sys-
tem, and thus it accelerates the orbital decay. This slow,
but secular, change in the orbit will have a large cumu-
lative effect on the evolution of the gravitational wave
phase over the many orbits of the decay. This effect has
been explored by Cutler et al. [16].

Figure 2 shows the quadrupole and tail contributions
to the waveform during a high-speed, low-deflection en-
counter confined to the zy plane. This is the gravita-
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FIG. 1. Gravitational waveform plotted against orbital

phase. Plotted is (R/2p)hy with m1 = ma. The portion of
the waveform shown is for the orbital decay from r ~ 18m on
the left to r =~ 6m on the right. The position of the observer
is in the equatorial plane.
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FIG. 2. Gravitational waveform emitted during a high-

speed, low-deflection encounter plotted against (veo/b)T.

(a)-(c) The quadrupole contribution. Plotted is

%(b/m)h;’uad. (d)—(f) The tail contribution. Plotted is
-1
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tional analogue of bremsstrahlung. Note that although
the hzﬂ aa component of the quadrupole radiation exhibits
linear “memory” (i.e., it has different and persistent val-
ues before and after the encounter) the tail correction to
radiation has no memory. The absence of a tail contribu-
tion to the gravitational wave memory is briefly discussed
in the Appendix.

In the remainder of this paper we show the details of
the calculations. In large part this paper examines a
number of very general results of Blanchet and Damour
[6] and shows how they apply to very specific, potentially
observable, astrophysical events. In Sec. II we discuss a
general formula for the gravitational wave tail, which has
previously been given by Blanchet and Damour [6]. In
Sec. III we examine the tail portion of the radiation for
the case of a high-speed, low-deflection encounter of two
compact stars. In Sec. IV we examine the tail of the radi-
ation for the case of binary stars in nearly circular orbits.
We also show how the energy carried off by the tail of the
radiation (the tail contribution to the luminosity) affects
the orbital decay rate. In Sec. V we show that the or-
bital decay rate obtained in Sec. IV can also be obtained
from the near-zone, tail-transported, radiation reaction
force. This is done without appealing to far-zone energy
balance arguments. In the Appendix we discuss several
qualitative features of the tail radiation.

II. GENERAL TAIL FORMULAS

We start with the standard symmetric trace-free (STF)
multipolar decomposition of the gravitational radiation

field [17]:
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Here R is the distance from the source to the observer,
the I represent the radiative mass multipoles of the
radiation field, the J%" represent the radiative current
multipoles, the number over each multipole represents
the order of time differentiation, and the subscript TT
denotes that only the transverse traceless projection is
to be taken. See Refs. [17-19] for other conventions and
notation. Each of the successive sets of terms in Eq.
(2.1) is O(v/c) smaller than the previous set of terms;
(3)

i.e., the mass octopole I*’* and the current quadrupole
(2)

J9 are O(v/c) = O((Gm/rc?)/?) smaller than the

3

(2.1)

mass quadrupole term, the mass hexadecapole I* Kl and
(3)

the current octopole J“* are O((v/c)?) smaller, and so
on. Terms grouped sequentially are of the same “order”
as each other. In general the leading order contribution
as well as the first post-Newtonian correction to each of
the mass and current multipoles can be computed us-
ing the formalism of Blanchet, Damour, and Iyer [4-9].
(Unfortunately there is no compact formula for the first
post-Newtonian corrections to the current multipoles of
octopole and higher degree.) Explicit two-body formulas
for the multipoles through O((v/c)®) beyond the lowest
quadrupole order, comprising all the terms displayed in
Eq. (2.1) (modulo the tail contribution, which we are
about to treat), have been extensively studied in Ref.
[20].

The contribution to Eq. (2.1) that we will study in this
paper is the tail correction to the radiative quadrupole
moment in Eq. (2.1). In other words, we will study
a relativistic correction to I that enters the waveform
at the same order as the radiation from the multipoles
Iidktm and J¥k [ie., O((v/c)®) beyond the lowest-order
quadrupole radiation]. Thus, the inclusion of this tail
term with the multipoles of the radiation we have exam-
ined in Ref. [20] gives a complete two-body description of
the radiation through O((v/c)®) beyond the lowest-order
quadrupole radiation.

Taking Eq. (3.4a) from Blanchet and Damour [6] we
have the contribution to the radiation from the mass
quadrupole term in Eq. (2.1):

4759
. 2 d2 o
hps(T) = ¢ [ﬁw‘z‘* (/ z'z?o(x, Tret)dsw)
ret
1 4t -
+ﬁ dT* /$2w] ‘ x? | U(xaTret)dam
ret
20 d&° =
—— zizizF o (x, T)d%x
21 d3Tyet (/ ’ TT
+hila s (2.2a)

where

ij am [ O 11
hoan(T) = — QY (Tret—u) | In(u/2s) + — ) durT
R J, 12
(2.2b)

and the T;ey = T — R. The fundamental feature of
the tail of radiation is immediately apparent from Eq.
(2.2b); it depends directly on the integrated past history
of the system. Also note the explicit appearance of the
system’s total mass m indicating the interaction with the
monopole gravitational field of the source. The scale pa-
rameter s and the definition of the radiative coordinate
time T in Eq. (2.2b) are the subject of discussion be-
low. Expressions for the sources o and o, that enter Eq.
(2.2a) are given in Refs. [4-9]. The lowest-order contri-
bution to the first term in Eq. (2.2a) gives the usual
quadrupole contribution to the radiation,

ii 2 d? ;.
hquad = J g7z 97T (2-3a)
where
QY = /pyiyjd3y = pated . (2.3b)

p is the reduced mass of the binary system, and xz* rep-
resents components of the relative position of body 1 rel-
ative to body 2. (We do not take the traceless part of
Q%; rather, it is to be understood that in the end we
take the transverse traceless projection of k¥ to get the
waveform.)

We now turn to several technical issues relating to Eq.
(2.2b): (1) Does the integral in Eq. (2.2b) converge? (2)
How sensitive is Eq. (2.2b) to the remote past of the sys-
tem? (3) What is the meaning of the “arbitrary” scale
factor s? Is the waveform independent of s? Although
our answers to these questions are somewhat general, the
emphasis will be on answers that pertain to the two astro-
physical situations that we are considering: gravitational
bremsstrahlung and coalescing binaries in decaying cir-
cularized orbits. @

The logarithm is integrable as v — 0 since Q% is well
behaved at © = 0; however, there is a more serious con-
vergence problem as u — oo. In the case of gravita-

(4
tional bremsstrahlung, the term Q% goes to zero as 1/u",
where n = 2, 3, or 5 depending on which component of
the quadrupole we are considering. [See Eq. (3.3) be-
low.] This is sufficient to guarantee that the integrand
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vanishes as u — oo sufficiently rapidly that the integral
converges. For the case of bound orbits, Walker and Will
[21] have shown that all such orbits were unbound hy-
perbolic orbits (or parabolic) in the infinite past. The
integral will have the same behavior as discussed above
for the bremsstrahlung case, and thus there is no con-
vergence problem. (The special case of asymptotically
parabolic orbits converge slightly more slowly.)

Now that we have shown that the tail integral is math-
ematically well defined for the astrophysical situations
we are considering, we now address whether or not the
integral is unreasonably sensitive to the remote past (an-
cient history) of the system (i.e., as u — 00). “Physical
intuition” leads us to believe that it is not; however, it
is unclear how to reconcile the physical intuition with
the diverging logarithm in Eq. (2.2b). If the tail inte-
gral is thought of as describing the radiation that took
an indirect path to the observer (i.e., scattered off the
background curvature before arriving), it is hard to see
J
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how this could sensitively depend on the ancient his-
tory of the system. Any radiation that left the source
long before the direct radiation and yet arrived at the
distant observer at the same time as the direct radia-
tion would have had to propagate well away from the
source before being scattered back to the observer. How-
ever, the monopole field of the source (the curvature)
falls off rapidly (= 1/(distance)®) as we move away from
the source. Therefore, in order for Eq. (2.2b) to have
a strong sensitivity to the ancient history of the system
there would have to be substantial scattering even in the
regions of very weak curvature. This seems unlikely.

To show that the physical intuition about the sensi-
tivity to the ancient history of the system matches our
mathematical expression Eq. (2.2b) we invoke the argu-
ment of [6]. We split up the region of integration by
fooo = fOT +froo, and then integrate Eq. (2.2b) by parts
twice to obtain

R . m (3) (3),
Zh:’aﬂ(T) = Zg [11/12 — In(2s/m)] Q¥ (Tret) + In(7/m) Q% (Trer — T)
2) r (a) o (2)
+(1/T) Q” (Tret - T) + Q” (Tret - 11,) ln(u/m)du - Q” (Tret — u)(l/uz)du (24)
0 T TT

Note that this formula is valid for any value of 7, includ-
ing the limit as 7 — 0. [In the limit all the divergent
quantities in Eq. (2.4) identically cancel.] Also note that
the remote past history of the system enters Eq. (2.4)
only through the last integral. Thus, we often use 7 as
the parameter which divides the “recent history” of the
system from the “ancient history” of the system.

If we assume that the system has never been apprecia-

(2)
bly more radiative in the past than it is now (i.e., | Q¥ | is
bounded; a criterion is certainly satisfied by the asymp-
totic arguments of Walker and Will [21] stated above)
the last integral in Eq. (2.4) falls of as 1/7. When we
treat the very specific case of circular orbits in Sec. IV the
(2)

oscillatory behavior of Q¥ rapidly destroys the contribu-
tion from the last integral in Eq. (2.4). The contribution
from the remote past falls off like (1/72) .

In spite of the appearance of Eq. (2.2b) we will show
that the total waveform is nearly independent of the scale
factor s that appears in Egs. (2.2) and (2.4). To do this
it is necessary to realize that s also enters the definition
of the radiative coordinate retarded time Thet:

Tt =T —R=t—R-2mlIn(R/s), (2.5)

where ¢ is the harmonic coordinate time. (Note that the
scale parameter s is equivalent to P4 in Ref. [6]; here we
reserve P to denote the true period of the orbital system.)
The scale parameter enters Eq. (2.5) in the following way.
In the near zone the radiation generation problem has
been solved in harmonic coordinates with flat and rigid
light cones t — R =const, where ¢ is the harmonic coor-

dinate time. However, we also know that in the far zone
the signal propagates to the observer along logarithmi-
cally corrected light cones, t — R —2m In(R) =const. The
logarithmic term corresponds simply to the Shapiro time
delay of a signal propagating radially in the monopole
field of the source. (For a discussion of the “Shapiro time
delay” in the context of solar system tests of general rel-
ativity, see Ref. [3].) We then match these two light
cones in the intermediate zone, i.e., a distance s from the
source, thus fixing the constant to be 2mIn(s), and re-
sulting in the radiative retarded time of Eq. (2.5). There
is also a portion of the tail radiation in Eq. (2.2b) which
depends on the location of this matching point, leading
to the s dependence in Eq. (2.2b). The two effects pre-
cisely offset each other. [In the language of Kovacs and
Thorne [22] this s-dependent portion of the radiation in
Eq. (2.2b) is called the “transition” radiation, which has
its origin in the time-changing Shapiro time delay near
the source (i.e., within a distance s from the source).]
The explanation given by Blanchet and Damour [8]
for this logarithmic term in Eq. (2.5) is to transform to
a “coordinate system in which the metric admits an ex-
pansion at infinity in inverse powers of the radial distance
(without logarithms).” This seems to play the same role
as the “truncation” process described by Thorne and Ko-
vacs [15] (also Kovacs and Thorne [22] and Crowley and
Thorne [23]). Recognizing that the last term in Eq. (2.5)
is the Shapiro time delay [3] experienced by a signal trav-
eling from a coordinate distance s from the monopole
mass m to the distant observer at R, we see that-Eq.
(2.5) simply redefines the retarded time by subtracting
off the bulk of the (logarithmically divergent) Shapiro
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time delay. Crowley and Thorne (Ref. [23], Sec. II) have
noted that the failure to perform this truncation process
leads to solutions which are ill defined at large coordi-
nate distances from the source. (See particularly their
comparison of the Thorne-Kovacs Green’s function with
the Green’s function of DeWitt and DeWitt.)

The prescription given by Kovacs and Thorne [22]
for actually choosing a location for the “truncation” is
slightly different than the prescription given by Blanchet
and Damour [8] for choosing a value for the scale s. How-
ever, we show that in practice they yield essentially the
same choice. Blanchet and Damour identify s as a “char-
acteristic period of the system.” In the case of a grav-
itational bremsstrahlung with impact parameter b and
speed v this would correspond to s = b/v,. Kovacs and
Thorne [22] suggest keeping only the portion of the delay
which occurs well outside the source—the contribution
from outside a radius of &~ 10b; thus they choose s = 10b.
If we are considering a scattering event with a velocity
of 0.1c (i.e., slow enough that our post-Newtonian ap-
proximation is certainly valid) these two definitions are
essentially the same. We also add that the 11/12 term
in Eq. (2.4) seems to have no counterpart in the Green’s
function construction of Thorne and Kovacs.

To demonstrate that the computed waveform is actu-
ally independent of the parameter s, we explicitly show
the s dependence in the radiative coordinate time in
the waveform quadrupole term Eq. (2.3a) and the s-
dependent tail term in Eq. (2.4):

y 21 @
R¥[T(s)] = B [ QY [t — R—2mln(R/s)]

(3)
—2mIn(2s/m) Q7 [t — R — 2m ln(R/s)]]
TT
+(other terms) . (2.6)

If we now consider a change in s, s & s + As (not nec-
essarily a small change in s, say, s — 2s) and expand

4
each of the terms and discard higher-order terms (e.g., 8
terms ) we obtain h¥[T(s + As)] = h¥[T(s)]. Thus, h*
is actually independent of s for even fairly large changes
in s. In order to justify the use of the Taylor expansion
in the steps above we must show that the time incre-
ment At = 2mIn(l + As/s) is small compared to the
time scales of the system (i.e., the period). Specifically,
for the extreme case of a coalescing binary in circularized
orbit very near coalescence r =~ 9m and s — 2s, we have

2min(l+ As/s) 0 (2.7)
period

A similar argument can be made for the bremsstrahlung
case if we take the “period” to be b/voo.

The final point we make concerning the scale param-
eter s (and equivalently the 11/12 term) in Eq. (2.2b)
is that it has essentially no effect on the energy radiated
from a nearly periodic source. It enters the flux at lowest
order as a cross term with the lowest-order quadrupole
radiation, schematically,

(3)(4)
42 < /12 - n(2s/m)) Q@

This is a perfect derivative and will average to zero over
one period of the system (i.e., one orbit). Thus for the
very important case of a decaying circular orbit the sub-
tleties in the definition of s will have no effect on the
decay rate orbit (at least at the order we are consider-

ing).

(2.8)

III. BREMSSTRAHLUNG TAIL RADIATION

In this section we derive the tail portion of the
waveform produced during a high-speed, low-deflection
encounter of two compact objects (i.e., gravitational
bremsstrahlung). Although it is true that from an ob-
servational point of view in-spiraling binary systems of-
fer the best opportunity for actual detection of grav-
itational radiation (LIGO-type detectors are in effect
“tuned” for coalescing binaries), from a theoretical point
of view, high-speed, low-deflection encounters of stars of-
fer a much “cleaner” system for examining effects such as
gravitational wave memory. At present there is no com-
plete solution to the coalescing binary problem starting
from the point where the stars are well separated and
emitting very little radiation, through the hydrodynamic
coalescence, to the point where the resulting object is
again nearly quiescent. Thus, it is impossible to com-
pare the value of the waveform h%/ well before the coales-
cence with A% well after the coalescence. In contrast, in
the case of gravitational bremsstrahlung it is a relatively
simple matter to evolve the hyperbolic orbit from a time
when the stars are well separated and there is essentially
no radiation being emitted, through the “encounter,” and
back to large separation. Hence, a meaningful compari-
son of the waveform before and after the encounter can
be made. Therefore, in order to see “memory” effects (or
the absence of memory effects) in the tail of the radiation
we examine the case of gravitational bremsstrahlung.

In this discussion we consider stars on a hyperbolic
trajectory with large eccentricity (i.e., we keep only terms
to first order in 1/e). The trajectory in the zy plane is
easily obtained, from, e.g., Wagoner and Will [25],

x(T) = [— vj“(t?, +T%)Y/? +b]fc

b . -
+ [vooT + —arcsmh(T/tb)] v, (3.1)
e
where b is the impact parameter, e is the eccentricity,
and ¢, is the time scale of the encounter, ¢, = b/vo,. The
various parameters are related by

’U2 m

2 = 2
=% (3-2)
where it is assumed that 1/e < 1.

The lowest-order quadrupole radiation can be con-

structed from Eq. (2.3):

Ryee __ymf[ 1 ] ,m(t)’
2u e T T | 14 (T/ts)2)3/2 b\T) >’
(3.3a)
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R .y m [ —2(T/ty) — (T/ts)? m
h 2?[ b > ]—> 2

Mo [+ (170772 b
(3.3b)

Ry _om[ 2+ (T/ty)? m [ty

2—[1, quad 2;[[1+ (T_/tb)zls/z] — 2 b <T> .
(3.3¢)

On the right we show the asymptotic time dependence
of ¥ as T — foo. In Eq. (3.3c) we have omitted a
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large constant, nonradiative, unmeasurable contribution
to hyy.q- This constant term makes no contribution to
the tail integral Eq. (2.2b).

The values of A5, hzzad, and hzgad are plotted in
Fig. 2. Figure 2(b) clearly shows the linear contribution
to the “memory” of the burst (i.e., h*¥ does not return
to its original value after the encounter).

The tail portion of the radiation can be constructed by
substituting Eq. (3.1) into Eq. (2.3b) and then into Eq.
(2.4). Integrating and taking limits as 7 — 0 we obtain

qua
|

R, _ 40d(m/b) [LI)(ET) — (T2~ 2)(1+ T2 + Tf — 4Ty e
2/J1 tail — e (1+sz)5/2 ) .

R ey _ Wl(m/b) [LT)(TF ~2) ~ (T§ + 4Ty)(1 + T3V — (T3 — 577 — 1) .ab)
2”’ tail = e (1 +Tb2)5/2 ) .
R, 403 (m/b) [L(Tp)(~T — 4Ty) + 3(1 + T2)'/? + 5T

—hiy= 5 2 (3.4¢)
2p e e (1+12)5/2

f
where is that the secular decay of the orbit radius may have a

L(Ty) = 1 +1In(ty/s) — In[(1 + T2)Y/2 _ ] cumulative effect in the last integral in Eq. (2.4). How-

+In(TZ + 1), (3.4d)

and Ty is the time scaled by the encounter time ¢ (i.e.,
T, = T/ty). The appearance of v3, in the leading co-
efficient of Eq. (3.4) clearly shows that the tail contri-
bution to the waveform is O((v/c)®) smaller than the
quadrupole radiation Egs. (3.3). These contributions
are plotted in Figs. 2(d)-2(f). In contrast with the
quadrupole radiation [Figs. 2(a)-2(c)], the tail radiation
is neither time symmetric nor time antisymmetric.
Figure 2 also shows that there is no “memory” in the
tail radiation (i.e., hil;; — 0 as T — +o0). However,
it can also be seen from Fig. 2(e), or equivalently from
Eq. (3.4b), that h{¥ goes to zero more slowly than the

other components. This is directly attributable to the
(2)
fact that hzzad, or equivalently Q*Y, does not go to zero

as Ty — *oo.

IV. CIRCULAR ORBITS

We now examine the tail contribution to the radiation
emitted from an in-spiraling binary system. Of course
this problem could be treated in a general way by choos-
ing some initial conditions and numerically evolving the
orbit (e.g., Lincoln and Will [26]), and then, at each value
of the retarded time, numerically integrating back in time
to compute the tail of the radiation from Eq. (2.4). How-
ever, in order to illustrate some of the important features
of the tail radiation, we perform the integration analyti-
cally by assuming that the in-spiraling binaries are in a
quasicircular orbit. Astrophysically, this is a reasonable
assumption; Lincoln and Will [26] have shown that vir-
tually all captured binaries will have sufficient time to
“circularize” their orbits before plunging to coalescence.
(See particularly Fig. 6 in Ref. [26].) A reasonable ob-
jection to using this assumption when computing the tail

ever, the influence of the remote past of the system is so
severely suppressed that it is reasonable to include only
the previous few orbits when evaluating the tail integral
Eq. (2.4). In particular, we will show that including only
the influence of the previous two orbits results in errors
of less than 1% in Eq. (2.4). In other words, if 7 (the
parameter which is chosen to separate the ancient history
of the system from the recent history) is chosen to be two
orbital periods of the system, and all influence on the tail
from the ancient history is omitted, there is virtually no
error.

We now examine the Y% component of the radiation
by using the quadrupole moment for a binary system in
a circular orbit:

QYW =y’ = %;n‘z(l — cos 2¢), (4.1)
where ¢ is the orbital phase angle. We also select the
arbitrary parameter 7, which separates the recent history
of the system from the ancient history in Eq. (2.4), by
the relationship

T =nP (n, a positive integer) , (4.2)
where P is the true orbital period. In the end the result
must be independent of the parameter 7 (or equivalently
of n), but we will also explicitly show that the contribu-
tion to the tail integral for times prior to nP is insignifi-
cant for n < 2. If Eq. (4.1) is substituted into Eq. (2.4)
the result can be written

;ihfi’u = 8(m/r)*/? [ (R, + A,) sin2¢
m

+(R. + A;) cos 2¢} , (4.3a)

where
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R, = — 1 —In(P/2s)

1
—Ilnn— 47m/ sin(4rnz) Inzdz , (4.3b)
0
1 1
R. = yr 4:71'77,/0 cos(4mnz) In zdx (4.3¢)

are the contributions to the tail from the recent history
of the system (i.e., Tret — P < T < Tiet), and

—1 [°° sin(4mz)

As= )
(n+a2™

ol (4.3d)

—1 [ cos(4nz)

Ae = taz ™

;;r' o (4.36)

are the contributions to the tail integral from the an-
cient history (i.e., T < Tyt — nP). These integrals can
be done analytically using sine- and cosine-integral func-
tions. The results are

R, = —4 —In(P/2s) + v + In(4rm) — ci(4mn) ,

(4.4a)
R.= g + 171?” +si(4mn) (4.4b)
A, = ci(4mn) = ﬁ +0(1/(4mn)*) , (4.4c)
A = “a si(4mn) ~ ﬁ +O0(1/(4mn)®) .
(4.4d)

In Eq. (4.4a) v is Euler’s number (y = 0.577...). The
first term of the asymptotic expansion is shown for A,
and A.. If the exact results in Eq. (4.4) are substituted
into Eq. (4.3a) all dependence on n cancels identically
(as it must). However, it is also useful to note that the
contribution to the tail integral from the ancient history
li.e., A and A. in Egs. (4.4c) and (4.4d)] rapidly goes
to zero for increasing n. In fact, with n = 2 (i.e., two or-
bits), we would make less than a 1% error by omitting all
together the contribution from A, and A.. In any case,
using the exact formulas, we are left with the following
compact results for the tail of the radiation for coalescing
binaries:

R

2 e = —2(m/r)*/*Beos(2¢ — ) , (4.52)
Ry 5/2
oy, e = 2(m/7) Bcos(2¢ —9) , (4.5b)
W
Ry 5/2 1 o
ﬂhtail = 2(m/r)*’*Bsin(2¢ - ¢) , (4.5¢)
where

1/2
B = {16[—11/12 + v+ In(87) — In(P/s)]* + 471'2}

~ 13.1 + small logarithmic dependence , (4.6b)

20 —T——— T —r———]—
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60 n " " n 1 s " " 1 1
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FIG.3. (a) Amplitude factor B [Eq. (4.6a)] and (b) phase
shift § [Eq. (4.6c)] plotted against orbital separation during
the inspiral of an equal-mass binary.

5= arctan[z[—n/m + v+ In(87) — ln(P/s)]]
T
(4.6¢)
=~ 61.1° + small logarithmic dependence . (4.6d)

The “small logarithmic dependence” depends on our
choice of the scale parameter s. However, as we have
shown before, the total waveform (i.e., after we add the
quadrupole radiation) is independent of s. A reasonable
choice (the choice suggested by Blanchet and Damour
[6]) for s is s = the period of the system; however, the
period of the system is changing as the orbit decays, and
thus In(P/s) is not constant no matter how we choose
s. For inspiraling binaries we choose s = the instanta-
neous period of the system as the orbit decays through
r = 18m. The resulting change in the amplitude factor
B and the phase shift § as the binary system spirals from
r = 18m to r = 6m is shown in Figs. 3(a) and 3(b).

In Fig. 1 we show the tail radiation computed dur-
ing the in-spiral. The usual quadrupole radiation is also
shown. Notice that the tail correction to the waveform
is of comparable size to the leading order quadrupole
term as the binary nears coalescence (e.g., r ~ 10m).
Also notice the tail radiation is shifted in phase from the
quadrupole radiation.

For completeness, as well as comparison with
other work [27], we present total waveforms which
are accurate through (post)3/2-Newtonian order [i.e.,
O((Gm/rcz)s/z) = O((v/c)®) = O(mw) beyond the
usual quadrupole radiation]. These are constructed from
the two-body, instantaneous multipoles in Wiseman [20]
plus the tail contribution presented above. Using nota-
tion very similar to Poisson [27] we can write for the plus
polarization
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h (T) = = (p/ R) (mw)?21¢S + ¢ (mw) /2 4 (¢ + 0 ) (mw)?? + (¢ + 0 + iy )], (4.7)
where
O = 2(1 4 ¢®) cos 26 , (4.8a)
M) = L(6m/m)sini[(5 + c?) sing + 9(1 + c?) sin3¢] , (4.8b)
) = _1[(19 4 9¢® — 2¢*) cos 26 + 8(1 — ¢*) cos 4] , (4.8¢)
) = —(6m/m) sini[& (57 + 60c? — c*)sin g + & (73 + 40¢® — 9c*) sin 3¢ + 825 (1 — c*) sin 5] (4.8d)
g(f(’n) —1[(—19 + 11c? 4 6¢*) cos 24 — 24(1 — ¢*) cos 44 , (4.8e)
¢ = —(6m/m)sini[5Ls(—391 + 84c? + Tc*) sin ¢ + 2 (—225 + 72c* — 81c*) sin 3¢ — $25(1 — c*)sin5¢)]
4.8f)
¢ty = (1+ ¢?){4m cos 26 + 8[y — 11/12 — In(P/87s)] sin 2¢} . 8g)

Here, sin i is the sine of the inclination of the orbit rela-
tive to the line of sight from the observer; we have used
the shorthand c for the cosine of the inclination angle;
édm = my; — mg is the difference in mass of the two
bodies; ¢ is the orbital phase; w is the circular orbit

velocity. [The corresponding equations for the “x” po-
larization are given below.] Notice that Cio), _(:), f),

and C , which represent the test-mass behavior of the
waveform, are all in agreement with Poisson [27]. See

his Egs. (6.1)—(6.3). In the test-mass limit the quan-
tity ém/m = —1. [Also notice that Poisson’s equa-
tion for ¢{*) should read (57 + 60cos?8 + ---) instead

of (57 + 20 cos? 6 + -
waveform is represented by the contributions ( +(m) and

Cf()n). p/m << 1) used

by Poisson is unable to obtain this 7-dependent part of
the waveform. The tail contribution to the waveform,

C(3)

+(tail)s Can also be identified in Poisson’s result. Note

that his (3In2v) = —In(16mwm/P) can be identified with
our In(P/8ns), and thus our “arbitrary” scale factor is
set to 2m in Poisson’s calculation. The tail portion has
no additional n dependence, and therefore Poisson’s per-
turbative calculation gives exactly the correct answer for
this term.

The fact that such different approaches to the con-
struction of the waveform give similar results is very re-
assuring; however, there is one subtle, but important,
difference between Poisson’s result and our result. The
|

-+)]. The non-test-mass part of the

The perturbative technique (n =

ubiquitous factor 11/12 that gets carried along from our
basic formula Eq. (2.2b) and ends up in our final re-
sult Eq. (4.8g) is different than Poisson’s result; Poisson
gets 17/12, not 11/12. This discrepancy is very likely
due to using different boundary conditions in the two
approaches. Poisson works with perturbations of the ge-
ometry around a Schwarzschild black hole; he establishes
a strictly in-going radiation boundary condition at the
horizon. In the Blanchet-Damour [6] construction of Eq.
(2.2b) there is no horizon present, and therefore no such
condition. The implication of this discrepancy between
the tail portion of Poisson’s waveform and the tail por-
tion of the waveform presented here is that the waveform
produced by an object orbiting a black hole is fundamen-
tally different [at the (post)3/2-Newtonian level] than the
waveform of an object orbiting other compact objects,
such as neutron stars. If the waveform can be measured
accurately enough during the slow adiabatic orbital de-
cay to obtain the amplitude of C((?a)il), then, in principle, it
may be possible to directly determine whether one of the
binary constituents is a black hole. This could be done
without having to indirectly infer whether one of the con-
stituents is a black hole from the measured masses, or
from the signature of the final coalescence. The observa-
tional consequences of this feature of the waveform are
currently under study and will be addressed in a future
publication.

The x polarization can be similarly written by replac-
ing + with x in Eq. (4.7) and then using the quantities

< = 4csin2¢ , (4.9a)

9) = —%(Jm/m)c sini[cos ¢ + 3 cos 3¢] , (4.9b)

®) = —2¢[(17 — 4c?) sin 2 + 8(1 — c?) sin 44 , (4.9¢)

& = —(8m/m)csini[— (63 + 5c?) cos ¢ — 2 (67 — 15¢%) cos 3¢ — 625 (1 — ¢?) cos 5¢] (4.9d)
¢@ = —2el(—13 + 12¢?) sin 2¢ — 24(1 — c?) sin4¢)] (4.9¢)
¢Q) = —(0m/m)csini[135(185 — 35c%) cos ¢ + (171 + 135¢%) cos 3¢ + 825 (1 — ¢*) cos 5] , (4.9f)
(f()tml) c{8nsin2¢ — 16[y — 11/12 — In(P/87s)] cos 2¢} . (4.9g)
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Again, the test-mass and tail portions agree with Poisson
(modulo the same discrepancy of 11/12 vs 17/12 in the
tail portion).

Now that we have a waveform which is fully accu-
rate to the (post)3/ 2—qua,drupole order, we may use it
to compute an additional correction to the energy flux
carried away by the radiation [i.e., a correction which
is O((Gm/rc?)3/?) beyond the usual quadrupole energy
loss formula, or O((Gm/rc?)'/?) beyond the first post-
quadrupole correction published by Wagoner and Will
[25]]. We use the general expression, for the energy flux
17,

R? (i35 i
L = w—ﬂ/hTThTTdQ .

The correction we are looking for comes from the cross
terms between the lowest-order quadrupole radiation and
the tail of the radiation. Assuming circular orbits we
have the first “tail” contribution to the luminosity,

(4.10)

Luaa = S mr)? am(m /) (4.11)
where 7 = p/m. We combine this with the quadrupole
energy loss formula and the first post-Newtonian correc-
tion to obtain

2927 4+ 420n m

32 , 5 3/2
L= =1 (m/r) [1 T7+4ﬂ(m/r) / ]

(4.12)

See, e.g., Junker and Schéfer [28] for the first two terms.
Also in the language of Junker and Schifer, we refer to
the leading term in Eq. (4.12) as Ls/; and the next
correction as Ly/3. The last term we refer to as Liaj. The
subscript refers to the order of the near-zone damping
force which presumably gives rise to the corresponding
energy loss. Figure 4 shows the luminosity as a function

L S R

()
T

Luminosity x10¢
»
T

()
[

Lyt LopjptLpgy

Lejet Loy 4
N e e
4 i2 10 8

r/m

FIG. 4. Luminosity plotted against orbital separation for
decaying circular orbit with mq, = ma.

of r. Although it is impossible to say whether or not
including the Ly,; correction in Eq. (4.12) makes the
luminosity formula substantially more accurate, at least
it now does not turn over and go negative as it does with
just the L/, correction.

The “tail” contribution (the 47 term) to Eq. (4.12)
has also been discussed by other authors, Cutler et al.
[16] and Cutler et al. [29].

It has often been assumed, but by no means rigorously
verified, that the higher-order corrections to the luminos-
ity in Eq. (4.12) exactly compensate for the orbital en-
ergy loss due to near-zone radiation back-reaction forces.
(However, see Damour’s warning about equating far-zone
energy flux with near-zone energy loss [30].) Using this
assumption of energy balance, Iyer and Will [31] have

derived a general expression for the (post)7/ ?_Newtonian
radiation reaction force. Here we continue with this as-
sumption that the corrections to the energy flux given by
Eq. (4.12) exactly compensate for the post-Newtonian

orbital energy loss due to the (post)”2 damping force
and the tail transported radiation reaction force. (The
latter force is known [5], and the energy balance assump-
tion has been explored in [6].)

The post-Newtonian expression for the orbital energy
for bodies in circular motion is

Ecircular 1m T—n(m 2 4
= — 4+ —— | — (0] . 4.13
oler 2 T2 (2) 0y, @413)
We now equate
dEcircular
—_— =L 4.14
7 (4.14)
and solve for 7. This yields
. 64 3 1751 + 588n m 3/2
F=- n(m/r)°|1 336 " + 4w (m/r)
(4.15)

The first two terms in Eq. (4.15) have been investigated
by Junker and Schéfer [28]. The last term is the contri-
bution which comes from the tail part of the luminosity.

Although the correction terms in Eq. (4.15) are quite
small they can have the following observational effect.
When attempting to analyze LIGO signals, it will be cru-
cial to have accurate “template” waveforms to compare
against the observed signal. Since the sensitivity range of
the LIGO will be roughly 10-1000 Hz, it will be necessary
(or at least desirable) to predict the phase of the wave-
form over many orbits as the signal sweeps through this
frequency range. In order to compute the total number
of orbits in this regime we use

71000 Hz

N:i/wdt:i Car .

2w T Jrio He T

(4.16)

For two 1.4-solar-mass neutron stars a gravitational wave
frequency of 10 Hz (1000 Hz) corresponds to an orbital
separation of r1g gz = 174m (71000 Hz = 8m). The num-
ber of orbits as the binary sweeps through this regime is
obtained by substituting the post-Newtonian expression
for the orbital frequency,
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5 (4.17)

and Eq. (4.15) into Eq. (4.16) and integrating. [There
is no term of O((m/r)%/?) in Eq. (4.17).] We get

N = Ns/5 + AN7/3 + ANgai,

o= ()" [1- 2522 4 o]

(4.18a)

where Ng/3, ANq/3, and ANi.j represent the leading
order, post-Newtonian, and tail corrections, and where

Ns/2 = 7900 orbits (4.18b)
AN7 /5 = 325 orbits (4.18¢)
AN;ail = —252 orbits . (4.18d)

Therefore, we can see that neglecting the tail damping
would result in a huge phase error in our template wave-
forms [i.e., =~ 252(27) rad]. Furthermore, it does not ap-
pear that the sequence is converging very fast; thus if we
want to track the phase of the radiation to within 1 rad
over these 7900 orbits it is highly unlikely that even in-
cluding many more higher-order corrections in Eq. (4.12)
will be sufficient.

V. NEAR-ZONE RADIATION-REACTION
FORCE

In order to obtain the orbital decay rate in Eq. (4.15)
and the subsequent phase evolution in Eq. (4.18) of the
decaying binary system we used the energy balance con-
dition Eq. (4.14). However, because of the nonlinear
and nonlocal nature of the field equations and equations
of motion, Damour [30] has articulated a strong admo-
nition against naively equating the near-zone orbital en-
ergy loss rate with the far-zone energy flux. In spite
of the weakness of such energy balance arguments, it
is true that the lowest-order radiation-reaction force ob-
tained by these arguments does yield the correct answer.
(“correct” in the sense that the results agree with the
more rigorously derived results of Damour and Deruelle
[32] and Grishchuk and Kopejkin [33].) Furthermore, it
is quite likely that the first correction to the radiation
reaction force [the (post)”/2-Newtonian contribution to
the equations of motion] recently obtained by Iyer and
Will [31] using just such an energy balance condition will
agree with more rigorous calculations when they are com-
pleted. However, in this paper we are pushing beyond
the (post)”/2-Newtonian order in the equations of motion
and dealing with “tail” effects. These effects are highly
nonlinear and nonlocal and therefore the use of an instan-
taneous energy balance argument, such as Eq. (4.14), is
even more suspect than it was at lower order. In order
to put the results of this paper on the firmest footing
possible, we show that the tail contribution to the or-
bital decay rate [the 47 term in Eq. (4.15)], and thus
the orbital phase evolution Eq. (4.18), can be obtained
directly from a rigorously computed contribution to the
near-zone radiation-reaction force. This calculation is
based solely on the near-zone metric, and never uses an
energy balance condition such as Eq. (4.14). The ar-
guments presented here show in the concrete case of a
coalescing binary system in a nearly circular orbit pre-

ALAN G. WISEMAN 48

cisely what Blanchet and Damour [6] showed in the gen-
eral case: The near-zone, tail-transported radiation reac-
tion force bleeds the orbital energy defined by Eq. (4.13)
away from the system at precisely the same rate as the
tail radiation carries away energy in the far zone. (See
particularly Sec. IIID of Ref. [6].) Thus, in a nonrigor-
ous sense, the derivation of the orbital decay presented
here does not use the energy balance condition; rather it
confirms the consistency of the energy balance condition.

Blanchet and Damour [5] have actually obtained the
first tail-transported correction to the near-zone metric
component goo. [See particularly Eq. (6.33) in Ref. [5].]
From this metric component they construct the first tail-
transported correction to the radiation-reaction poten-
tial. Their result can be written in terms of a radiation-
reaction acceleration:

).
ai{R = —QRR,i = ———é—[(l:ail?b '1:2]],,‘
s i )
— 2 g (5.1)

where

G i ij
=30t

(5.2)

and the crosshatch denotes that the trace has been re-
moved, e.g.,

L0 a = Q9 — 369Q% . (5.3)
The first term in Eq. (5.2) will generate the usual Burke-
Thorne radiation-reaction force. The second term 8%}
represents the tail-transported correction to the near-
zone radiation-reaction force. Blanchet and Damour [5]
have given the following expression for this term:

(t —u)In(u/2s,)du . (5.4)

Here s, is a characteristic time scale of the problem; it is
not necessarily equal to the time scale s of Eq. (2.2b); at
the order we are considering it has no observable effects
on the result of the calculation.

As we did in Sec. IV, we assume that the binary is
in a slowly decaying circular orbit and we perform the
integration using the techniques of Sec. IV. The result
for the tail-transported contribution to the radiation-
reaction acceleration is

256 m® T
oy = 5 e |InCP/sa) —n(sm) 318~ 53]

(5.5)

where 11 is the unit radial vector and (j; is a unit vector
in the direction of increasing orbital phase.

The effect of a perturbing acceleration, such as Eq.
(5.5) above, on the orbital evolution can be obtained di-
rectly from the Lagrange planetary equations. (See, for
example, Lincoln and Will [26].) Using Eq. (2.7c) from
Lincoln and Will and boiling it down to the case of cir-
cular orbits we find, for the orbital decay rate,
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3\ /2
r=2 (—) [a¢ + (zero)an] , (5.6)
m
where a,, and ay represent the components of the per-
turbing acceleration, and “zero” represents a factor which
vanishes in the special case of nearly circular orbits. In
our case

128 m®
Ay = —7]—;'6—71' )

= (5.7)

and thus the tail contribution to the orbital decay rate is
found to be

256

Frail = —20n(m/r)%?m

(5.8)

This is in exact agreement with Eq. (4.15).

VI. CONCLUDING REMARKS

Starting with a general formula for the tail of the
radiation given by Blanchet and Damour we have con-
structed specific formulas for the tail of the radiation for
in-spiraling binaries and gravitational bremsstrahlung.
We have shown that the general formulas are well de-
fined for these two astrophysical events, and that there
is no unreasonable sensitivity to the past history of the
system.

In the bremsstrahlung case the tail of the radiation is
suppressed by O((v/c)3) from the usual quadrupole ra-
diation and is therefore probably undetectable in all but
the most relativistic encounters. We also note that al-
though the quadrupole radiation exhibits memory for a
bremsstrahlung encounter, the tail correction does not.
In the case of coalescing binaries we are able to show that
the tail correction to the waveform can grow to be compa-
rable to the quadrupole portion when the system is near
coalescence. We are also able to give a new correction to
the orbital decay rate for coalescing binaries.
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APPENDIX: PHYSICAL INTUITION

As we described in the Introduction, the physical in-
tuition underlying the “tail” radiation is that it is the
portion of the direct radiation which scatters off the back-
ground curvature of the spacetime, and thereby takes an
indirect path to the observer. Although this idea is quite
picturesque, Blanchet and Damour [6] seldom appeal to
such physical intuition in their development of the tail
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radiation formula Eq. (2.2b), i.e., Eq. (3.4a) in Ref. [6].
In this appendix we will show that the behavior of the tail
radiation as predicted by the Blanchet-Damour formula
and illustrated in the explicit formulas Eq. (3.4) and
Eq. (4.5) and Figs. 1-5 of this paper is consistent with
a number of hand-waving, qualitative arguments about
what one should expect of the tail radiation. The argu-
ments we present here are loosely based on a comparison
of the field equations of general relativity with the sim-
pler Klein-Gordon field equation. In particular we will
explain the origin of the logarithmic correction to the ra-
diative time coordinate in Eq. (2.5). We will discuss the
quantitative nature of the phase lag, or time lag, of the
tail radiation. [See Figs. 3 and 5 and Eq. (4.6).] Fi-
nally we will examine the absence of “memory” in the
tail radiation.

We present this hand-waving development of the be-
havior of the tail radiation with a word of caution: These
arguments are in no way a substitute, or shortcut, for the
rigorous solution to the field equations of Blanchet and
Damour, which is represented by Eq. (2.2). At present
it seems that the multipolar post-Minkowski (MPM) for-
malism of Blanchet, Damour, and Iyer [4-8] culminat-
ing in Eq. (2.2) is the only formalism that is both suf-
ficiently rigorous and sufficiently general to tackle the
problem of coalescing binaries of compact objects. For
example, the formalism of Thorne and Kovacs [15, 22, 24]
is well suited for the case of high-speed, low-deflection
gravitational bremsstrahlung, but it is unclear how this
technique would have to be modified in order to solve the
low-speed, high-deflection problem of coalescing binaries.
The retarded time expansion of the Epstein-Wagoner for-
malism [10], which uses a flat-space Green’s function, is
not adequate for analyzing curved-space effects, such as
the Shapiro time delay, or the curvature-induced hered-
ity effects. Other perturbative techniques which assume
a uniform background curvature are not well suited for
compact sources.

The physical effects that we are discussing all have
their origin in the gravitational field equations, which we

write
Oh*P = —1677°F | (A1)

where O = —8%/9t? + V2 is the flat-space wave operator,
and h°P is the potential which is related to the metric by

he® = —(—g)V/2g°P 4 P . (A2)
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FIG. 5. Lag time of tail radiation as compared to direct
radiation. Note the almost linear relationship.
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In writing the field equations in this form we have also
chosen the de Donder gauge condition
heP

B8=0 . (A3)

The source in Eq. (A1) is the effective stress-energy pseu-
dotensor 7% which is given by

78 = (—g)(T°" + tLL*P)

+(1/16m)[h, BPY, —hoB RHY] | (A4)

where TP is the stress-energy tensor of the matter, the
commas denote partial differentiation, and t.;,*? is the
Landau-Lifshitz pseudotensor [Ref. [18], Eq. (20.22)],
which is composed essentially of terms quadratic in A5 .
Using the flat-space wave operator in Eq. (A1) masks the
curved-space nature of the field equations. When writ-
ten in this form, many of the curved-space effects in the
field equations are hidden in the definition of the source.
Notice that all the terms in Eq. (A4) involve only first
derivatives of the field except the last term h®P,,, h#¥ .
In a mathematical sense this second derivative term “be-
longs” on the left side of Eq. (A1) with the other second
derivative terms that are incorporated in the wave opera-
tor. We will show that this second derivative source term
is responsible for many of the curved-space effects, such
as the tail of the radiation and the Shapiro time delay.

If the second derivative term in Eq. (A4) is taken to
the other side of Eq. (A1) its effect on the solution to
the differential equation can be examined heuristically.
First, if the term h*8,,, h*¥ is thought of as entering
the differential equation as

OA*P 4 [(factor)**]1h>P ,,

= —167[(remainder of the source)*?] , (A5)

we see that it changes the coefficients of the second
derivatives in this equation. The dominant contribution
to the “factor” in this equation is (—h%?), which to lead-
ing order is given by
_4m

hOO ~
r

(A6)

This means that the dominant terms on the left-hand
side of Eq. (A5) are

(=1 — 4m/7r)h*B 4o +h*P .. (A7)

It is the coefficients of the second derivative terms in
Eq. (A7) which determine the characteristic curves along
which information propagates to the distant observer.
For the differential equation above the equation for the
characteristic curve is

—(1+4m/r)(dr/da)® + (dt/da)? =0 . (A8)

[See, e.g., Mathews and Walker [35], Eq. (8.14).] Neglect-
ing terms of O(m?) and integrating out to the distant
observer at R, the solution to this equation is

t— R—2mlIn R = const . (A9)

This is precisely the definition of the radiation-coordinate

retarded time Eq. (2.5). The logarithmic term is the
Shapiro time delay, which represents the additional co-
ordinate time required for the signal to crawl out of the
1/r potential of the compact source.

The second derivative term in the source can also be
thought of as entering the field equation the other way
as

ORP 4+ K°P, h#

= —167[(remainder of the source)*?] | (A10)

where K"‘ﬁ#,, represents h"‘ﬁ’,w. Loosely speaking,
Kaﬁ,w consists of two derivatives of the metric tensor,
and therefore is closely related to the curvature, i.e.,
[|K*® || ~ m/r3. We see that the differential equa-
tion Eq. (A10) now has some resemblance to the flat-
spacetime Klein-Gordon equation

O¢ +m2¢p = —4ns . (A11)

[In discussing the Klein-Gordon equation we use units
such that m, has units of (length)~!.] Proceeding with
more imagination and faith than rigor, we will attempt to
glean some aspects of the behavior of the solution to the
field equations from the behavior of the solution to the
Klein-Gordon equation. We state here at the outset that
we are mindful of several differences. In particular, (1)
we are neglecting the fact that K8 uv 18 not a constant
as is its counterpart m, in the Klein-Gordon equation,
and (2) we recognize that there is nothing in the scalar
Klein-Gordon equation which is analogous to the mixing
of polarization from the implied summation over u and
v in Eq. (A10).

The solution to the Klein-Gordon equation can be writ-
ten in terms of a two-part Green’s function:

¢(m):/G(x,x')s(a:')d4a:’
:/Gdirect($7$’)s($l)d4z,

where the “direct” part of the Green’s function is the
usual

5(t—t' — |x — x'|)
lx — x|

Gdirect = (A13)
and the “mass” part of the Green’s function can be writ-
ten explicitly as

Gmass = — MOt —t' — |x — x'|)

><Jl(m,,\/(t—t’)2 —|x —x'|?)
V(=) —|x —x'|2

[Equation (A14) can be obtained from formulas in Morse
and Feshbach [36]. It is also given explicitly by Zaglauer
[37].] The function © is the step function which has the
value of unity on the interior of the past light cone of the
field point and vanishes elsewhere, and J; is the Bessel
function of order 1. Thus we say that the Green’s func-
tion for the Klein-Gordon equation has support not only

(A14)
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on the past light cone of the observer, but also inside
the past light cone. This means that the solution to the
Klein-Gordon equation will depend on the behavior of the
source at the retarded time and at all times prior to the
retarded time. Therefore, we can accurately refer to the
second integral in Eq. (A12) as the hereditary part of the
solution. The decaying behavior of the Bessel function
ensures that the solution is only weakly dependent on
the ancient history of the source. Notice that these are
features that we have already seen in the tail radiation.
The two other features of the mass part of the Klein-
Gordon Green’s function that we now wish to explore
are that (1) the massive portion of the Green’s func-
tion Gass is proportional to the mass m, of the scalar
field and (2) the function Gpass is an oscillatory func-
tion; the frequency is determined by the mass m, of the
scalar field. From these two features we make two obser-
vations about the solutions to the Klein-Gordon equa-
tion: (1) Obviously, if m, is small the contribution to
the second integral (the hereditary part) in Eq. (A12)
is small; (2) frequency components of the source which
are commensurate with the time scale established by m;
will produce the largest effect in the second integral in
Eq. (A12). Other frequencies would tend to cancel when
integrated against the oscillating Bessel function. With
these observations we make two inferences (i.e., weakly
founded guesses) about the solution to the gravitational
field equations, Eq. (Al). (1) Just as small values of
m, produce small contributions to the hereditary part
of the solution to the Klein-Gordon equation, we expect
that regions of weak curvature (small ||[K*?,,,||) will give
small contributions to the hereditary part of the solution
to the field equations. In other words, regions of weak
curvature will not produce much tail radiation. Thus
not much scattering takes place far from the source, and
therefore the tail radiation will only have weak depen-
dence on the ancient history of the system. (2) Just
as frequency components of the source which are com-
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mensurate with the time scale set by m, will produce
the dominant part of the hereditary piece of the solution
to the Klein-Gordon equation, we expect that regions of
spacetime where ||K#,,,||71/2 is commensurate with the
period of the source will give the largest contributions to
the tail radiation. In other words, the region of dominant
scattering will be a region of spacetime where

orbital period o ||[K*?,,[|7'/?% . (A15)

This second point we wish to explore semiquantitatively.
The relationship can be stated as

r3 1/2 3 1/2
orbit scatter
2 | 2R o | o= ,
m m

where 7rgcatter 1s the characteristic location of the scat-
tering. Thus, 7rscatter would also be proportional to the
average path difference between the direct radiation and
the tail radiation. Therefore we expect that

(A16)

Torbit X Atlag . (A17)

Here Aty is the lag time of the tail radiation as com-
pared to the direct radiation. This linear relationship of
Eq. (A17) is clearly borne out in Fig. 5.

The absence of memory in the tail radiation makes
some sense by a similar argument. Memory in the tail
radiation would be the extremely low frequency com-
ponent of the tail portion of the radiation. Its source
would be the extremely low frequency component of the
quadrupole radiation, that is, the quadrupole memory.
[See Fig. 2.] By the argument above we would expect
these low frequency, long wavelength contributions to
have been scattered in regions of spacetime where the
radius of curvature of the spacetime is very large, i.e.,
very far from the source. However, by the first inference
above, we expect these regions of spacetime to give little
contribution to the tail. Therefore it is quite reasonable
that Eq. (2.2) does not exhibit tail memory.
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