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Quantum fluctuations and curvature singularities in Jackiw-Teitelboim gravity
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Jackiw-Teitelboim gravity with matter degrees of freedom is considered. The classical model is
exactly solvable and its solutions describe nontrivial gravitational scattering of matter wave packets.
For a huge amount of the solutions the scattering space-times are free of curvature singularities.
However, the quantum corrections to the 6eld equations inevitably cause the formation of curvature
singularities, vanishing only in the limit 5 ~ 0. The singularities cut the space-time and disallow
propagation to the future. The model is inspired by the dimensional reduction of 4D pure Einstein
gravity, restricted to space-times with two commuting spacelike Killing vectors. The matter degrees
of freedom also stem from the 4D ansatz. The measures for the continual integrations are judiciously
chosen and one-loop contributions (including the graviton and the dilaton ones) are evaluated. For
the number of the matter 6elds N = 24 we obtain even the exact effective action, applying the
David-Distler-Kawai procedure. The effective action is nonlocal, but the semiclassical equations can
be solved by using some theory of the Hankel transformations.

PACS number(s): 04.60.+n, 04.50.+h

I. INTRODUCTION

Einstein gravity is undoubtedly a beautiful and physi-
cally relevant theoretical construction which, at the same
time, has brought many novel mathematical structures
into theoretical physics. Notions such as the black hole,
the horizon, the curvature singularities, or the gravita-
tional collapse enriched our conceptual world, but they
also posed new challenging problems, yet to be under-
stood. For instance, what is the fate of matter in the last
part of the gravitational collapse'? Following the over-
whelming success of quantum theory in describing the
world of subatomic distances, physicists feel that an ap-
propriate theory of quantum gravity has to provide the
correct solutions to the problems and improve our un-
derstanding of the phenomena occurring in very strong
gravitational fields near the curvature singularities. Un-
fortunately, such a generally accepted and technically ap-
plicable quantum theory of gravity does not exist yet.
A considerable breakthrough was reached due to string
theory, where the consistent perturbative S matrix for
scattering of gravitons and excitations of other fields can
be obtained [1]. However, the dynamics of a gravita-
tional collapse or the status of quantum black holes are
still not understood. Though there is a common belief
that quantum effects should smear the singular behav-
ior of classical theory, there is no sufIiciently established
quantitative evidence for such a conjecture.

The string boom had also an indirect, but very impor-
tant influence on the subject of quantum gravity. Mod-
els of (1 + 1)-dimensional theories of gravity coupled to
a dilaton field P have arisen in string theory [2,3). These
models possess black hole solutions, and they motivated
Callan, Giddings, Harvey, and Strominger (CGHS) [4]
to investigate the model of two-dimensional (2D) dila-
ton gravity coupled to conformal matter. The model is
of interest as a "toy" model of quantum gravity in two

dimensions which contains gravitational collapse, black
holes, cosmic censorship, and Hawking radiation. More-
over, the model is very similar to that obtained by the
dimensional reduction of the spherically symmetric grav-
itational system in 3 + 1 dimensions; hence, one may
expect the relevance of the 1 + 1 results to the 3 + 1
physics. Recently, many authors have been investigat-
ing the quantum dynamics of black holes by using the
CGHS model [5—13]. The issues of particular interest
are the back reaction of Hawking radiation on the metric
and the end point of black hole evaporation. The prob-
lem is far simpler than the original (3 + 1)-dimensional
one, and powerful methods of conformal field theory in
two dimensions can be used.

The CGHS model and its variants [14—16] and also
other 2D dilaton gravities have been studied in the liter-
ture [17], particularly in the context of noncritical string
theory [18]. The models can be typically obtained by the
dimensional reduction of higher-dimensional pure metric
gravities. This fact suggests the following CGHS-like sce-
nario for "addressing" four-dimensional quantum prob-
lems: One finds the corresponding dilaton gravity model
in 1+1 dimensions and attempts to quantize it. Though
1+1 quantum theory may still be complicated enough to
prevent exact solvability (as CGHS is), usually it is far
simpler than its 4D counterpart. In this contribution,
we adopt the scenario and address the quantum dynam-
ics of colliding gravitational waves. The fact that the
nonlinear character of the Einstein equations results in
the formation of curvature singularities after collisions of
gravitational waves is known only since the 1970s [19,20],
and perhaps it is less familiar to nonspecialists than the
fact that a black hole is formed as a consequence of grav-
itational collapse. However, the colliding-wave problem
keeps attracting many relativists [21—24] without an in-
terruption, since the discoveries of the first colliding-wave
space-times by Szekeres [19] and Khan and Penrose [20].
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The problem of main interest for us will constitute the
following: What is the quantum status of those scattering
space-times? As we have mentioned above, one usually
expects that curvature singularities should be smeared
by the efFects of quantum fluctuations. Our quantitative
analysis will show, however, the surprising result that the
quantum curvature singularities are even worse than the
classical ones and even classicaly nonsingular space-times
are destabilized by quantum curvature singularities.

Apart Rom the physical questions which our analysis
will try to answer, the model to be considered in this
paper is of interest also for some more theoretical rea-
sons. Indeed, while in CGHS and related theories [17,18]
matter degrees of freedom are added by hand after the
dimensional reduction, in our model matter degrees of
freedom also come from four-dimensional theory. This
fact should even increase the relevance of our results for
the 4D case. There is another pleasant thing, namely,
not only the matter loops, but also one-loop dilaton and
graviton contributions can be evaluated, yielding the one-
loop efFective action. Moreover, for the critical number of
matter fields (N = 24) our result will be nonperturbative
and exact. But the good news is not exhausted by that;
it turns out, moreover, that the semiclassical equations
can be solved and the behavior of curvature singularities
is under control.

The plan of the paper is as follows. In Sec. II we in-
troduce the 2D matter-dilaton model motivated by the
dimensional reduction of the (3 + 1)-dimensional system
with two commuting spacelike Killing vectors. Then we
find the classical equations of motion in the conformal
gauge. The dilaton Beld turns out to satisfy the stan-
dard d'Alambert wave equation; hence, we introduce a
sort of "light-cone" gauge. In this gauge the matter fields
obey the Gowdy cylindrical wave equation [25], the gen-
eral solution of which can be given by the decomposi-
tion into the Fourier-Bessel and Fourier-Neumann modes.
The corresponding metric we find explicitly by integrat-
ing the remaining equations. We show that the Neumann
modes cause the formation of the (classical) curvature
singularities which close space-time to the future, while
the appropriate superpositions of the Bessel modes de-
scribe the collisions of the wave packets traveling against
each other with the velocity of light. The corresponding
space-times are everywhere regular with the out region
in which the scattered wave packets travel to the oppo-
site space infinities. In Sec. III we discuss the quanti-
zation of the model. We choose the standard Polyakov
measure for functional integration over the metrics and
reparametrization invariant measures for the dilaton and
the matter field integration. Then we compute the one-
loop effective action. The effective action is nonlocal even
in the conformal gauge, due to the presence of the direct
rnatter-dilaton coupling in the action. The one-loop ef-
fective Beld equations are localized by going to the dila-
ton "light-cone" gauge. The renormalization requires a
purely dilatonic counterterm, the contribution of which
makes finite one infinite constant in the semiclassical field
equations. The actual computation requires knowledge
of the functional derivatives of the determinant of the
(Gowdy) wave operator with respect to the dilaton and

metric. They are evaluated by using heat kernel reg-
ularization and some theory of Hankel transformations
in the Appendix. In Sec. IV we solve the semiclassical
field equations. We perform a detailed analysis of the
scalar curvature of the space-times, obtained by solving
the semiclassical equations. We show that the contribu-
tion of the quantum Quctuations to the effective action
inevitably generates curvature singularities in the semi-
classical space-times. These singularities may disappear
only in the limit h ~ 0, thus indicating that the clas-
sical regular scattering space-times are in fact unstable
&om the quantum point of view. We end up with short
conclusions and an outlook.

II. THE MDDEL
AND ITS CLASSICAL DY'NAMICS

A. Dimensional reduction

The form of the four-dimensional metric describing the
collisions of collinear gravitational waves is given by [24]

ds = —2$ ~e"dudv+ Q(e+ "~de + e ~~dy ), (1)

where the metric functions p, P, and Q are invariant on
the (x, y) plane of symmetry. The 4D vacuum Einstein
equations for the metric (1) consist of the constraints

+v 4 = ~4Q.' (2)

+v 4 = KPQ.',
and the evolution equations

„„=0,
(QQ„)„+((t Q„)„=0,

Puv = &QuQv.

after fixing the conformal gauge

d82 = —2e"dude. (8)

The action (7) can be interpreted as Jackiw-Teitelboim
gravity [26] where the cosmological constant is replaced
with the kinetic term of matter. The matter is coupled
to the dilaton and possesses all dynamical degrees of &ee-
dom of the theory. We note that the generalization dif-
fers from the generalizations of Jackiw- Teitelboim gravity
considered previously [47,48].

B. Solutions of the Beld equations

In what follows, we shall consider the model (7) with
an arbitrary number of matter fields. The classical dy-

It is not difFicult to demonstrate that the same set of
constraints and evolution equations follows from the 2D
action

S = — d (Q gg(B —vg ~B—QBpQ),
=1 2

2K
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namics does not change dramatically, but the properties
of quantum theory will depend on that number. The
action reads

where

V —V
(24)

S=—1
2K

d gg gp—(R —Kg ~0 Q'Bpq'),

+ p-4 = KPQ'. Q'. (10)

+ p 4 = ~4Q'. Q'.

and the constraints and the evolution equations in the
conformal gauge get obviously modified:

We observe that the linear equation for the matter fields
Q~ does not contain the metric function p, . We may call
this equation by the name of Gowdy, who studied cosmo-
logical models with plane symmetry [25], governed. locally
by (22). The general solution of the Gowdy equation
(which tend to zero at the spatial infinities) is given by
the mode expansion [24,28]

Q~(t, cr) = d(uRe A'((u) Jo(~t)e
0

=0, (i2) +B' ((u) No (~et) e

(4Q'. ).+ (Wq'. ). = 0,

puv = &Q~ Q~ ~

The general solution of (12) reads

y = f (u) + g(v) .

If P„= 0 (or P„=0), then from (11) [or (10)] it follows
that Q~ = 0 (Q& = 0) and &om (14) p,„„=0. Since the
scalar curvature B is given by

B=2e "p„„

and in two dimensions the curvature tensor reads

j.&-n~~ = 2(g-~A~ —g-~g~~)& (i7)

we may conclude that the arbitrary functions P(u) and
Q~ (u) [or P(v) and Q~ (v)] are solutions of the field equa-
tions and the corresponding space-time is Qat. Such so-
lutions obviously describe the matter excitations propa-
gating in one direction with the velocity of light.

If neither P„=0 nor P = 0, we can (at least locally)
perform the conformal transformation

p, = 21ctq', Q',
&, = «(q', q', + q:q:) .

(26)

(27)

We use the fact [27] that for I" and G, satisfying the
Bessel equations

where A~ and B~ are (complex) distributions ensuring
the proper behavior at space inanity and J0 and N0 are
the Bessel and Neumann functions of zero order, respec-
tively. This mode expansion can be easily found by us-

ing the Fourier tranformation in the variable cr in (22).
The resulting ordinary difFerential equation in the vari-
able t is then the Bessel equation. We should note, at
this place, that in higher dimensions some additional (so
called "solitonic") terms are considered on the right-hand
side (RHS) of (25). They do not vanish at space infinity
and in the limit of weak gravitational coupling v ~ 0
those solutions diverge and do not approach the nonin-
teracting matter solutions [30]. We shall not consider this
"solitonic" sector in this paper and prescribe the bound-
ary conditions, mentioned above.

It remains to solve Eqs. (20), (21), and (14), which
determine the metric function p, . Combining (20) with

(21), we obtain

U = v2f(u), V = V2g(v) .

Such a transformation is obviously the symmetry trans-
formation of the set of the field equations (10)—(14);
hence, we may fix this residual symmetry by the claim

V+V

x +x +(A x —n )E=O,dE dE

x +z +(v x —n )G= 0,2d G dG

it holds that

p U = v(U + V) Q~Q~U,

pv = Ic(U+ V)q~~q~~,

(20)

(21)

We may call this gauge fixing the "dilaton" gauge. In
the gauge the Beld equations become

dx dx)
(28)

This formula enables us to integrate the products of the
Bessel functions. The result of the integration gives the
explicit form of the metric function p, :

1 2Ci+ —,C —Q'. = 0,

pvv = KQUqi— (23)
It appears that this result is new even from the point of

view of 4D theory of colliding waves [23,24].
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OO —1
p = r. d(ogden)2urg~2 t Re G', (~, t)G'p((u2t)e *( '+ ')

0 (dy + 412

[G~*((vent)G'(cu2t)e*( ' ' —G'*(~2t)Gp(cujt)e
2 (dy —4c)2

where Consider now (regular) space-times, given by

Gp(i)((ut) = A ((u) Jp(i)((ut) + B~((u)&p(i)((ut) . (30)

We note that the classical equations (12)—(14) turn out
to be "iteratively" linear. Indeed, solving the linear equa-
tion (12) and inserting its solution P into Eq. (13), we get
again the linear equation. After solving it, we insert Q
into Eq. (14) and get the linear equation for p, . Such a
structure of the equations gives the classical integrability
and will be also important later for the quantization.

A' (~, u)p, p) = [a, I

e'~' 4&i (~ —~0)
B'(cu) = 0,

4p

(39)

(d07i
A'((u, ~p, p) -+ Ia, Ie*~& 8(~ —ap). (40)

where Pi is real and p and up are real positive parameters.
Note that, for p ~ 0,

C. Curvature singularities and the global structure

We start our analysis of the curvature singularities
with the formula for the scalar curvature. Following from
Eqs. (16) and (23), we have

From Eq. (25) for B~ = 0 we obtain

OO
4d (~ —~0) 2

dkuRe Ia, Ie'~' —e &~ Jp((ut)e
4p

R = re "( Qk~Q~—
k + Q~ Q~ ). (31)

From the well-known formula for the asymptotic behavior
of Bessel functions for t + +oo [27],

Near t + 0+ we have

t2
Jp(t) 1 ——+

4
(32)

Jp(u)t) = F
cos &t y — +

7rcu It I 4)

hence,

K(t) - 1 ——
I
lnt+ . .

;4) (33)

we have, for t + +oo,

Q' = e ~ cos ~p(t —0.) + P, p-;(~-.)
4

Q~ ~ — dkuwRe[B~ (w) e '
] + bounded

—~ t+ e '('+ ) cos ~ (t+ kr) —(t 2 (43)

E2
+ bounded,

t (34)

Q~ lnt I dwuRe[ iB~(w)e '
] I

—+ bounded
0

=—H~ lnt + bounded, (35)

p v. ln t E~ E~ + bounded.

Inserting Eqs. (34), (35), and (36) into Eq. (31), we have

+ II' II' (ln t) 2 + .
t2

B'(a) = 0.

We conclude that the regularity of the (classical) space-
times requires both E~ and H~ to be equal zero, or, equiv-
alently,

Now the physical interpretation of this solution is obvi-
ous. At t ~ —oo we have two wave packets propagating
against each other by the velocity of light; at t ~ oo the
two scattered packets propagate apart from each other
with the gained phase shift, indicated in Eq. (43). Be-
cause Jp(art) and. its derivatives are bounded functions
[27], we may use the Riemann-I ebesgue lemma and &om
Eq. (41) conclude that for t = const and 0. -+ +oo,
Q~ and all its derivatives with respect to t and 0 vanish.
Hence, by using the constraints (26) and (27) and the for-
mula (31) for the scalar curvature, we observe that the
space-time is Bat in this limit. For the cases o. = const,
t ~ +oo, t + a.=const, t —0 ~ +ao, and t —o=const,
t + kr -+ +oo, we use the asymptotic expression (43), the
constraints (26), (27), and the formula (31) to arrive at
the same conclusion. Therefore, for the "wave packet"
choice (39) the corresponding space-time is asymptoti-
cally flat (see Fig. 1), it has the same topology as the
two-dimensional Minkowski space-time, and is &ee &om
curvature singularities. We shall not need the explicit
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8 —+0

B g 0, 8 bounded

FIG. 1. The scalar curvature of the regular classical
space-times.

form of the metric, which, nevertheless, can be obtained
by perforining the integration (29) with the choice (39).
We should end up the classical analysis with some im-
portant comments.

First of all, it does not seem unexpected that for col-
lisions of the localized wave packets traveling with the
velocity of light, the space-time is asymptotically flat in
the spacelike and timelike directions. What looks more
surprising is the fact that the same is true for the null in-
finities. The reason is simple: In two dimensions a single
propagating wave does not curve the space-time [cf. the
analysis after Eq. (17)]. In higher dimensions this is not
true [29,30], but in that case the curvature is given by the
shape of the wave front in the transverse directions. Since
there are no transverse directions in two dimensions, our
result could be anticipated.

The second comment is closely related to the first one.
It concerns the regularity of the initial data. In the
higher-dimensional case the following problem was stud-
ied [23,30]. If initially regular gravitational waves inter-
act, will a curvature singularity be formed? The criterion
for the regularity of the incoming data can be naturally

lim PQ~Q~ = finite.
U~~(V-+~)

(45)

In the case of the wave packets (39) we get

lim PQ'Q' = ) ~a,
~

e 9 «» v 2~2V Pj
Um+oo 2 4

2

= finite (46)

and similarly for V —+ +oo.

III. QUANTIZATION

A. Functional measures and the effective action

Define the generating functional of the model

W[J9, Jy, J~] by

formulated: One requires the boundedness of the ampli-
tude of the wave, which itself is de6ned by means of the
components of the Riemann tensor of the corresponding
metric in the so-called parallel propagated orthonormal
frame [23,30]. However, in the two-dimensional case, in-
coming waves do not curve the space-time and this cri-
terion of regularity fails. But certainly we should not
consider all incoming waves as regular (with bounded am-
plitude). One might require that the scalar field Q~ itself
should be bounded, but, on the other hand, we could
rescale it by an arbitrary function of another scalar field,
the dilaton ()t), and we would get the classically equivalent
dynamical theory with the different condition of incoming
regularity. Fortunately, it appears to be a natural can-
didate for the amplitude of the wave. The matter part
of the action (9) suggests the following inner product on
the space of fields Q [see also Eq. (50)]:

(Q, , Q~) = f d (g—gdQ, Q, .

Hence, our condition of the incoming regularity reads

~[J J J ]
— 9g~P 9~ 9i4'Q

Vol(Diff )

x exp — d ( Q—g—(R —rg ~B Q'BpQ~) + g gJ9R+ Jpp—+ J,Q~ (47)

llddll' = f d'Cv' dg 'g~'dd. ddd, ~, —(48)

Ilddll' = f d'(v' gdd'—

where Jg is a scalar source, J@ and Jz are scalar densi-
ties, and Vol(Diff) is the volume of the group of diffeo-
morphisms. We de6ne the functional measures by the
nol ms

I

Equation (48) defines the usual de Witt —Polyakov norm

[31], and Eq. (49) gives the standard reparametrization
invariant measure for a scalar field. The norm (50) is

given by the form of the matter part of the classical ac-
tion, much in the same way as the norm for the quantiza-
tion of the standard nonlinear cr model with coordinates
X of the target and a metric Hdi~(X), i.e. [32],

lid%'ll* = f d CvgH (X(C))dX ' —(()dX(C) (51)'.
(50)

We return to Eq. (47), and we fix the conformal gauge
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d8 = —2e~dudv.

By using the standard Faddeev-Popov procedure, we ob-
tain

all contributions) canceled by tuning of the 2D cosmo-
logical constant counterterm.

Define now the effective action I' by the prescription

w[J] = 2 1
&'0

2
p~'p

)
2

x exp d $ —(—8 p —~BQ'BQ')
2K

. 26
D„pD„QD„gQ~ exp i

48m

—. ln W[J]= Z[J]
h

2

= I'[v' 4. Q'.]
—J ~'s ~ + J@4.+ J Q'. ,

(55)

where

—Jgoi iIJ, + Jyp+ J~Q~ (53)
bZ

(56)

lib II' = f ~'&"4' (54)

We suppose in a standard manner that the exponential
term in the Weyl anomaly is eventually (after including

I

where oi is the Minkowski d'Alembertian and BQ~BQ~
means the Minkowski metric scalar product. The Weyl
anomaly term comes &om the Faddeev-Popov determi-
nant, and the measure D„p is given by the norm

We wish to compute the one-loop effective action I'1. In
order to do that, we have first to determine Zi (the gen-
erating functional for the connected Green's functions)
from (53) and then to perform the I egendre transforma-
tion (55) and (56). We note that the dependences of the
measures on the fields p and P are of O(h) with respect to
the classical action in the exponent. Hence, the loop di-
agrams with the vertices coming from the measures will
be of O(h ) and may be neglected in the one-loop ap-
proximation. Therefore, we may write

. 26
W.. ;.,IJI = fn„p&„0&„~,Q exp i

96vr
& 6 pep px)

x exp — d ( ( By, —rBQ~BQ—~) —Jgg p+ J~P+ J,Q'.
where p J and Pg are the saddle point values of the exponent, given by the equations

—oi pg —rBQ'BQ' + 2r Jy = 0,

Qg + 2r.Jg ——0,

8(QJOQ~~) + J, = 0.

(58)

(59)

&60)

We observe that in the one loop approximation we can consider the measures to be independent of the Beld integration
variables (but, of course, dependent on the Schwinger currents). Now we evaluate the integral (59). In the (second)
exponent, there stands the quadratic form in the variables P and p, . Moreover, the norms defining the measures have
the same pg dependence, i.e.,

ll~pll' = f d*(e"'~p*11~411*=,d (e"'hg

Therefore, we can easily perform the Gaussian integration over p and P with the result

(62)W, ;,&III = fB e, Qe eexp e d ( pep pz) exp — d (( 2eJe Je+ eJepqeBQe + JzQe)). —
96vr

The integration over Q~ is again Gaussian; hence, we obtain the closed expression for the semiclassical generating
functional:

1W„;,)[Jg, Jp, J~] = det ~ i e I" 0(JgO)——
2KJg

x exp i d (pgB pg+ — d (~ 2r Jg Jy+ J, — J~ ~
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where we used the definition (50) of the measure D„~Q~ and Eq. (59). The Legendre transformation (55) and (56)
can be easily performed, and we obtain the following expression for the one-loop effective action

"(v', 4., q!) = f &'(~ (
—&*~.— &q!~q!)+& f d*G.&'~.

N -p 1
+ih —lndet ——e " 0($—,0) + O(h ).

2 2ti
(64)

We recognize the classical action and two quantum corrections. The first one is the Weyl anomaly, while the second
one is the nonlocal term depending on p, and P, . The expression (64) can also be written in a manifestly covariant
way: i.e.,

+ih —lndet —— 8 (g—g P g, &p) + O(&').
2 2h —g,

B. Case N = 24

For N = 24, the quadratic term of the Weyl anomaly
vanishes. The dilaton gravities usually become simpli-
fied, and more precise results can be obtained in that
case [33]. This happens also in our model. We show
that the semiclassical effective action I'i (64) is the exact
quantum effective action of the theory for N = 24. We
use the David-Distler-Kawai (DDK) approach [34,35] to
establish this result. The dependences of the functional
measures on the field p, read

D„,yQ = Do,pQV'detL, (69)

where L is the diagonal operator,

(70)

The formulas (66) and (67) are fairly standard [36,37];
however, the relation (68) deserves some comment. In-
deed, it can be explicitly derived by computing the Ja-
cobian, which relates both measures, with some regular-
ization procedure. We shall use the heat kernel regular-
ization and use the defining formula (50) to write

D„p, = (Dog) exp — d ( poj @, —
48m 2

(66) Note that the b function b'((i, (2) is to be understood in
the sense of the scalar product (50) with p = 0, i.e. ,

D„P = (Dog) exp — d (—pB p
48m 2

(67)

Clearly

1
~(6, (2) =,~(6 —(2). (71)

D~.~Q' = (Do,~Q') blndet L = bTrln L = d b, bp (72)

+(»nl&l)']) . (68)

x exp — d (( 'pO p+ 2p[2cj -in~/~
where b((, () is a meaningless quantity. As in [36,37], we

replace it by the heat kernel of the covariant Laplacian,
but in our case with respect to the scalar product (50),
i.e. ,

P(() 24~ 16(—~) &'v+ —I»'»~Id~I+(»~~ld~l)'I). (73)

We obtained the last equality in the conformal gauge, by combining the formulas (Al) and (A7) of the Appendix.
Now we insert (73) into (72) and in a straightforward way we arrive at the formula (68).

We may also check the validity of the formula (68) for a particular integrand. Indeed, let us compute the integral
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—~/2 —p,D„pQ exp — d (QB(QB)Q = det ~ ——e "—B(QB)26 2h

We have [see Appendix, Eqs. (A8) and (A9)]

det ~ — e " B(Q—B) = det ~ — —B(QB) exp
2h. Q 2hg 487r

~'0- v&2'~+'-, uf»*»~14~1+(&»14~1)'))). (~~)

Because

—1 2det — —B(QB) = Do ~Q exp
2hg ' 2h

d (QB(QB)Q

Eqs. (74), (75), and (76) obviously match with the formula (68).
After this digression, we now compute the effective action for the case N = 24. We use the d«»ng «rmu» (53)

for the generating functional in the conformal gauge and insert the field dependences of the measures (66), (67), and
(68) in it. We obtain

w[J] = 24i
Dolj Dog Do,yQ~ exp

327r
~*Et I»'» l0"I+ (»» 14"I)')

)
z

x exp d2( —(—B p —rBQ'BQ') —JgB p+Jy,P+ J,Q,

The integration over Q~ is Gaussian and over p, gives the b function; therefore,

3hK
W[J] = Dog b B'y+ 2~B'J, + [2B'ln~g~+ (Bin~/~)']

xdet x, (———B(QB) exp — d ( J~P —J~ J~2h P h (
' 2B(QB) ')

=det " B(P(Jg) B) exp
(&( ) )

' (78)

where the dependence of P(Jg) on Jg is dictated by the b function in (78). We stress that the formula (78) gives
the exact generating functional. Performing the Legendre transformation (55) and (56) we obtain the exact effective
action

~( ., 4., Q'. ) = j&*( (~* — &o'.&—Q'.).
47r

d (p, [2B ln /P, ,
/
+ (0 ln /P, f) ] + 12ih ln det ———B(gb, B)2hg,

Comparing the result with Eq. (64), we conclude that
for N = 24 the semiclassical approximation is, in fact,
exact.

IV. QUANTUM CURVATURE SINGULARITIES

——B$, +h B p,,1 2 24
2K, 48m

iN b —.1
+h ln det ——e " —B(Q,B) = 0, (80)

2 by, , 2h

A. Semiclassical Beld equatiens
B(P BQ', ) = 0,

—B p, —vBQ~BQ~

(8I)

We obtain the semiclassical field equations by varying
the one loop e8'ective action I'» with respect to the clas-
sical fields p„P„and Q~. We have

b -p 1
+hitcN ln det ——e ~ B($,B) = 0. (82—)

bP 2h
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The solutions of the semiclassical equations have the ex-
pansions

b -p 1
ln det ——e "' B—($,0)

hp, 25

pc = pc,o+ hpc i+ O(h ), (83) 0 p, + [28 ln~g, ~+ (Bluing, ~), (86)

P, =P p+hg, i+O(h ),

Q~ = Q~ o+ hQ~ i+. O(h ).

(84)

(85)

b 1

h&j&, (() 2h
ln det ——e " —0($,8)

Because we know just the Grst loop corrections to the
efFective action, the O(h2) terms in the field expansions
(83), (84), and (85) are irrelevant in the one-loop approx-
imation. Our next task will consist of the determination
of p, i, P, i, and Q, i from the semiclassical equations

(80), (81), and (82), when p, o P p and Q~ p is a given
classical solution. Since the "lndet" terms in the one-
loop field equations are already of O(h), it is enough to
compute the functional derivatives of lndet at the cla8-
sical solution p, ,p and P, p(= t). The actual calculation
requires knowledge of the heat kernels of elliptic oper-
ators, some theory of the Hankel transformations, and
some integration of the Bessel functions. The details are
presented in the Appendix; here we list only the final
result:

[8 p, —B(p,Oln iti) — ln, (87)
(ru''I

8mt . 8vrts
~

sQ
~

where 0 is a finite constant and e —+ 0 is the ultravio-
let cutoff. The following counterterm is needed for the
cancelation of the UV divergence:

(88)

Its appropriate tuning replaces the product eO in the
semiclassical equations by some Gnite constant, but it
cannot remove the logarithmical dependence on t .

Inserting the evaluated functional derivatives (86) and
(87) and the h expansion (83), (84), and (85) of the fields
into the semiclassical equations (80), (81), and (82), we

obtain the equations for p i, P, i, and Q, i

1 24 —N Ni+c~ pc, O =0,
2K ' 48m ' 32m t2 (89)

0(Q, ,BQ~ p) y 0(tBQ', ,) = 0, (90)

JV rc 1 2 1 1 1 ht
( ~ pc, i 2K~Q i~Qc p) = ~ pc, o + ~tpc, o pc, o

8vr
~

t ' t2 ' t ' t const
~

This system of equations can be solved in a similar way
as the classical system (12), (13), and (14) was solved.
Indeed, because we know the Green's function of the
Minkowski d'Alembertian, we find from Eq. (89) the
general form of P, i, by adding an arbitrary solution of
the homogeneous equation to one particular solution of
the full equation. Inserting P, i into (90), we obtain
the linear (inhomogeneous) Gowdy equation for Q, i.
Since we know the eigenvalues and the eigenfunctions
of the Gowdy operator, we know also its Green's func-
tion and, eventually, the general form of Q~ i. Finally,

putting Q, i into (91), we obtain the linear inhomoge-
neous d'Alembertian equa oli for p i, the general solu-
tion of which can be easily ound We conclude that our
semiclassical equations (89), 0), and (91) are exactly
solvable. For our purposes, there is no need to write
down the explicit (and somewhat cumbersome) formu-
las. Instead of that we shall concentrate on the behavior
of the general solution near t 0. We shall show, some-
what surprisingly, that even when we consider a regular

classical solution p p, P, p, and Q, o, the corresponding

solution p, i, P, i, and Q, i possesses necessarily a cur-
vature singularity at t = 0. Such space-times are there-
fore classically regular, but the quantum Buctuations in-

duce the scalar curvature singularity, proportional to h.
Hence, quantum effects not only do not smear the classi-
cal curvature singularities, they even destabilize the reg-
ular space-times. We present the corresponding quanti-
tative analysis in the next subsection.

B. Scalar curvature
of the semiclassical space-times

Let us study the behavior of the scalar curvature R
near t 0 for the space-times which solve the semiclassi-
cal Geld equations. In this subsection we omit the index c
of the fields p„P„and Q~. We choose a classical metric
Geld po such that the classical space-time is nonsingular.
From Eqs. (25) and (29) for B~ = 0, it follows, for t 0,
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po - t'f (o) +

Qp ——g(o) + t'h( o) + (93)

ln ltl + const x f (o)t + I" (U) + G(V) +NK 2

167t

(94)

The functions I" (U) and G(V) cannot be specified from
this equation; however, we may change our "dilaton"
gauge condition (19) by the prescription

where f (o), g(o'), and h(o) are functions, the concrete
forms of which are not relevant for our purposes, and the
ellipses denote the subleading terms, also irrelevant for
our analysis of the curvature singularities. Hence, from
Eq. (89) we find the behavior of Pi near t 0:

Nr f (o) 1 ht2—8 pi ——2+.C(o) lnltl- + —ln
8m t t~ const

+bounded; (1oo)

hence

N~ ht2
pi ——— ln + p(U) + rj(V) + bounded. (101)16at const

In the classical case, the arbitrary integration functions
p(U) and v(V) are determined from the constraints (20)
and (21). In the semiclassical case they have to be deter-
mined from the given boundary conditions. The situa-
tion is fully analogous to that occurring in the CGHS
model [4], where the semiclassical contribution to the
constraints come &om the Polyakov nonlocal action

t + h[E(U) + G(V)] -+ t. (95)
24 —N

Sp ——+h
St vr

The one-loop effective action (65) is invariant under this
transformation; hence, the semiclassical equations (80),
(81), and (82) remain unchanged. Moreover, the classical
solution at which the functional derivatives of the deter-
minants are to be evaluated changes just by the terms
of order h,. This eR'ect, of course, remains unseen in the
one-loop approximation, because the "lndet" terms are
already of the erst order in the h-expansion. Thus, all
subsequent analysis goes through and we can omit the
I"(U) + G(V) term and write, without a loss of general-
ity,

x B~v gg Bp— R~.
)

(102)

We can make the generally covariant action (102) local
at the cost of introducing a new auxiliary field Z (in a
similar but not identical way as in [46]). It reads

24 —N
d (g—g -g ~B~ZBpZ+ RZ . (103)

N~ 2n ltl + const x t16'
Now we insert Pi into Eq. (90). We obtain

02 1 oj 0 ) H(cr) Nrr, h(o)
Ot2 t Ot Bo2) t 87rt

+bounded,

(96)

(97)

The contributions to the constraints are then obtained
from bg"" and bg"" variations of the action, in the con-
formal gauge. We have

bsp 24 —N,= h (2Z„Z„—Z„„+p„Z„), (104)
vr —g bg"" 48vr

(-'Z„Z„—Z„„+p„Z„). (105)
1 bSp 24 —N

where H(cr) is some function of irrelevant shape. It is
easy to determine the behavior of a particular solution of
(97) near t ~ 0. It is given by

We get rid of the auxiliary field Z using the equation of
motion

Qi, p, ———H(o)t lnltl+ 2H(o) + N~h(o ) t+
8~

(98)

hence

0'(y+Z) = 0;,

p = —Z+ p'(u)+p (v)

(106)

(1o7)

A general solution of the Qi equation near t 0 is then
given by Eq. (98) plus an arbitrary solution (25) of the
homogeneous Gowdy equation. From (98), (25), and (93)
then it easily follows that

1 bSp 24 —N= h (p„„——,'p„p„) + T+(u), (1O8)g—g bg"" 48vr

BQ~~OQ~ C(cr) ln ltl + bounded. (99) 1 bSp 24 —N (p„„—2p„p„) + T (v). (109)

The function C(o) vanishes if the Neumann modes are
absent in the "homogeneous" part of Qi. Inserting (99)
into the remaining semiclassical evolution equation (91),
we obtain

The functions T+(u) and T (v) are undetermined, be-
cause p+(u) and p (v) are not known.

In our present model the Polyakov nonlocal action is a
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part of the one-loop semiclassical action [cf. (65)]. There-
fore, the unknown functions p(U) and v(V) can be spec-
ified only by fixing the boundary conditions. The bg""
and bg"" variations of the remaining lndet part of the

I

effective action of our model cannot inHuence this con-
clusion, and we shall not consider them.

Finally we are ready to write down the scalar curvature
of the semiclassical space-times. It reads [see Eq. (16)]

R(h) = —e "~"&0 y, (h) = R(0) + 5[—B(0)pi —e "'& pi]+ O(& )

NK ht= R(0) + rL(R(0) lii —R(0)]p(U) + p(V)])16mt const

, NK ] 1 ht2)
+h —e "'2rC 0 ln t + e "' cr + —ln + bounded+ 0 6

8~t] t2 0) (110)

Clearly, whatever the functions p(U) and v(V) may be,
the semiclassical space-time is obviously singular. The
singularity occurs at t = 0, and all timelike observers
will run into it. We arrived at the remarkable conclusion
that while at the classical level there existed the non-
singular space-times, at the semiclassical level all space-
times are necessarily singular. From Eqs. (37) and (110)
we also learn that the singular behavior of classical and
quantum curvatures is different; hence no cancellation
of a classical curvature singularity due to quantum ef-
fects may occur. If the classical space-time is regular,
then the formula (110) says that the corresponding serni-
classical space-time is plagued. by a curvature singularity
proportional to h. Schematically

8 = regular+ 5 singular.

We conclud. e that the quantum effects destabilize the
classical space-times and lead to even more severe curva-
ture singularities than the classical dynamics does. There
remains only one possibility to avoid this conclusion in
the framework of the present model, which may seem
quite unnatural, however. It consists in introducing by
hand into the effective action several Pnite counterterms
of a new type, which would be Gne-tuned to cancel the
divergent terms in (100). But also keeping this possibility
in mind we may conclude that the quantum instabilities
in our model are generic.

V. CDNCLUSIDNS AND DUTLGDK

We attempted to give a d.etailed. description of the clas-
sical and quantum dynamics of the Jackiw-Teitelboim
gravity with the cosmological constant replaced by the
kinetic term of matter Gelds. We showed that the clas-
sical solutions of the model have a natural physical in-
terpretation: Namely, they describe the collisions of the
wave packets of matter. For a huge class of such solutions
the corresponding classical space-times are topologically
trivial, asymptotically Hat, and free of curvature singu-

larities. Then we computed the semiclassical effective
action of the model; for the case K = 24 we, in fact, ob-
tained the exact expression. The effective field equations
turned out to be manageable &om the technical point
of view. We have solved them and provided a simple
analysis of the semiclassical solutions near t 0. A sur-
prising result followed: The scalar curvature acquires the
quantum correction which is necessarily singular. Hence,
quantum Huctuations do not smear classical curvature
singularities; in fact, they do just the opposite: They
plague the regular classical space-times with quantum
curvature singulanties. Because for % = 24 we obtained
a result starting from the exact effective action, our con-
clusion does not seem to be an artifact of the semiclassical
approximation.

We believe that the model which we investigated is also
interesting from a field theoretical point of view. At the
classical level it is completely integrable and iteratively
linear in the sense of Sec. IIB. This kind of "linearity"
played a decisive role in the evaluation of the continual
integral, in a similar way as was reported recently in the
context of 2+1 Chem-Simons theory [38]. The fact that
for N = 24 that computation gives an exact result sug-
gests the existence of a deeper algebraic structure in the
model. Moreover, it turns out that the model possesses
an unexpected and interesting geometrical structure. In-
deed, the action (7) with the included matter field can
be interpreted as the Jackiw-Teitelboim action (without
a cosmological constant) in the noncoinmutative geom-
etry of the "two sheet" manifolds Y x Z2, where Y is
the 2D space-time and Z2 is the internal space contain-
ing just two points [39,40]. The matter field plays the
geometrical role of the distance between the two points
in internal space.

Our present model also has connections to string the-
ory on curved backgrounds and to exact 2D conformal
Geld theories. Indeed, in the conformal gauge, the classi-
cal action reads

(112)

I am grateful to R. 3ackiw for a comment on this point. This comment is due to K. Gawqdzki.
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This is obviously an action of the nonlinear o model
where )(d, , P, and Q~ are the coordinates of the target
manifold with the metric

model look quite promising for further investigations, and.
we shall certainly return to those problems elsewhere.

ds = dp—dP+ pc/ dQ~dQ'. (113) ACKNOWLEDGMENTS

It is not difficult to see that the metric (113) (it is writ-
ten in the so-called Rosen coordinates) describes a sin
gte gravitational plane wave propagating on a (N + 2)-
dimensional target [29,30]. In other words, a single grav-
itational wave in a (N + 2)-dimensional target yields the
o.-model action describing collisions of the turbo gravita-
tional waves in two dimensions. Generalizing this work
[41] Brooks has shown that by adding the target dila-
ton background in the critical target dimension to such
a cr model, one obtains an exact conformal 6eld theory
[42]. It would be interesting ta study our present model
&om this point of view. All the mentioned features of the

I

I thank J. Frohlich, K. Gawgdzki, R. Jackiw, and A.
Tseytlin for enlightening comments.

APPENDIX

In this appendix, we evaluate the functional derivatives
of the determinant in (64), which were iieeded for obtain-
ing the explicit form of the semiclassical Beld equations.
In evaluating the traces we carefully keep in mind the
definition of the scalar product (50).

Start with the derivative with respect to p:

~ ~

1 i 1
dx t —e " —tt($, tr) exp —e ——e "* B(dt 8)

) (')—
2h 2h

exp —c ——e (A1)

-p 1 b i 1

b)M, (() 2h « '
6p ((), 7.

te det ——e *—rt(d tr) = (
—t) —Te exp e ——e —* —B(dt rt)

)2h

We have used the heat kernel regularization [43,44] based
on the representation

[

Performing the Wick rotation to the Minkowski time, we

can use Eq. (A4) for evaluating the heat kernel (Al). In
our case

+(an x independent constant) + O(sx). (A2)

The "bras" and "kets" in Eq. (Al) have to be understood
in the standard sense. The asymptotic expression for
the heat kernel for small r was obtained for an arbitrary
elliptic operator in two dimensions [44]. If M has the
form

B = 2(9 lnl«1,

B() ——e " ——,'(9' 1n 1«1 —
—,
' (8 ln

I «I) ',
hence

b i 1
lndet ——e " —cl($ cl)

bp„2h

(A6)

1
(V- + B-)V gq (Vp + Bp—) —Bp (A3)

~'p. + [»'»1«I+ (~»l«I)' . (A7)

then4

((Ie™l()= 4, v' —u+
24

&v' —a

1+ Bpg g+ O(s)—. —
4' (A4)

Note that the functional derivative with respect to p, is
the local expression. We also did not consider the first
term on the RHS of Eq. (A4), which is eventually to be
canceled by the two-dimensional cosmological constant
counterterm.

Next we compute the variation with respect to P .
First of all we nate that Eq. (A7) implies

lndet ——e " —t9(«(9) = i d ( p (9 p + P [2~ lulls' I
+ (~in14' I) ] + +(«)

48~ 16~
(A8)

We put the sign + in front of R [see also Alvarez [45], Eq. (4.38)]t because B is given by Eq. (16).
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where I" (P,) is some p, -independent functional. But Eq. (A8) itself gives

ln det ———c)($,c)) = Il'(P, )2hg, (A9)

Hence,

lndet ——e "* 8($8) =, (8 p —„8(p„Bln~rk, ~) + lndet ——8 k (Bln~tt, ~)8 ). (rk10)
C 2h, '

87r C 2h-

Now we have

blndet ——0 + Oln 0
25

p =t

OO [

d7 2= —8 —Teexp —e — (8 +—(Bln ~tt, ~)8)
T 2h

dr Trd( ——(9
'

(9exp r —(ck —i) (9, + —t9, + —(n+ i)B
2h ( t ) 2h (

' t ) 2h

(All)

where n ) 0 is a (small) "Euclidean" cutoff, damping the oscillatory behavior of the exponent. Now we wish to
evaluate the last trace in Eq. (All). Form the basis of the space of fields Q as follows

14'~ ), „(t,a.) = 0(kt) J()(kt) e '", k ) 0,
27r

(A12)

where 0(t) is the usual step function. Using the theory of the Hankel transformations [27], it is easy to establish the
relations of orthogonality:

f +1 —1 1
dtdo t 1It~„(t,rr)4~k (t, (T) = (—1) ~ —h(k —k')8(p —Ik')

R2
(A13)

dtdotg~„„(t, o)-/~I, „(t,a) = 0, (A14)

and the relation of completeness

f"kdk (~)@+ (( ) —@— (~)@— (~ )] = —~(t —t )~( — ). (A15)

[Note that on the RHS of Eq. (A15) stands the b function h((, (') with respect to the inner product (50) for p, = 0
and P = t.] Therefore, the trace of an operator 0 is given by

TrO = dtdot kdk
R2 0

d& @+&,(()&@+~ (&) —@*-,4)&@- K) . (A16)

Using Eq. (A16), we can easily evaluate the trace in Eq. (All). We have

dlndet ——8*+ (Bln~d~) )r82h-
p, =t

d~ dtdo. t kdk
R2 0

1 - 2 1 . 2dpexp —w —o. —i k + —o. +i p
2h, 2h

i ( ~y. lx @rex(d) ——8 ' 8 @etc(8) —@'ee(d) ——
I 8 ' 8 P —ee(())t )

" -" 2h
&

t )
OO OO OO

de dtdet kdk dpexp ——(a —r)k + (a+ 1)p
R2 0 2h-

Now the formula (see [27])

-~ [+*.„(()++..(() —+*.,(&)+-"(&)]t )2 +" (A17)
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22 l~'+~') (iAp, ~
rdre ' ' Jo(&r) Jo(pr) =,e '" Jo ~

k'p )
and the standard Gaussian integration explicitly give the integrals over k and p. We obtain (f« t g 0)

(A18)

bjlndet ——'0 + Bln, 82h-
p =t

dtdo-C —8&
4h ( t )

We can rewrite Eq. (A19) as

h h ~~' ( ihtz
B~ . e &

-*'&. Jo 0 (t) —0 (—t) . (A19)
(n + i) 2rvr (n —i)r ( r(n —i) )-

lndet ——ci + (clln~&P, ])Bb, t, o 25-
@.=t

i 1 & „ ( ,pt2 l l—[0(t) —0(—t)] dpp '/ — —cI, tB, e -'-' Jo
~

o 4~2m(n —i) t ( (n —i) )
i 1 1= —[0(t) —0(—t)] B,tb, -

4g2 ( —') t
ht /r

—t9gtt9g—
4/2'(n —i) t t o

—1 2 XP

Now we can decompose the integral over p:

(A20)

""/'dp . / p )—e -' Jg l
= const+ a —i Jo

~p (n —i)
ht /e2

O.' —'L dp 0! —z
ga —i + (A21)2' p y p 271

From the asymptotic behavior of the Bessel functions [27], we conclude that the first integral on the RHS of Eq. (A21)
is convergent for e ~ 0. Hence

2
ht'

ln det ——0 + (0 ln ]P ])8 = ———Bq t Bq —ln
hP, (t, o) 2h- 8vr t t ~e const)

p =t

where 0 is a finite constant.

(ht'&
ln

/8'rrt (EB )
(A22)
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