
PHYSICAL REVIEW D VOLUME 48, NUMBER 10 15 NOVEMBER 1993

Numerical investigation of cosmological singularities
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Although cosmological solutions to Einstein's equations are known to be generically singular, little is
known about the nature of singularities in typical spacetimes. It is shown here how the operator split-
ting used in a particular symplectic numerical integration scheme fits naturally into the Einstein equa-
tions for a large class of cosmological models (whose dynamical variables are harmonic maps) and thus
allows the study of their approach to the singularity. The numerical method also naturally singles out
the asymptotically velocity term dominated (AVTD) behavior known to be characteristic of some of
these models, conjectured to describe others, and probably characteristic of a subclass of the rest. The
method is first applied to the generic (unpolarized) Gowdy T' cosmology. Exact pseudounpolarized
solutions are used as a code test and demonstrate that a fourth-order accurate implementation of the nu-

merical method yields acceptable agreement. For generic initial data, support for the conjecture that the
singularity is AVTD with geodesic velocity (in the harmonic map target space) &1 is found. A new

phenomenon of the development of small scale spatial structure is also observed. Finally, it is shown
that the numerical method straightforwardly generalizes to an arbitrary cosmological spacetime on
T XR with one spacelike U(1) symmetry.

PACS number(s): 04.20.Jb, 04.30.+x, 98.80.Hw

I. INTRODUCTION

Powerful theorems [1]prove singularities to be a gener-
ic feature of Einstein's equations yet say nothing about
the nature of these singularities. In particular, little is
known about the singularity behavior of generic spatially
inhomogeneous cosmologies. Belinskii, Khalatnikov, and
Lifshitz (BKL) [2] and co-workers [3] have long argued
that the mixmaster dynamics [2,4] of spatially homogene-
ous Bianchi type-VIII and -IX cosmologies [5] character-
izes the generic "Big Bang. " Their results are not gen-
erally accepted, however [6], and evidence suggests that
mixmaster behavior disappears in models with more than
three dynamical degrees of freedom [7]. An alternative
to mixmaster dynamics is asymptotically velocity term
dominated (AVTD) behavior where (heuristically) terms
in Einstein's equations containing spatial derivatives can
be neglected in favor of those with time derivatives [8,9].
Near the singularity, AVTD solutions can be interpreted
as a diQ'erent spatially homogeneous cosmology at each
point in space. The polarized Gowdy cosmologies [10]
have been shown rigorously to belong to this class
[9,11,12]. It has recently been conjectured that the gen-
eral (unpolarized) Gowdy models are AVTD [13].

We propose to study the approach to the singularity
numerically using a method uniquely suited to the task.

*Electronic address: berger@ vela. acs.oakland. edu
~Electronic address: moncrief ~yalph2. bitnet

For both the Gowdy cosmologies defined to have a sym-
metry plane (i.e., two spatial, hypersurface-orthogonal,
surface-forming Killing fields) and the more general
cosmology possessing a single, spatial U(1) symmetry [14]
(at least some of the) degrees of freedom can be under-
stood as harmonic maps [15]. The super-Hamiltonian
whose variation yields these equations is just an energy-
like expression of the harmonic map fields [16]. The vari-
ation of the "kinetic" term alone yields the AVTD equa-
tions of motion for these fields (with all spatial-
derivative-containing terms obtained upon variation of
the "potential" term). This suggests that a symplectic
scheme for numerical integration that separately evolves
the kinetic and potential energy operators to approximate
the total Hamiltonian evolution is ideally suited to this
problem [17]. In the following discussion, we shall
demonstrate that this is indeed the case.

The approach to the singularity of the Gowdy T
cosmology has been used to test the feasibility of our ap-
proach. In the process of code development and testing,
we have been able to demonstrate AVTD behavior of the
singularity approach for several sets of (presumably) gen-
eric initial data. We have also noted that the solutions
develop a characteristic small-scale spatial structure
which represents a competition between nonlinear
growth and the approach to the AVTD regime which
freezes the spatial profile of the wave amplitudes. This
richness of the Gowdy T phenomenology will be dis-
cussed elsewhere [18]. Here we wish to emphasize the
applicability of our methods to the study of cosmological
singularities.
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%'hile the numerical study of plane symmetric cosmo-
logies has been underway since the late 1970s [19],previ-
ous work tended to focus on analogies between the
cosmological problem and the original numerical studies
of colliding black holes [20]. This led to concentration on
constant mean curvature foliations and on the choice of
lapse and shift. Physical interest centered on interacting
wave packets of a single polarization. In contrast, we be-
gin with the predefined coordinate system in which the
equations are known to be relatively simple and within
which the harmonic map structure can be seen. This foli-
ation naturally selects (in the plane symmetric case) a
measure of area in the symmetry plane as the time vari-
able. Our approach then easily allows the study of unpo-
larized Gowdy T models and appears to be generalizable
to the U(l) problem.

In Sec. II, we shall describe the numerical method in-
cluding its generalization to arbitrary order of accuracy
in both time [21] and space. To date, our primary appli-
cation of this method has been to the approach to the
singularity of the unpolarized Gowdy T cosmology
[10,12,16,22]. In Sec. III, the relevant properties of this
model will be reviewed. Section IV demonstrates the va-
lidity of the code with a "pseudounpolarized*' test model
constructed by boosting in the harmonic map target
space an analytic solution for the polarized model. In
Sec. V, we discuss results for a generic unpolarized mod-
el, demonstrating AVTD behavior and briefly discussing
the appearance of small-scale spatial structure. In Sec.
VI, the applicability of this method to the U(1) problem is
shown. A summary and conclusions are given in Sec.
VII.

respectively. It is convenient to represent the scheme us-
ing quantum mechanical notation. It is based on the
second-order (in the time step e) accurate approximant to
the evolution operator:

—(i/2)EH2 iEFI(——(i/2)cd& +0 e (2.5)

i.e., to evolve (sr~, q/) at (x, , t~) to (vrj ', q~+')
(x;, t1+8), evolve with H2 for a —,

' time step, with H, for
a full time step, and with H2 for a —,

' time step using the
appropriate intermediate result at each stage. In this
evolution, H, and H2 are separately to be regarded as the
Hamiltonian of the system. In the case where H, and H2
can be separately exactly solved, the implementation of
the method becomes trivial.

For the Hamiltonian (2.1), the scheme becomes [17]

q,~
' =q,~+ c[n.j+ ,' EF; .(q]—)],

rrj+'=~J+ ,'sF;(q] )—+—,'eF,.(q)I+'),
(2.6)

where F;(qf ) = —BV/Bqj is the appropriate force com-
ponent. As an example, we consider the wave equation
with

(2.7)

where 6 is the lattice spacing in the x direction. Direct
substitution shows that, in this case, the method is
equivalent to the standard leap-frog differenced form of
the wave equation [23]:

II. THE SYMPI ECTIC INTEGRATOR (SI) [17]
q~+ '+ q~ ' —q~+, —q~, =0 . (2.8)

H =f dx [—,'m + V(q)] .

Consider a differenced form of (2.1):

(2.1)

H = g [—,'(mJ) + V;(q/)],
i=a

(2.2)

where we assume periodic boundary conditions on the
lattice with labels (i,j ) denoting the point (x;, t ). The
potential V; at the point x; may depend on the value of q
at several spatial grid points.

The symplectic scheme splits the Hamiltonian operator

H =H(+H2,
where

H, = dx —,'H

(2.3)

(2.4a)

H2=fdx V(q), (2.4b)

For convenience, we shall restrict our discussion of the
method to a single degree of freedom which depends on
only one spatial dimension and time —q (x, t) and its con-
jugate momentum n.(x, t). We assume that the equations
of motion can be obtained by variation of a Hamiltonian:

However, the SI algorithm has significant advantages
over the leap-frog scheme for our problem of the ap-
proach to the singularity.

(1) As a symplectic scheme, the evolution takes the
form of a canonical transformation from the beginning to
the end of the time step [17]. This may help to preserve
the constraints of the cosmological problem during the
evolution. (Although the continuum Einstein equations
automatically preserve the constraints during evolution,
there is no corresponding statement for the discretized
equations. Ultimately, this is a consequence of the role of
the constraints as the generators of diffeomorphism
invariance —a fundamental property of the continuum. )

(2) In the cosmological case, H, is the Hamiltonian
whose variation yields the AVTD equations. If the solu-
tion is in the AVTD regime, then this SI will become in-
creasingly more accurate.

(3) To avoid the problematic need to solve and resolve
the constraint equations at frequent intervals [24,20], one
can try to find an accurate solution to the dynamical
equations. Suzuki has shown how to generalize the SI to
an arbitrary order in time [21]. The idea is to find an ap-
proximant such as (2.5), accurate to the desired order.
Such a program does not have a unique solution. Since it
can be shown [21] that a (2m —1)-order accurate scheme
is also 2m-order accurate, one Gnds the recurrence rela-
tion [21]
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S2 1(e)=S2 (s)

=S2 3(k E)S2 3[(1—2k )s]

XS2 3(k E), (2.9)

III. THE G(OWDY T UNIVERSE TEST CASE

The Cxowdy T cosmology is conveniently described by
the metric [16]

ds =e e' (
—e dH+dB )

with

(2 21/(2m —1)
)
—1 (2.10)

+e '[e do +Ze Qdcr d5+(e Q +e )d5 ],
(3 1)

—
( i /2 ) zH

&
—i EH

1

—
( i /2 )EH

&S, E=e e e (2.1 1)

d2f 1
n —1

=a„f(q;)+ g ak[f(q;+kb)+f(q; —kb)]

Thus, the higher-order scheme can be constructed from
time steps of the appropriate duration of the second-
order scheme.

The generalization of the spatial evolution to arbitrary
order is simple only for one spatial dimension. For
higher dimensions, the construction must proceed on a
case by case basis. In the one spatial dimension wave
equation, the second derivative with respect to x can be
obtained in a di6'erenced form (for spatial grid interval 6)
as

p e
—2 p e2P(Q2 e

—2+Q2 )
—0 (3.2)

Q „—e 'Q ee+2(P, Q e'P eQ—e)=0, (3.3)

k e 2(P ep —+e Q eQ )=0, (3.4)

where A, , P, and Q are functions of 8 and r only. The T
spatial topology is imposed by requiring the angular
coordinates o. and 5 to have arbitrary finite range and
O~ 0~2~. The time variable ~ measures the area in the
symmetry plane and ~oo at the singularity [9,12]. The
physical interpretation of the polarized model (Q =0) has
been discussed extensively [12,25]. The independent Ein-
stein equations from (3.1) are

+g (g2n) (2.12)
[p2 +e —2&P2 +e2P(Q2 +e —2TQ2 )] 0 (3.5)

iV n —1 a k
i+k i

i =0 k=1
(2.13)

where the coe%cients ak are the same as those in (2.12)
and with a„=—2+k ', ak. Thus, the second-order accu-
rate expression is (2.7) with the fourth-order accurate one
given by

The coe%cients are chosen to cancel the terms in the
Taylor expression containing higher derivatives to the in-
dicated order. The expression on the right-hand side of
(2.12) can be obtained as the negative of the variation
with respect to f; [where f;—:f (q; )] of

e = cosh 8'+ sinh 8' cosN,

e Q = sinh W sin@,
(3.6)

that the "wave" equations are harmonic map equations
for the metric:

The latter two equations for the background A, (8,r) are,
respectively, the 0 momentum and Hamiltonian con-
straints. [The T topology requires the integral of (3.4) to
vanish —equivalent to requiring zero total 0 momentum. ]

Since the "wave" equations (3.2) and (3.3) do not con-
tain A, , their evolution is unconstrained. It has been
shown, albeit for a difterent set of variables defined by
[16]

,—(q;+1 —
q; )'—

i =O
(2.14) =dP +e dQ2 (3.7)

etc. This prescription is easily extended to more general
potentials; e.g. ,

This is just the harmonic map property of the fields I' and
Q with (3.7) the metric of the target space [15]. The field
equations can then be derived from the Hamiltonian

V = fdx ,'F(q)q— (2.15) dg[~2 +e 2P 2 +e —2r(P2 +e2PQ—2 )]=1
2

I' ~Q, O , 8 (3.8)

is diff'erenced as

n —1 ak P [ ,'(q;+. +q-; )](q;+. q; )'. —
i=O k=1

(2.16)

For two spatial dimensions, generalization to the Lapla-
cian is trivial. However, potentials with cross terms or
diff'erent coefFicients for 0 /Ox and 8 /By cannot be
diff'erenced to higher order by this prescription due to the
difhculty of eliminating higher derivative terms in a mul-
tidimensional Taylor expansion.

(3.10)

Clearly, (3.8) is in the form required by the SI algorithm.
We note here for future references that the metric (3.7)

admits three Killing fields corresponding to the transfor-
mations (for constant parameter p )

I p~p,
Q~Q+p],
I P +P —Inp, —

Q
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[e ~—,'[e (1+Q )+e ]

+ —,'[e (1—Q ) —e ]cosp —e Qsinp,

e Q~e Q cosp+ —,'[e (1—Q ) —e ]sinp] .
(3.1 1)

This last apparently complicated transformation is just
W —+8' 4—+++No in the other coordinates. The pres-
ence of the factor e ' in {3.8) and in the wave equations
suggests that as the singularity at ~= ao is approached,
the spatial derivatives can be neglected yielding the
AVTD solution. In the absence of the spatial derivative
terms, Eqs. (3.2) and (3.3) can be solved exactly in terms
of four arbitrary constants a, P, g, and g as

P = ln[ae ~'(I+/ e ~ )] (3.12)

2P7.

+
a(1+/ e ~') (3.13)

Substitution of (3.12) and (3.13) into the AVTD form of
(3.4) and (3.5) yields

A, = —p v. +Ao .

As r~ ao, (3.12) and (3.13) become

P =0& Q =Qo

(3.14)

(3.15)

(0) (1) (2)g„=y„+h„+k„
with P and Q assumed small then

(3.16)

y(0) diag( e A. /2e —3~/2 e i./2e / e 7e —)—(3.17a)

describes a background metric. The designation as back-
ground can be enhanced by the introduction of spatial
averaging [27,28,25]. We also find that

with Qo = I /a/+ a. If a Gowdy solution approaches the
AVTD limit, one expects it to have the form (3.12)—(3.14)
with (in general) different values of a, P, g, and g at each
value of 8. For the polarized case (Q =0), it was shown
[12] that substitution of (3.15) as the limiting form of the
exact solution in the metric (3.1) yields the Kasner solu-
tion [26] with a 8-dependent Kasner parameter. In the
general case (QWO), the Kasner axes are rotated with
respect to the coordinate axes. Isenberg and Moncrief
have shown [9] in the polarized case that every solution is
AVTD. It is conjectured [13] that this is also true in the
unpolarized model.

In the following discussion, we shall consider only the
wave equations (3.2) and {3.3) since the background
A,(8,r) may be easily constructed after the dynamical P
and Q have been found. That P and Q are amplitudes for
the two orthogonal polarizations of gravitational waves
may be seen by analogy with linearized gravity [12,27]. If
the metric g„is expressed as

—,'P PQ

PQ Q + 'P— (3.17c)

with all other components zero. It is easy to see [12,27]
that, in zeroth order, the waves act as sources for the
background in Eqs. (3.4) and (3.5). In first order, P and Q
satisfy linear wave equations (3.2) and (3.3). The non-
linearities of the waves enter at the next order. In some
sense, we cannot consider these terms to be higher order
since the solution is qualitatively different if both polar-
izations are present even if the amplitude of Q is small
[29]. This is explained by the scaling symmetry (3.10)
which implies that a solution to (3.2) and (3.3) is indepen-
dent of the amplitude of Q as long as it is nonzero.

The polarized case (e.g., Q =0) yields a single linear
wave equation with the general exact solution [12]

P(8, r)= g Zo(ne ')(a„consg+b„si ngn), (3.18)
n=0

e = coshPO+ sinhPO cosp,

e Q = sinhPO sinp,

(3.19)

for all values of the parameter 0~p + 2m. Perhaps the
simplest of these solutions is

P = lncoshPo,

Q = tanhPO,
(3.20)

found for p =7r/2 The ps.eudounpolarized solutions
make excellent code tests since the fact that they are
nongeneric is not apparent to the computer. Direct sub-
stitution of (3.20) into the equations of motion (3.2) and
(3.3) shows that nonlinear terms from variation of both
Hi and Hz [see the discussion in Sec. II and Eq. (3.8)]
must cancel corresponding expressions which arise in the
linear terms. Thus the entire code is tested.

Grubisic and Moncrief [13] have defined several func-
tions of P and Q and their conjugate momenta which be-
come constant in ~ in the AVTD regime. They also pre-
dict the rate of decay to the AVTD regime in terms of
the 8-dependent parameters a, P, g, and g. For the pur-
poses of this paper, we shall consider only the parameter

—(P2 + 2PQ2 )i/2
7 7 7 T (3.21)

where Zo(x) is a general solution to Bessel's equation of
zero order and the a's and b's are arbitrary constants. It
is possible to use this exact solution to generate exact
"pseudounpolarized" solutions to the unpolarized equa-
tions (3.2) and (3.3) by means of the boost symmetry
(3.11). Given an exact solution Po from (3.18), we obtain
a class of solutions:

(3.17b)

where c.+ and c&, are the gravitational wave polarization
tensors. In the cr-5 plane,

which represents geodesic velocity in the target space
(3.7). Grubisic and Moncrief have conjectured that for a
generic Rowdy T mode1, the AVTD regime wi11 be
characterized by 0~v &1 for all (9. The restriction to
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generic models must be made because any value of U is al-
lowed for polarized solutions [9) and U = 1 is achieved for
some nonpolarized but "asymptotically polarized" solu-
tions [30]. [We note that U is invariant under the trans-
formations (3.9)—(3.11) so that pseudounpolarized solu-
tloIls CRII Rlso 11Rvc RIly VRlllc of U. ] Tllc llclll'Istic basts
for this conjecture is easily seen. The term e 'e Q s in

I

(3.2) becomes e ~' 'Q 8 in the AVTD limit. Clearly, if
U ) 1 (with Q s fixed), this term will grow, contrary to the
AVTD assumption that it is negligible.

IV. THK PSKUDOUNPOLARIZED TEST CASK

In diff'erenced form, the Hamiltonian (3.8) becomes

N 2p ~
—2& N

P,. +P,.H =—g (m. +e 'Irf2)+, g [a[(P, P, —, ) +e ' ' '(Q; —Q;, ) ](58);=o

+b[(P, —P, 2) +e ' ' '(Q, —
Q, I) ]], (4.1)

where (a, b) =( —,', 0) and ( —'„——,', ) yields equations correct
to second and fourth orders, respectively, in the spatial
derivatives. [Extension to sixth order requires corre-
sponding terms (P;+3 P; ), —etc. , with coefficients
(a, b, c, )=(—,', —

—,'„«,).] The first sum is H, . and the
second H2. To evolve with H&, solve the AVTD solution
[(3.12), (3.13), and their r derivatives] for a given P and Q
and their conjugate momenta (at each 0 value) for the pa-
rameters a, P, g, and g. Use these parameters to propa-
gate the initial data to the end of the time step. The evo-
lution with H2 is even easier since it contains no momen-
ta so that P, and Q; remain constant. The momenta are
evolved with the (now constant) gradients of H2. The
overall time-dependent factor e is then trivially in-
tegrated. (We note that one may alternatively treat r as
an extra degree of freedom. ) Suzuki's method [21] is used
to ensure that the time evolution is accurate to the
desired order. Greater details of our algorithm are given
in the Appendix.

As a code test, initial data appropriate to the pseu-
dounpolarized boost (3.20) of the exact solution to (3.18)
given by

Po(8, I.) = Yo(e ) cos9, (4.2)

where I'o(x) is an irregular Bessel function, were evolved
numerically toward the singularity [31]. The exact boost-
ed solution is displayed in Fig. 1. Note that the boost
transformation has generated large 8 derivatives (particu-
larly in Q) due to the hyperbolic tangent. Figures 2 and 3
illustrate the differences between the numerical and exact
solutions for the second- and fourth-order schemes, re-
spectively. Although the errors in the second-order algo-
rithm are small almost everywhere ( =1%), they become
unacceptably large ( =1) as I increases in the regions of
large 6t derivative. Improvement with the fourth-order
scheme is dramatic with relative errors = 10 every-
where.

The accuracy of the fourth-order code appears to be
acceptable for the following reasons: The code tests were
run with low spatial resolution of 100 total grid points
with 99 (97) representing [0,2m. ] for second (fourth) order
(due to the imposition of periodic boundary conditions).
The range of ~ was between 0 and =23. The ~ interval
was chosen for convenience —there was no barrier to a
much closer approach to the singularity. The large spa-

I

tial gradients (in Q) were correctly represented by the
code. We shall see (next section) that such features are,
in fact, also characteristic of the generic Gowdy T solu-
tion.

V. RESULTS FOR A "GENERIC" UNPOLARIZED
GOWDY T MODEL

Here we shall discuss the results from a single initial
Gowdy T data set for evolution toward the singularity.
Comparison to other sets appears to indicate that the
behavior we report here is typical for standing wave ini-
tial data. Traveling waves will be discussed elsewhere as
will the full range of Gowdy T phenomenology [18].
Following a suggestion by Chrusciel [32], we consider ini-
tial data for which the parameter v in (3.20) exceeds unity
with the initial time dependence that of the AVTD

10
5

0

FIG. 1. The exact solution for the pseudounpolarized test
case. Initial data are generated from Eq. (3.20) applied to (4.2)
(and its ~ derivative) evaluated at ~=0. The axis scales for 8
and ~ are [0,2m. ] and [0,23], respectively. The vertical axis indi-
cates the values of (a) P (H, r) and (b) Q(8, I )
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20

z = 1.14

s

z = 3.05

= 500

=0
p i

s ~ ~ ~ s ~ ~ s ~ s s s I ~ s s5 0 0 s s s I s s s I s s s I s s ~
I

s ~ ~ I ~ s ~ I ~

z = 6.8
250

14.
— 0. 5

0 I I ~ s s I ~ s s I s s s I ~ s s 0s s s s s s s s s s s

= z= 18. 10 s ~
I

s ~ ~ I s s s
I

s s s s s ~ s s s s s s
I

FIG. 5. Q(8, r) vs 8 at selected values of r. The same as Fig.
4 but for Q. For r ~ l. 14, the vertical scale is [0,500].

ture in Q which does not show up for the amplitude scale
used in this graph. )

(3) The parameter U decays essentially monotonically to
values (1 everywhere. This is emphasized by Fig. 9(b)
which has a scale adjusted to display only v ~ 1.

It thus appears that the AVTD regime has been
reached and that the parameter v has fallen below unity

~ s s

0
s s I s s s I s s s I s s s I s s s I s s s

8 12 16

FIG. 7. P(8, r), Q(8, r), and U(8, r) vs r at selected values of
8. In all cases, the horizontal axis is 0 +18. On the ra hg P
for the values of the solid lines correspond to the left axis ands

the dashed lines to the right axis.

10 =

20
10
0

0:
= 1.5 (b)

0.5 400

0.5 0

0

0.5

0
FIG. 6. v (0,~) vs 8 at selected values of ~. The same as Fig.

4 but for v as defined by (3.21).

FIG. 8. Pand Q in the 8-r plane. The complete results of the
simulation in igs.F' . 4—7 are shown in the 0-g plane. e axis
scales for 8 and r are [0,2m. ] and [0,6'], respectively. The vert-
ical axes denote the values of (a) P and (b) Q, respectively.
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10 1.4 —9-

1.2 .

g
ll

I)
I )
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FIG. 9. The values of U in the 0-r plane. This figure is the
same as Fig. 8 but for the parameter U. Note that the viewing
angle has changed for greater clarity. (a) All values of U. (b)
Th~e same data with the vertical scale chosen to display only

as conjectured. Although we have begun with a single
spatial mode, we expect the nonlinear terms to cause a
generic evolution. Other standing wave initial data have
been examined. It appears that the evolution is con-
trolled to some extent by Uo, the initial value of the pa-
rameter U. If vo (1, there is little growth of spatial struc-
ture and the AVTD regime is reached quickly. The
larger Uo, the more nonlinear the wave interactions will
be.

If spatial averaging is not used, v & 1 can occur at iso-
lated points where Q &=0. (See Fig. 10.) Such points, in
effect, represent the locally polarized models where U ~ 1

is allowed. To the extent that Q &WO (i.e., that the model
really is generic at that point), it still evolves to reach the
AVTD regime as conjectured at some ~)&6m. The spa-
tial averaging dilutes the inhuence of spiky features in the
dynamical variables. The development of AVTD
behavior with spatial averaging removed is shown in Fig.
11 where P/r and u over a limited range in 0 are shown
for r=6~ and r=14m. . The curves (at each r value)
should be identical in the AVTD limit as r~~ [see
3.15)]. It appears that the asymptotic AVTD behavior

will be achieved at sufficiently large r.
The growth of spatial structure at arbitrarily small

scales appears to be characteristic of the Gowdy T dy-
namics for uo ~ 1. Figure 12 reproduces Fi . 8( ) f

4.2. It is easy to see that the initial cosO spatial
profile nonlinearly generates [through (3.2)] cos28 depen-
dence, etc. The development of this structure ends when
the AVTD l'limit is reached. The competition between
nonlinear growth and the spatial freezing of AVTD

FIG. 10. A "nongeneric" point in 8. Q and v vs 9 at r=6vr
are s own near a point with U &1 for the initial d t f F''

ia aa o igs.
or a simulation with 6400 spatial grid points with no spa-

tial averaging of the results. The graphs are produced using all
the spatial resolution available in the simulation. The left axis
co:responds to v and the right to Q. Note that v ) 1 only where

Q z =0 and that the ranges displayed for Q and 8 are small. The
horizontal dashed line denotes U = 1.

behavior suggests that there may exist a vo-dependent
time scale to characterize the phenomenon. It is possible
that this small-scale structure may be related to the criti-
cal phenomena observed by Choptuik [33] and later by
Abrahams and Evans [34] for spherical collapse of a sca-
lar fieldar e and axisymmetric collapse of gravitational waves
respectively.

I I I I ~ I I I I I I ~I ~ I I ~ I I 5 I I
I

I I I ~

I ~ I I I I I I I I I 1 I I I I I I I I 0 I 4 I I I I t

I ~ I I I I I I I I I II I I I I l I
I

I I I I
I

I I I I

I ~ I I I I I I I I I 4 I ~ I I II I I I I I ~ I I I I ~

FIG. 11. Approaching the AVTD limit. Graphs of U (solid
line) and P/~ (dashed line) vs 0 are overlaid. The data are taken
from the same simulation as Figs. 4—9 for 800 spatial grid
points but with no spatial averaging. The vertical scale for both
P/~ and U ranges from 0 to 1.2 while the horizontal axis is
2.6+6&3.2. (a) v=18.86; (b) &=43.96.
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FIG. 12. Growth of small-scale spatial structure. The graph
shows the data for P (0,~) from Fig. 8(a) for the range
0& v&4. 2.

4. 44
~ I ~ ~ ~

4. 48

The presence of this small-scale spatial structure which
eventually reaches the grid spacing scale (unless the
AVTD regime is reached) causes the detailed numerical
evolution to become dependent on the chosen spatial
resolution —i.e., at a given ~, the finer the grid, the small-
er the feature that is seen. However, for any r there ex-
ists a spatial resolution which is sufhcient to resolve all
the small scale features. This is shown (with no spatial
averaging) in Fig. 13 which compares the same feature (in
this case for m~) at various spatial resolutions. We note
that the feature is completely resolved at 6400 grid points
with a profile that agrees completely with that obtained
for 1600 grid points. Czreater deviations are found for
coarser grids. All resolutions represent the solution
where it is smooth. The evolution of this same feature is
shown in Fig. 14. We see that the feature has narrowed
(and decreased in amplitude) and is no longer resolved at
6400 grid points. This narrowing and decreasing ampli-
tude explains the apparent decrease in spatial structure
seen in the evolution shown in Fig. 4 (although some is
due to the increased range in the amplitude of I'). The
spatial averaging used in Figs. 4—9 washes out the struc-
ture at small spatial scales. Subsequent evolution of the
feature in Fig. 14 shows little change, indicating that
AVTD behavior (where sr~~const) is arising.

This small-scale structure is almost certainly a real
property of the equations rather than a numerical artifact
since it can be resolved with sufBcient spatial resolution.
(As a further code test, the structure is seen to disappear

FIG. 13. Spatial resolution dependence of generic spiky
features. A typical spiky feature in mz vs 0 at ~=2~ is shown at
resolutions of 400, 800, 1600, and 6400 spatial grid points.

when the code is run backward in time. It was also seen
in studies of the approach to the singularity using a com-
pletely different numerical algorithm [35].) Its character-
ization is currently under investigation. Its presence may
signal a requirement for adaptive gridding [36] to achieve
the spatial resolution that appears to be necessary.

VI. THE U(1) PROBLEM

It has been shown [14] that an arbitrary cosmological
spacetime on T XR containing a spacelike U(1) symme-
try can be described by the 5 degrees of freedom y, co, x,
z, A and their respective conjugate momenta p, r, p, p„
pz. All variables are functions of the spatial coordinates
u and U and a time coordinate ~ which measures the size
of the universe in the symmetry direction. The confor-
mal two-metric of the space orthogonal to the Killing
field is

e '+e '(1+x) e '+e '(x —1)
ab 2 e2z+e —2z(X2 1) e2z+e —2z(X 1)2 (6.1)

with a, b =1,2 and dete, b=1. (The two-metric itself is

g,&
=e e,&. ) The scalar curvature of this conformal

two-space is

~ 'R (e, )=R =[e '(1 —x)x „+e '(1 —x) z „—e 'z „—e 'x, +e 'z, +e 'z, +e 'xx, —e ' z, ] „

+[—e '(1+x)x, +e '(1+x) z, —e 'z „+e 'x „+e'z „+e 'z „+e 'xx „—e 'x z „],.
(6.2)

Given these definitions, the field equations (for the dynamical variables in the gauge N =+ g =e, where N is the lapse
and g is the determinant of the two-metric) can be derived from the Hamiltonian

H= —f /du dv( ,'p, + ,'e 'p + ,'p +—,'e &r ——,'p~ ——2p~)——

—e 'f /du dv[ eR +e (—e' A, ) &+2e ye, p b+ ,'e e ~e' co—,co &] . (6.3)
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FIG. 14. Evolution of a spiky feature. The dashed line indi-
cates the same plot as Fig. 13 at r=2~ for 6400 spatial grid
points on the expanded scale of this figure. The same feature at
6400 spatial grid points is shown at r=4m (solid line) and r=6m
(dashed line with circles). For comparison, the feature comput-
ed with 1600 spatial grid points is shown at r=4m (dashed line
with squares).

We note that the integrand in Eq. (6.3) is not the super-
Hamiltonian, but differs from it by an overall sign and an
additional term linear in pz. The sign arises from the
fact that r results from an original time variable t via
dt = —e dr while the additional term comes from the
fact that a time-dependent transformation is required to
obtain our variables from the original Arnowitt-Deser-
Misner (ADM) [37] ones.

It is clear that the Hamiltonian (6.3) fits naturally into
the form of the SI operator splitting. Even more striking
is the fact that the first integral H, contains two copies of
the Gowdy T kinetic term [see (3.8)] plus the kinetic en-
ergy of a free particle (with the "wrong" sign). Thus, we
already have the exact solution for K, from (3.12) and
(3.13) as in the Gowdy case plus the trivial free particle
solution. The second integral H2 is more difticult —not
to solve since there are no momenta so all the variables
are assumed constant over the sub-time-step —but to spa-
tially difference to the correct order of accuracy.

In addition, the dynamical degrees of freedom are
constrained —the Gowdy split into wave and background
variables does not occur. For example, the integrand of
(6.3), leaving out the term linear in p~, is proportional to
the Hamiltonian constraint. There are also nontrivial
momentum constraints. Since the same terms occur'in
H2 and in the Hamiltonian constraint, it is probably ad-
vantageous to preserve the divergence structure of the
first two terms in the square brackets rather than to par-
tially integrate them. A differencing scheme for the field
equations that recognizes the underlying structure of the
constraints may aid in keeping the numerical evolution
on the constraint hyper surface. Although the
differencing scheme for H2 outlined in Sec. II can be ex-
tended to the Laplacian, it becomes problematical for the
mixed partial derivatives that will arise here. We plan to
begin with a plausible second-order accurate scheme.

Since the dynamical evolution is constrained,
specification of initial data is nontrivial. Fortunately, ex-
amples of "half-polarized" exact solutions of the con-
straint equations are known [38].

Although almost nothing is known about the generic
behavior of the U(1) models, it is known that not all solu-
tions can be AVTD. This is because this class of solu-
tions contains the mixmaster cosmologies [2—4] which
(since the influence of the potential never disappears) are
not AVTD. If, as has been conjectured, the mixmaster
dynamics cannot survive the presence of the spatial inho-
mogeneity degrees of freedom, the models could still be
AVTD. We note here, however, that the transformation
necessary to obtain our variables has obscured the mean-
ing of AVTD since the transformation to the twist poten-
tial degree of freedom [co,r] has interchanged coordinates
and momenta. It is also expected that small-scale spatial
structure will appear in the generic case. The possible
need for high spatial resolution in two spatial dimensions
may push the limits of current computational technology.

VII. SUMMARY AND CONCLUSIONS

A SI scheme that splits the Hamiltonian into exactly
solvable kinetic and potential pieces is ideally suited to
the numerical study of the singularity structure of spa-
tially inhomogeneous cosmologies. For both the Gowdy
T model and the more general U(1) problem (on
T XR), the dynamical equations arise from a variational
principle that also splits naturally into kinetic and poten-
tial pieces which separately can be solved exactly. The
exact solution for the kinetic sub-Hamiltonian is, in fact,
just the AVTD solution conjectured to arise for the gen-
eric Gowdy T model [taken twice plus a free particle
term in the U(1) problem).

The SI code has been implemented through fourth-
order in both time (using Suzuki's method) and space for
the generic Gowdy model. Comparison for a pseudoun-
polarized test case (obtained by a boost symmetry from
an exact solution for the polarized model) shows agree-
ment to 1:10 for the fourth-order accurate code. The
second-order accurate code diverges unacceptably in re-
gions of large spatial derivative as the singularity is ap-
proached. The cost of the extra accuracy is essentially a
factor of 3 in computational time (since three second-
order time steps are required to produce a fourth-order
time step). The extra spatial accuracy involves negligible
cost.

For reasonably generic Gowdy initial data, we have
been able to support the conjecture [13] that the models
are AVTD with U & 1 everywhere. A more detailed study
of the approach to the AVTD regime to compare with
the detailed predictions in [13]is in progress.

An interesting new phenomenon of the development of
small-scale spatial structure has been observed. Studies
to characterize this behavior in terms of the competition
between nonlinear generation of short-wavelength modes
and the freezing of the spatial profile in the AVTD re-
gime are underway.

Thus, we have applied the SI scheme to the unpolar-
ized Gowdy T cosmology and have been able to test the
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code, to study and verify the AVTD regime conjectures,
and to discover the new phenomenon of nonlinear small-
scale structure. An even richer phenomenology awaits
the application of this method to the unknown territory
of the U(1) problem.
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1+/.

P,.
e '

(Xi =
I+/;

(A3b)

(A3c)

where Vis the "spatially dependent" part of the potential
term in (A 1). Note that the time dependence has been
taken into account separately and that two terms in the
sum contribute to the indicated gradient.

Now solve the AVTD equations (3.12) and (3.13) and
their r derivatives using Q;, P;, irQ, FrP for the constants

t

g, , P;, a;, and g;. We find the following.
(1) If %P %0 and FQ %0 then

t t

—1+[1+(FQe '/5P ) ]'
(A3a)

(FQ e /FP )

APPENDIX: DETAILS OF THE SECOND-ORDER
ACCURATE SI ALGORITHM

FOR THK GOWDY T MODEL

H= g —,'(~p +e '~Q )
i=0

X
i —2T

i=0

P;+)—I';

The Hamiltonian (3.8) can be put in diFerenced form

g, =Q;+g;e

(2) If 5P %0 but 5Q =0 then
I t

P,.
g, =o, P, = —~p, a, =e ', g,. =Q, .

t

(3) If @P =0 then for any rrQ,
t t

—P
g, =l, P, = —SQe

t

P,. — —P,.
a, =

—,'e ', g, =Q, +e

(A3d)

(A4)

(A5)

r 2

P, +i+P, Qi+ i. Qi.
50

These values are then used to evolve Q;, P;, 5.Q, ~Pwith.
l t

the AVTD equations to ~J+A~. This is just the evolution
by H& required by the algorithm. %e find

with each sum regarded to be an independent sub-
Hamiltonian (H, and H2, respectively). Given initial
data Q;(r ), P,.(r ), mQ (r ), rrP (r ), we use H2 to evolve to
~~+ —,'A~ to yield

Q; =Q;(rj),

P; =P;(rj),
—2~. —(7-,.+,—~. )

rrQ =1TQ (7')+ ,'e [e '+' —'—1]-
(3 i Q (7 )k, P j(~j)k

~i j+I ' 2 ~i '+I ))

—P,.(~.+&
—r.), 2 P,.(~.+ I

—~. )

p = In[a (e i j+i j + g2e~i j+i j )]

Q
(I+g2 i j+1 j )

(A6a)

(A6b)

(A6c)

(A6d)

—(~.+,—~. )
rr =sr (rj)+ —'e '[e '+' ' —1]

g„(a),P, (~J)

Finally, Q;, P;, FrQ, FrP are evolved with H2 for b,r/2 to
t t

yield the original variables updated to the next time step:

+ e ' 'je ' ' —1
—(,+, ), —( . , — . ) ()p

(A7)

vr (r ') =Fr +-'e '+' ' [e '+' ' —1]
—(~. +~ ) —(~. —~. ) (jp

P,. P,.

To achieve fourth-order accuracy in time, repeat the entire procedure three times with steps of sb, r, (1—2s)hr, and
scar, respectively, with s =(2—2 j

) '. For fourth-order spatial accuracy, replace the potential term in (Al) by the ap-
propriate version of (4.1).
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