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Exponential-potential scalar field universes.
II. Inhomogeneous models
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We obtain exact solutions for the Einstein equations with an exponential-potential scalar field
(V = Ae ~) which represent simple inhomogeneous generalizations of Bianchi type I cosmologies.
Studying these equations numerically we find that in most of the cases there is a certain period of
in8ationary behavior for k ( 2. We as well find that for k ) 2 the solutions homogenize generically
at late times. Y'et, none oj the solutions isotropize. For some particular values of the integration
constants we find a multiple inBationary behavior for which the deceleration and the inQationary
phases interchange with each other several times during the history of the model.

PACS number(s): 04.20.Jb, 98.80.Cq, 98.80.Hw

I. INTRODUCTION

In our previous paper [1] (hereafter paper I) we have
obtained a general exact solution describing anisotropic
Bianchi type I universes filled with an exponential-
potential scalar field and studied their behavior. These
studies are relevant in order to clarify how sensitive infla-
tionary cosmologies are to the preinflationary epoch char-
acterized by diferent initial conditions. For the case of
Bianchi type I models we confirm previous results based
on numerical, approximate, and qualitative techniques
obtained by various authors [2] predicting a power-law
inflationary behavior for a wide range of initial condi-
tions.

Some of our latest studies [3,4] with more complicated
geometries, however, cast the suspicion that the inflation-
ary phenomena is not that generic and probably requires
some special initial conditions. The Bianchi type I cos-
mological models, studied in our previous paper, are too
simple to derive definite conclusions related to this ques-
tion. Moreover, if one assumes [5] the existence of the
gravitational radiation background, one may have to al-
low for large amplitude inhomogeneities during the early
stages of the Universe. In such scenarios the influence
of gravitational waves on the evolution of the Universe
increases ~s one goes back in time. Once the wavelength
of the gravitational radiation is comparable to the size of
the horizon, these waves may not be described as homo-
geneous relativistic Buid but rather must be seen as large
amplitude shear and rotation inhomogeneities. This and
the desire to clarify how generic inflation is lead one to
consider more general inhomogeneous spacetimes.

Another issue of interest, if the models inflate, is
whether they approach a homogeneous and isotropic
regime at late times. Some of the latest qualitative stud-
ies [6] as well as those based on exact anisotropic scalar
field solutions [3] show that there are difficulties with
isotropization in some model Bianchi universes. It is
quite possible that inflation is not that effective of a
device when isotropization is considered. Simple mod-

els considered previously using gravitational pulses (soli-
tons) might be competing or complementary in order to
resolve this question. In these models solitons [7,8] act as
Battening devices in inhomogeneous cosmological models
which start highly irregularly but approach Bianchi type
I universes filled with gravitational radiation in a Gnite
time. The Bianchi type I universes in turn are known to
isotropize quite easily.

Some numerical and qualitative work about the exis-
tence of inflationary phases in inhomogeneous cosmolo-
gies has been done previously. Kurki-Suonio et al.
[9] have shown that in some cases the inhomogeneities
may prevent the Universe from ever entering the in-
fiationary stage. Goldwirth and Piran [10] have stud-
ied both new and chaotic inflation, concluding that
the duration of inflation may be significantly reduced
by the inhomogeneity, while Calzet ta and Sakellariadou
[11] have looked at inhomogeneous, but asymptotically
Friedmann-Robertson-Walker (FRW) models, and have
concluded that the Cauchy data must be homogeneous
over several horizons lengths in order for inflation to oc-
cur. These works point in the direction that suKciently
irregular initial data may cause problems for inflation.

Recently two of us have found an exact solution de-
scribing an inhomogeneous exponential-potential scalar
field cosmological model [4]. The behavior of the solu-
tion was persistently noninflationary. Since this is only
a particular solution of the Einstein field equations, it
is interesting to see wether the behavior depicted by the
model is shared by a larger class of inhomogeneous cos-
mological solutions or the solution we have found is quite
untypical.

In this paper we restrict ourselves to study the ef-
fects of one-dimensional inhomogeneities on the evolu-
tion of the exponential-potential scalar field cosmologies.
These inhomogeneities may be induced either by the ir-
regularities of the scalar field itself or by the initial in-
homogeneities in the geometry due, for example, to the
presence of primordial gravitational waves as mentioned
above.
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We will first treat exactly the coupled Einstein-Klein-
Gordon equations, reducing them to a single nonlinear
ordinary differential equation similarly to that discussed
in paper I. In contrast with the Bianchi type I case we
are not able to find the general solution to this equation.
Still, we can resolve it in some particular cases. These
particular exact solutions then serve as a test for the
numerical analysis.

In Sec. II we present the Einstein field equations and
the way to solve them. In Sec. III several particular so-
lutions are given and discussed. Section IV is devoted to
the qualitative and numerical analysis. We conclude and
discuss our results in Sec. V.

equations can be written in the form

G—= 2e~U,
G

i —s" + —s =o
G

1, , 1 (G—pp'+4 4' ——f' —= o,
2 2 G

(6)

II. EINSTEIN EQUATIONS

We will concentrate on solutions with one-dimensional
inhomogeneity. These can be described by the general-
ized Einstein-Rosen spacetimes which admit an Abelian
group of isometrics G2 and include the Bianchi models
of type I—VII as particular cases and, therefore, the flat
and open FRW solutions. The line element is

G ~BV
4' —4' + —4'+ e (1o)

Without any loss of generality we write the scalar fieM
as

G 1(Gi G 1. 1——f+ —p'+ —p" +p'+p" = o. (9)G 2 (G) G 2 2

The Klein-Gordon equation for the scalar field is

ds = e~( dt + d—z ) + g~b dz dx, a, b = 1, 2. (1) k
P = ——lnG+ 4(t, z).

2
The functions f and g b depend on t and z.

Assuming that the two Killing vectors are hypersur-
face orthogonal, the line element (1) may be cast in the
diagonal form

Substituting Eq. (11) into Eq. (10) and using the form of
the potential given by Eq. (5) along with Eq. (6), we get
the following equation for the function 4:

ds = e~( —dt + dz ) + G(e"dx + e "dy ). 4 —4" + —4 =0.
G (12)

It is now apparent that (2) is a straightforward gener-
alization of the models considered in paper I but, here,
the metric functions are allowed to depend on t and z
variables.

To simplify the equations we shaH only consider in this
paper the class of solutions for which the element of the
transitivity surface is homogeneous:

G = G(t).

This choice assures that the gradient of the transitivity
surface area is globally timelike (G„G~ ( 0) and hence is
appropriate for a description of cosmological models [12].

The matter source for the metric is that of a minimally
coupled scalar field with potential V(P) for which the
stress-energy tensor is given by

&-p = 4,-4,p
—g-p I ', 4,p4'+ &(4)] .-

As in paper I the potential is taken as

(5)

One may rewrite this stress-energy tensor in a perfect
8uid form (as long as the gradient of the hypersurface
P =const is timelike) with the kinematical and dynamical
quantities of the fluid given in paper I.

For the line element given by Eq. (2) and the matter
described by the stress-energy tensor (4), the Einstein

Note that again, as in the case of the Bianchi type I mod-
els, the scalar field C and the transversal gravitational
degree of freedom p verify the same differential equation.
This property is quite surprising and holds apparently
only in two cases: (i) when the scalar field is massless
and (ii) when the scalar field has an exponential poten-
tial.

Case (i) was studied thoroughly by several authors in
connection with the quantum description of matter fields
in an anisotropic background of the early Universe [13].
By identifying the scalar field with the velocity poten-
tial of the irrotational stiff Huid [14], Liang [15] as well
as Carmeli et al [15] analyze. d within a fully nonlinear
relativistic approach the development of inhomogeneities
on the spatially homogeneous background.

For the scalar field with an exponential potential this
observation of the similarity between the two equations
is new and is helpful not only to construct exact solutions
but to see the effects in the separation of each of the fields
on the dynamics of the models. Not only do these fields
follow similar equations but they contribute equally to
the inhomogeneity as we shall see later.

We now suppose one may separate the functions p and
4 in the following way:

p = 11(t) + &(z) @ = X(~) + @(z).

One may separate the solutions yet in a different way as
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products; however, one may prove that this only leads to
a particular case of the solutions obtained by the separa-
tion (13). This basically happens because of the restric-
tive conditions imposed by Eq. (8) and the form of the
scalar field potential.

Substituting expressions (13) into Eqs. (7) and (12),
one obtains

p= II(t)+ —Az +pz, 4 = Z(t)+-tz +gz, (14)

where A, p, 1, and g are constants.
Substituting these equations into Eq. (8) and using f'

obtained on difFerentiating Eq. (6), one gets the condition

—,
' II (Az + ~) + ~ (Lz + g) = O.

Using Eq. (14) and taking now the time derivative of
Eq. (6) to get f and substituting all these into Eq. (9),
we obtain

G GG G 1 2 . 2 1———.. ——K —+ —11'+ &' + —(~.+ &)'
G GG G 2 2

+(tz+g) = 0,

(i6)

where K = k /4 —1/2.
It follows from this equation that the sum of the last

two terms must be a constant; therefore, A = l = 0,
which in its turn leads, using Eq. (15) to the relation

~ 2gII = ——y.
y

III. EXPLICIT EXACT SOLUTIONS

As mentioned previously all the models given in paper
I can be considered as particular solutions of Eqs. (19)—
(21) and therefore we will not return to them here.

By inspection one may see that

G =e' (22)

The function f is derived from Eq. (6).
Equation (19) is very similar to that for the Bianchi

type I case studied in the previous paper [Eq. (23) of I],
the only difference being that the last term. is nonlinear
in G. While in principle one may reduce the order of this
equation it leads to no simplification since we could not
find a Grst integral like in the homogeneous case. This
complicates somewhat the search for exact solutions for;
one cannot integrate this equation in general. Yet one
may Gnd some particular solutions to this equation and
to study their behavior.

Before describing some particular cases we should note
that all the exact solutions described in paper I remain
solutions of Eq. (19) when the inhomogeneity term van-
ishes.

The inhomogeneity of the spacetime is infiuenced by
both the scalar field inhomogeneous mode related to the
constant g and pure gravitational inhomogeneity coming
from the transversal degree of the gravitational Geld and
related to the constant p. These terms act on the dynam-
ics of the transitivity surface area given by the function
G precisely through the last nonlinear term of Eq. (19).

The last step before getting to the Gnal equation is to
substitute the form of the function p = II(t) + pz into
Eq. (7) which gives

and

G = sinh~t (23)
a

II = —,

where a is a constant.
Finally, substituting Eqs. (17) and (18) into Eq. (16),

we obtain a single nonlinear equation for the evolution of
the function G:

GG —GGG —KGG +M G+A G G=o, (19)

where we have introduced the constants

a2/2a2+2
M = —+, A = —+g.

2 4g2 '
2

To summarize up to here, Eq. (19) provides a key to
solving the Einstein equations. Once the function G is
found, the rest of the functions describing the geometry
and the matter are obtained by the expressions

are both solutions of Eq. (19) for particular values of the
constants. We will now look at these solutions separately.

A. G'=

P Qz
k

t + gz, —
2

k~
f = t —gkz —ln2A,—

2
(24)

where the constants are related by

For this case we obtain for the mt:tric functions and
the scalar field the expressions

dt

G(t)

2+2 +4g2 k2 2 a P (25)

pa
P = ——lnG ——

2 2g

dt

G(t)
Gf = —kP + ln ——ln 2A.
G

(21)
emote that k & 2.

To see whether the models defined by Eqs. (24) and
(25) inflate at some stage of their history we will define
a four-velocity field u normal to the hypersurfaces P =
const:
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(26)

Note that for the spacetimes in question the inequality
P~—P ~ & 0 always holds.
We may now compute the expansion 0 and the decel-

eration parameter q. After some algebra one gets

2 2

g = (k —2) ——,'Y

2'
,k'+ 2

G =2g
k2 —2

The rest of the metric functions and the scalar Beld are
given by

4
2

(27) a ( (ut
p = —ln

]
tanh —+ pz,

Cd ( 2

together with q:

3 k2~ + 2PH2 —
2 t gkz

p'+1 4
(2s)

2A
e'( —dt' + dz') + e'(dx' + dy'),

1
(29)

It is easy to see from Eq. (28) that q & 0. Hence, these
solutions do not undergo an inflationary phase, but for

q = 0 (p = 0) which defines a kind of a "weak" inflation.
When k = 2 (p = g = 0), one obtains

k y
&P = ——lnsinh~t—

2 2(d

QJ
2

f = —kg+ in
2A

k'+2 (
ln

]
tanh —

~

+ gz,k2 —2 q 2)

Let us note again that k ) 2.
To see whether these solutions inflate one has to pro-

ceed as in the previous model. Technically, however, the
expressions in this case start to be quite long so we shall
consider a particular representative case of this solution
by choosing particular values of the free constants. We
have chosen

Transforming the solution into synchronous coordinates
(t = 2ln T), one obtains

k2 k2 k2 + 2
2' 2k2 —2

ds = dT +T (—dx +dy ~dz ),
P = —V2 lnT, (30)

After some lengthy calculations we get that the sign of q
is determined by the sign of the polynomial

representing an isotropic and homogeneous FRW solution
Grst obtained by Ellis and Madsen [16].

One may look at these solutions yet from a difI'erent
point of view. Choosing the four-velocity as given by
Eq. (26), one may show that the scalar field stress-energy
tensor takes the perfect fluid form

T ~ = (p+ &)nun~ + p&
with the density and the pressure given by

P = —2p ~Q' + V(p),

p = —
—,'0, 4' —V(0).

Substituting V, P, and u into these expressions, we
readily Bnd that the fluid has a simple adiabatic equation

2 —1of state p = np, where n = ~, s (——( n & 1) and

k z
p = A (3 + p ) e ~ 'e"g'

While at first sight this solution looks inhomogeneous,
in fact it is not and after some coordinate transforma-
tions, using the scalar field as a new time coordinate, the
line element may be transformed into an explicit Bianchi
type VI form.

H. G' = sinh~t

For this case we have the following relations between
the constants:

n=4

) c„cosh" cut,
n=O

where the coefFicients cn are messy functions of the pa-
rameter k. One may show that for any k all the coefFi-
cients c are strictly positive. We therefore conclude that
this representative solution never inflates.

We may have as well a look at the asymptotic behavior
of the above model at t —+ oo. It is easy to see that in gen-
eral these models tend to homogeneous (but anisotropic)
universes of Bianchi type VI. For large values of the pa-
rameter k the solutions approach also the Bianchi type
VI anisotropic models whereas for values of k close to
~2 the metric tends to that of Bianchi type III. After
a coordinate transformation the metric can be cast for
k ~2 into the form

ds — dT +T (e'd—~ +dy +dz). (3s)

It would be interesting of course to get a general so-
lution of Eq. (19) as we did in the Bianchi type I case.
We are afraid, however, that technically this task may
turn out to be very difficult. One may probably look
for more particular solutions of Eq. (19); yet we feel at
this stage that one may proceed to study the evolution of
these models numerically since we have got enough ana-
lytic exact solutions against which the numerical results
can be tested.
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IV. LATE- TIME BEHAVIOR
OF THE GENERIC SOLUTION

In this section we present the results of the qualitative
and numerical [17] study of the asymptotic behavior of
the generic solution described by the line element (2).

A. Qualitative analysis

Before presenting the results of the numerical analysis
of the evolution equation (19), we can try to apply to it a
qualitative analysis similar to that of paper I. As we will
see in the following, the results will be rather different.

By using

x =lnG, (R —1)x
)

Eq. (19) reduces to

y'+ (]. —Klyy" +(1 —K)y' = e (A +e M )
y 2

(40)

For —1/2 & K & 0 (k2 & 2) the right-hand side of (40)
vanishes when y ~ E and x ~ oo. So one can expect
the same asymptotic behavior as in the homogeneous
case: G (Ct + D) ~ . Our numerical experiments
have shown that this is the case.

However, from Eq. (40) we see that one cannot expect
the same behavior when 0 & K & 1 (2 & k & 6).

In terms of the new variables

which for K ) 0 has a single equilibrium point u = v =
A/~K. Furthermore, the characteristic exponents of this
equilibrium point are —A(1 + v 1 —8K)/2~K and their
real parts are always negative. Consequently, the equilib-
rium point is asymptotically stable. This attractor cor-
responds to the solutions of the form G oc exp(At/~K).
The corresponding phase space is depicted in Fig. 1 for
K = 1/2 and A = 1/2.

When M g 0 there is an additional term M v/G u,
but we see from Eq. (44) that it will decrease exponen-
tially as (u, v) approaches the equilibrium point. One
thus expects the same asymptotic behavior even in this
case. For instance, we can see in Fig. 2 the same case
as in Fig. 1 but with M = 0.001 (the same behavior
is observed for larger values of M). The solutions cor-
responding to the same initial conditions with M = 0
are displayed as dotted lines. As expected, we see that
both cases are rather different for small values of t (which
correspond to small G), but tend asymptotically to the
equilibrium point. Note that some lines appear to cross
because with M g 0 the plane (u, v) is a projection of the
three-dimensional phase space (G, u, v). As described in
the next subsection, we have found this behavior in all
numerical experiments.

B. Numerical analysis

As in the case of homogeneous Bianchi type I mod-
els (paper I) we look again for the following asymptotic
behavior suggested by the exact solutions:

x =lnG, y=G, (41) G (46)

Eq. (19) reduces to the equation
I

y" +(K —1)y' = (M +A e ) —.
y2

and

G Nt
)

If K & 1 (i.e. , if k ) 6), the right-hand side of Eq. (42)
does not vanish when y ~ C and x ~ ao. Therefore
one does not expect, in this case, that the asymptotic
behavior is of the form G Ct + D.

To analyze the cases K & 0, (k ) 2), in which we
should expect an asymptotic behavior different from that
of the homogeneous case, let us consider the variables

which correspond to FEW (Kasner X = 1) or anisotropic
behavior when the inhomogeneity is switched oK All
the numerical solutions we ever obtained had one of the

G
G'

G

G
(43)

The evolution equation (19) can be written in the form
of a nonlinear first order system:

'tL = tl V —tL

( 2 M25 vv= —Kuv+
i

A +

(44)

If M = 0, the last two equations form an autonomous
system:

In uQ='ll V —D )

v
v = —Kuv +A

'CC
(45)

FIG. 1. Log-log plot of the phase space of Eq. (45) for
K = A = 1/2.
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FIG. 2. Some solutions of Eq. (44) for K = A = 1/2 and
M = 0.001. The solutions corresponding to the same initial
conditions but M = 0 appear as dotted lines. All solutions
decay to the equilibrium point of Fig. 1 (note that the scale
has been changed).

to those of Bianchi type VI as described in Sec. IIIB.
These models never become isotropic, although the Uni-
verse homogenizes. For k & 2 the function G tends to
(Ct + D) / which in absence of inhomogeneity would
have been that of FRW case. Yet the inhomogeneity
imprints in other metric functions p and f prevent these
models to homogenize, in the sense that they do not tend
to a Bianchi model, let alone to isotropize.

We have also studied numerically the occurrence of in-
flation by computing the sign of the deceleration param-
eter q. We have noticed that inflation always occurs for
k & 2 although it takes some time for the model to start
inflating. For k ) 2 most of the models do not inflate
as long as the gradient of the scalar field remains time-
like. We insist on this condition since otherwise the fluid
interpretation of the matter field is problematic [18j.

We also fin that the introduction of the inhomogene-
ity may introduce multiple inflation: The model starts
decelerating then accelerates, then decelerates, and ac-
celerates again. This never happens for Bianchi type I
models.

V. CONCLUSIONS

aforementioned asymptotic behavior. As in paper I we
use the quantities

G2
( ) (48)

and

G
nz(t) = —.

G
(49)

which tend to a constant if each of the asymptotic behav-
iors occurs. Equation (48) monitors the behavior given
by Eq. (46), while Eq. (49) monitors that one described
by Eq. (47).

We have integrated numerically Eq. (19) and summa-
rize our results in Table I, where C and D are constants.

DifFerent initial conditions were used during the nu-
merical integration. We have only kept the initial con-
dition G(0) = 0 fixed. During the numerical integration
we have always monitored the positivity of the function
G and of its second derivative.

Looking at Table I, we see that a new type of the
asymptotic behavior appears when the inhomogeneity is
introduced: G e+~/~ + D. Note, as pointed out in
our previous paper, that this type of behavior was struc-
turally unstable. Surprisingly, the inhomogeneity stabi-
lizes this asymptotic solution. The late-time exponential
behavior occurs for k ) 2. In this case the models tend

We have discussed in this paper the simplest inhomoge-
neous generalizations of the Bianchi type I cosmological
models with an exponential-potential scalar field. Re-
stricting the geometry to be as close as possible to that of
Bianchi type I anisotropic cosmological model by keeping
the element of the transitivity area time dependent only
and thus globally timelike, we have been able to reduce
the Einstein equations to a single nonlinear differential
equation. Several exact solutions to this equation, and
consequently to the full set of the equations, were pre-
sented and discussed. These solutions then served us as
a bench test to analyze numerically the central equation
(19) and the dynamics of the cosmological models.

It is needless to say that the numerical integrations
were at each stage tested against the analytic results ob-
tained both for homogeneous and inhomogeneous cases.

For the models we have studied our results are as fol-
lows.

a. Homogeneous anisotropic case (see as well paper I).
(1) The slope of the potential given by the constant k

is the key factor influencing the occurrence of inflation
and late-time isotropization of the model.

(2) For k ( 2 the models always inflate and isotropize.
For 2 & k ( 6 the models still isotropize; however,
they do not inflate in most of the cases. Yet the G
t / (FEW-type) behavior cannot be called an attractor
in a strict technical sense, since G t / becomes an
exact solution of the Einstein equations only when the

TABLE I. Equation (19) integrated numerically where C and D are constants.

A =0
Homogeneous case

A +0
Inhomogeneous case

0 & k' & 2

G - (Ct+ D)'/

(~t + D) i/Ic

2& k' &6

G (~t + D) i /Ic

At/~K + D

k') 6

G- Ct+D

At/ ~K
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integration constants are severely restricted.
(3) For k ) 6 the models do not isotropize and have

a Kasner-like asymptotic behavior. This is an attractor
solution, for it is a solution of the Einstein equations with
arbitrary integration constants.

b. Inhomogeneous case .
(1) The slope of the potential is still of key importance

in the behavior of the cosmological models; in this case,
however, the inhomogeneity influences strongly the evo-
lution and enriches the behavior of the models.

(2) The introduction of the inhomogeneity stabilizes
the G e ~~ asymptotic behavior, leading always, for
k ) 2, to an anisotropic Bianchi type VI universe.

(3) The solutions G t'ai~ which are asymptotically
generic in the case k & 2 are of no help for isotropization,
in this case, for, unlike in the homogeneous case, these
are not FRW solutions anymore. The spatial dependence
of other metric functions prevents the homogenization.

(4) As to the inflation, we have found that for k ( 2
the models do generically inflate. We have also observed

that the introduction of the inhomogeneity induces a new
type of the dynamical behavior, not present in Bianchi
type I models, multiple inflation, in which the deceler-
ation parameter q changes its sign several times during
the entire history of the Universe. Multiple inflation is,
however, subject to a fine-tuning of the integration con-
stants.

We feel that the best way to close is to call for more
work on inhomogeneous inflation. To treat the generic
inhomogeneous model one certainly needs to use the nu-
merical analysis. We hope then that some of our results
may be of use for further numerical studies of generic
inhomogeneous models.
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