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Exponential-potential scalar field universes. I. Bianchi type I Models
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We obtain a general exact solution of the Einstein field equations for the anisotropic Bianchi type
I universes filled with an exponential-potential scalar field and study their dynamics. It is shown, in
agreement with previous studies, that for a wide range of initial conditions the late-time behavior
of the models is that of a power-law in6ating Friedmann-Robertson-Walker (FRW) universe. This
property does not hold, in contrast, when some degree of inhomogeneity is introduced, as discussed
in our following paper.

PACS number(s): 04.20.Jb, 98.80.Cq, 98.80.Hw

I. INTRODUCTION

Two of the present authors have recently studied ex-
act model universes Blled with an exponential-potential
scalar field and have found [1,2] a persistent nonin8a-
tionary behavior in some exact Bianchi types III and
VI cosmologies, as well as in some cosmological mod-
els which may be thought as inhomogeneous generaliza-
tions of Bianchi type I cosmologies. These studies cast
a doubt on the so-called "inflationary paradigm" which,
while never properly formulated, vaguely states that the
Universe had undergone a period of inflationary expan-
sion which is not only a must to solve a host of problems
of standard cosmology, but is rather a "typical" dynam-
ical behavior common to a wide class of scalar Beld cos-
mologies.

One of the main reasons the inflationary universe sce-
nario is considered to be attractive [3] is that it has
brought back to life Misner's hope [4] to explain the
large-scale homogeneity, implied by the measurements
of the cosmic microwave background radiation, with-
out the need to impose very special conditions on the
initial expansion of the Universe. Strangely enough,
however, most of the work on in8ation is done in the
kamework of isotropic and homogeneous Friedmann-
Robertson-Walker (FRW) universes (Olive [5] and ref-
erences therein).

This paper deals with exact solutions of the Einstein
Beld equations. We show how one may obtain a gen-
eral exact solution for Bianchi type I cosmologies with
an exponential-potential scalar Geld. Apart &om the fact
that one obviously needs a speciBc model for the poten-
tial to solve exactly the Einstein equations, it is conve-
nient to concentrate on this sort of potential, often used
in in8ationary analysis, for the following main reasons.

(1) An exponential-potential scalar field introduces a
rather small additional degree of nonlinearity into the
Einstein Geld equations, as will be explained later, so that
possibilities exist to solve these equations analytically in
a variety of cases. In the case of cosmological models
with Bianchi type I spatial symmetry one can obtain a
general solution.

(2) It seems that the exponential potentials for scalar

fields arise [6] in many theories such as Jordan-Brans-
Dicke theory, the superstring theory, Salam-Sezgin the-
ory, and others.

This work represents an introductory step towards our
following paper, paper II, where the homogeneity will
be broken in one direction to study the inhomogeneity
effects on the late-time behavior of scalar Geld cosmolog-
ical models.

The main result of this paper is to confirm, on the ba-
sis of exact solutions we obtain, previous qualitative and
numerical studies by other authors [7] and the pattern of
the late-time behavior of the exponential-potential scalar
Geld cosmologies. This agreement is only true, however,
as long as the underlying geometry of the cosmological
model is as simple as that of Bianchi type I. When the
spatial symmetry group is more complicated, as, for ex-
ample, in Bianchi type III and VI models as well as when
the spatial homogeneity is broken, the dynamics of the
models is different. This, however, will be discussed in
paper II.

In Sec. II we discuss the geometry and the matter con-
tent of the models. In Sec. III the Einstein equations are
considered and solved. Some representative solutions are
given in Sec. IV, while in Sec. V the late-time behavior
of the generic solutions is studied qualitatively and nu-
merically. In Sec. VI we conclude and summarize our
results.

II. BIANCHI TYPE I
EXPONENTIAL-POTENTIAL

SCALAR FIELD COSMOLOGIES

The usual synchronous form for a general Bianchi type
I element is given by

ds = dT + a, (T) dx—+ a~(T) dy + a,'(T) dz, (1)

representing the anisotropic generalization of the spa-
tially Hat FRW universe expanding differently in the x, y,
and z directions. While the form (1) is frequently used to
study the dynamical behavior of the cosmological model,
we have found it convenient, in order to obtain exact
analytic solutions, to cast the metric into the so-to-say,
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semiconformal form

ds =e (
—dt +dz )+G(t)(e" dx +e " dy ).

(2)

This form of the metric is of particular interest when
studying the inhomogeneous generalizations of the line
element (1), and is obtained from Eq. (1) by the identi-
fication

The sign of the deceleration parameter indicates
whether the cosmological model inflates. The posi-
tive sign corresponds to "standard" decelerating models
whereas the negative sign indicates inflation.

For the models to isotropize at late times the shear
measured with respect to the expansion rate must vanish
asymptotically [9]. The models defined by the line ele-
ment (2) are simple enough so that one may get a precise
idea whether the spacetime isotropizes just from looking
at the asymptotic behavior of the line element.

a3
e =a3, G=aia2) e

a2

Since from now on we will be working with the line
element (2) exclusively, it is worthwhile to specify some
cases of interest corresponding to particular values the
metric functions f, G, and p can take.

When the function p vanishes globally the spacetime
expands equally in the z and y axes in which case the
spacetime is called locally rotationally symmetric (LRS).
If in addition to p = 0 one has G = e~~ ~, then the metric
is of the FRW form. In fact the only way the metric
(2) may approach the FRW solution is when et~'~ G
together with p 0.

The line element (2) admits the important vacuum so-
lutions

III. SOLVING THE EINSTEIN EQUATIONS

The Einstein equations for the metric given by the line
element (2) and the rnatter specified by the stress-energy
tensor (5) are given by

G ~BVQ+ —P+ e~
~

G—= 2e~V,
G

G=t, p=rlnt, f =
—12

ink,
2

G .
V+ Gi=0

which are of Kasner type and always anisotropic apart
from two "degenerate cases" v = +1 which are disguised
Minkowski line elements.

The energy-momentum tensor for the scalar field
driven by the potential V(P) is given by

and as long as attention is concentrated on the homoge-
neous spacetimes Eq. (5) may be rewritten in the perfect
fluid form

&~p = (p+ p)u~up + pg~p ~

where

G 1 ~G~ G l.——f+G 2 (G) G 2
(14)

a
I G )

where Eq. (11) is the Klein-Gordon equation for the
scalar field.

Note that Eq. (13) is somewhat decoupled from the
other equations in the sense that it is the same as in the
vacuum case. The matter field acts indirectly on this
equation through the "transitivity area" function G. Yet
one may immediately integrate the equation in terms of
the function G:

together with

where a is an arbitrary integration constant.
Now we substitute Eq. (15) into Eq. (14) and use the

fact that on differentiating Eq. (12) and using it again
one gets, for V g 0,

p = —
—,'4,&0'+ V(4),

p = —
2Q ~p' —V(Q).

The perfect fluid interpretation of the scalar field, while
not obligatory, is very useful to study the kinematical
behavior of the cosmological models. It is convenient to
introduce [8] the expansion

G G V

G G V

We then are left with the two equations

G. 1 G OV

G, 2GV BP

(16)

0 = Dp~g

and the deceleration parameter

(9)
G 2 G2

GG GV
GG

(18)

where Eq. (17) has been obtained by substituting
Eq. (12) into Eq. (11).~ = —3o' (o,.~-+ —,'o') .
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We now specify the potential

V(P) = Ae "~. (19)

Equation (25) has the first integral

Gy'+ (K —1)y+ (27)
Note that Eqs. (17) and (18) are not valid for the case
V = 0; in this case, however, the original system of equa-
tions is much simpler and its general solution is given
by

where B is an arbitrary constant. Integrating Eq. (27)
one finally obtains

A = 0, G = t, p = n 1 nt, P = Pint,

n +2P2 —1 lnt.
2

(20)

2(K —1)y+ B —~A
2 (K —1)y + B + ~A

x (~[(K —1)&'+ B&+M]) "'
where

(28)

When a = 0 and P = +i/3/2 the above solution describes
an isotropic spatially flat FRW universe.

Returning now to the general case A g 0, the Klein-
Gordon equation (17) takes the form

G k G4+ —4= ———
G 2 G

In analogy with Eq. (13) one readily obtains, from
Eq. (21),

m k G
(22)

GG' —GGG+
i

———
i

GG'+
i

'+(1 k') ", t', a'l
4) E 2)

(23)

The substitution

G = ~(G) (24)

reduces the degree of the last equation, and after redefin-
ing some of the constants we finally get

where m is an arbitrary constant.
It is important to note that the exponential poten-

tial saves one much trouble with the nonlinearity of the
Klein-Gordon equation. This is not only true for the
homogeneous Bianchi type I models but for any homo-
geneous or inhomogeneous cosmological spacetime which
may be cast into the "semiconformal" form (2) with the
metric functions depending on the z coordinate as well
(technically these are called spacetimes with two com-
muting orthogonal spacelike Killing vectors and include
Bianchi types I, III, V, VI and their unidirectional inho-
mogeneous generalizations) .

Substituting P given by Eq. (22) and the form of the
potential into Eq. (18) we are left with a single equation

A = B —4(K —1)M,

and K is yet another arbitrary constant of integration.
Equation (28) as it stands is valid for 4 ) 0. For 4 ( 0
the integral takes a diferent form.

This formally concludes the solution. For once G(y) is
given by Eq. (28) one may in principle invert the expres-
sion to get y(G), then using t = J "gi, and inverting
again to obtain G(t). From G(t) one easily reconstructs
all the metric functions: p(t) from Eq. (15), P(t) from
Eq. (22) and f(t) from Eq. (12) for example.

Before turning to analyze the general solution given
by Eq. (28) we will present some explicit particular cases
of interest in Sec. IV to illustrate the above mentioned
procedure.

IV. EXPLICIT EXACT SOLUTIONS

In this section we obtain explicitly some exact solutions
of interest and briefly discuss their behavior. We start
with the simplest ones.

A. FRY universes

Homogeneous and isotropic universes are obtained if
one specifies M = 0 and B = 0 in Eq. (27). Note that
M = 0 automatically means a = 0 in the Eq. (15), which
in turn excludes the transversal part of the gravitational
field p restricting the class of models to LRS ones. If,
moreover, the constant B = 0, one always finishes with
an isotropic solution.

If K = 0 (k = 2), one obtains the so-called "coasting
solution" [10]

A
ds = e ( dt +dx +dy +—dz ).2A

y" +
/

K ——
/

—y'=0, (25)

where

k2 1 2
a2

M = m'+ —.
4 2' 2

and y' = dy/dG .

(26)

k= ——At.
2

This Universe expands linearly in synchronous coordi-
nates and has a zero deceleration parameter.

For K g 0 one gets, from Eq. (28),
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G tA
4

k2 —2

constants the integral (28) gives

Two difI'erent classes of solutions appear. If A = 1, one
has A = 0 and the solution is that described by Eq. (20)
representing the massless minimally coupled scalar field
FRW universe. If, however, A g 1, one gets

G = sinh~t, (39)

The transversal and longitudinal degrees of freedom are
then given by

A(A —1) ), kAG=t", e~= t", P= — lnt,
2A

' 2

and the metric in synchronous form is given by

ds = dT +—T ~" (dx +dy +dz ). (34)

and

a ( at)
p = —ln

~

tanh —
~2 )

km ( ~t1f = ln(sinh~t) — ln
~

tanh —
~

+ ln
2 J 2A'

(40)

The sign of the deceleration parameter for the models
described by Eq. (34) depends on the quantity k —2 so
that the model inflates for k ( 2 while it decelerates fork') 2.

B. LRS models

Assuming now M = 0 but B g 0 and taking K = 0 to
obtain an analytic expression we get, from the integral
(28),

G = e'+ B, e~ = e', P = ——ln(e'+ B). (35)
2A

'
2

The metric in the synchronous form is given by

ds = dT +T—dz +(T +B)(dx +dy ). (36)

(,
3) (37)

Note that at early times this LRS model is anisotropic
while at T ~ oo it approaches the linearly expanding
FRW universe.

The sign of the deceleration parameter is given by

k m ( ~t
g = ——ln(sinh~t) + —ln

~

tanh —
~

.
2 2) (42)

It is interesting to see from this solution that the
anisotropy is contributed by both the scalar field (m g
0) and the transversal degree of the gravitational field
(a g 0). This can be seen as well from Eq. (23) where
the contribution to the anisotropy due to the transver-
sal degree of the gravitational field and that due to the
scalar field enter symmetrically.

These solutions decelerate for the times t ( t, where
t is given by

( —"m'+ -'a' qt, = —arccosh
~

(d (m+2m2 + a2 ) (43)

and then after this time the solutions inHate.

V. ASYMPTOTIC LATE- TIME BEHAVIOR OF
THE GENERIC SOLUTIONS

A. Numerical analysis

respectively. And the scalar field evolves according to the
law

4B'

(B T2)2 (38)

and the energy condition is broken.

C. Nonsymmetric solutions

We put M P 0, B = 0, N = —1jM as well as specify
K = 0 again to obtain an analytic expression. With these

and if the constant B ( 0, the model never inflates. Note,
however, that the range of the parameter B might be
restricted by the sign of the potential V. In the solu-
tion (36) the constant B measures the deviations from
isotropy and as long as B is negative the model does
not inflate independently of how negligible the deviation
from the isotropy is.

In the case B' ) 0 the cosmological model decelerates
until t ( ln 3 but inflates for later times. Another inter-
esting observation for this model is that they are nonsin-
gular for B ) 0. This does not contradict the singularity
theorems for, if B & 0, one has

We now turn to study the asymptotic behavior of the
generic solutions of Eq. (23). From the previous section
we have seen that two difFerent types of late-times be-
havior occur in exact solutions,

(44)

and

(45)

These two difFerent asymptotic behaviors correspond
to FRW (Kasner if K = 1) and anisotropic models, re-
spectively. Technically we have found it very difFicult to
study the integral (28) analytically. In most of the cases
one cannot integrate Eq. (28) and further integrals in
terms of elementary functions. We therefore have been
forced to use numerical methods.

To ascertain whether the asymptotic behavior de-
scribed by Eqs. (44) and (45) occurs in other solutions of
Eq. (23) we have monitored the values of the following
functions while integrating Eq. (23) numerically [1lj:
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together with

G2
ni(t) =

G
n (t) = —. .

G

(46)

(47)

which in terms of the new variables

x =lnG,

reduces to the autonomous equation

(50)

4
G ~ 1~k —2 (48)

It is obvious that if a solution of Eq. (23) asymp-
totically follows the power law given by Eq. (44) it is
necessary and suKcient that the function nq defined by
Eq. (46) tends to a constant as the time increases. One
could use a different function, say, n(t) = tG/G, but our
numerical experiments have shown that the final answer
is the same. The quantity in (46) was finally retained be-
cause many test cases gave the answer somewhat faster.
Similarly the asymptotic behavior given by Eq. (45) is

monitored by the test function n2 (or G/G which finally
gives the same answer).

We have integrated numerically Eq. (23) for different
values of the constants k, m, and a. In each case difFerent
initial conditions for G, G, and G were chosen, though al-
ways remaining positive for physical reasons. Negative G
would imply a change in the signature, negative G would
imply a negative cosmological constant via Eq. (12), and
finally the positivity of G accounts for initial expansion
rather than contraction.

Our numerical results depict a clear scenario for the
asymptotic behavior of Eq. (23). We have found that for
every numerical solution the constructed test function nz
tends towards a constant value which depends only on
the slope of the scalar field potential defined by the con-
stant k. This behavior and the value of the exponent N
are absolutely independent of the level of the anisotropy
introduced either via a scalar field related to the param-
eter m or purely geometrical anisotropy related to the
parameter a. For k ( 6 the generic solution behaves as

y" + (K —1)y' = M
y2

(51)

In the particular case in which M = 0, the resulting
linear equation

y" + (K —1)y' = 0 (52)

has the general solution

(1—K)x (53)

If K ) 1 (i.e. , if k ) 6 ), and we assume that G, and
thus x, increases with time, the asymptotic behavior of
the general solution is y C, which corresponds to the
set of solutions given by Eq. (49).

In the nonlinear case, M g 0, one could expect that the
asymptotic behavior is still the same because if y ~ C
the right-hand side of Eq. (51) goes to 0. Indeed, our
numerical experiments show that this is the case. This
may be seen as well by direct integration of Eq. (51),
as depicted in Fig. 1 for K = 2 and M = 0.1. It is
clearly seen that after some time the solutions of Eq. (51)
attain a high precision straight line with a slope of —1
[i.e. , solutions of the linear equation (52)] and, finally,
approach the attracting line y' = 0.

Though unchanging the asymptotic behavior, the
right-hand side of Eq. (51) is, of course, important for
small y. To stress it we have drawn as dashed lines some
solutions of the linear equation (52) corresponding to the
same initial conditions.

As for the assumption of G being an increasing func-
tion of t, we see in the same figure that solutions cor-

as t goes to infinity which is an asymptotic behavior of
the isotropic FRW model.

For k ) 6 the set of solutions of Eq. (23),

G = Ct+D,
which corresponds to an asymptotic behavior of the vac-
uum Kasner solutions or to the solutions with a min-
imally coupled massless scalar field, is an attractor of
Eq. (23) and describes the asymptotic behavior of its
generic solution. It is worthwhile to mention that the
status of expressions (48) and (49) is difFerent: While
(48) is only an asymptotic solution, (49) is an exact so-
lution for an arbitrary set of constants K, M, and B.

We have also found that the asymptotic behavior de-
scribed by Eq. (45) happens only in the case Ic = 2
and is structurally unstable, for any small deviation in
the parameter k changed the asymptotic behavior of the
solution to that described by Eq. (48).

B. Qualit at ive analysis

The outcome of our numerical calculations can be
made plausible by a qualitative analysis of Eq. (23),

2.0

1.6

II

0.8

0.4

0.0
0.0 0.4 0.8 1.8

y = G

1.6 8.0

FIG. 1. Phase space of Eq. (51) for K = 2 and M = 0.1.
The solutions correspond to initial conditions in the form
yo

——0.01, yo = 0.01+ 0 ~ 1n, with n = 0 to 12. The dashed
lines represent the solutions of the linear case (52) for the
same initial conditions for n = 1 to 7.
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responding to positive initial conditions (as required by
physical reasons) never reach negative values for y = G,
for they never cross the line y' = 0. This behavior was
observed in all numerical integrations.

The cases corresponding to k ( 6 (—I/2 ( K ( I)
can be discussed in a very similar way by using

x =InG, (54)

Vl. CONCLUSIONS

We have presented here a general exact solution of the
Einstein Beld equations for the anisotropic Bianchi type I
universes filled with an exponential-potential scalar field.
Some of the representative cases and their behavior were
explicitly considered in Sec. IV. We must stress that by
considering and studying exact analytic examples one
gets a good idea as to the behavior of the general model.
Exact solutions, in our view, are indispensable and must
be considered, if possible, before any numerical analysis
is undertaken to be sure that the results based on numer-
ical "experiments" are of any significance.

Looking at the exact examples we have found three dif-
ferent typical late-time behaviors of the models: (i) the
Kasner-like behavior which is characteristic of the vac-
uum and massless scalar Geld models; (ii) the FRW-like
behavior; and (iii) the limiting "coasting"-type behavior.

Integrating numerically the general solution we have
seen that the limiting G e behavior is structurally

which leads to the equation

'+ ~1 —K~y" + (1. —K)y' = M ' ' e ( ) (55)
Ig 2

Again, the particular case in which M = 0 is trivial and
its general solution y = E+ Fe~ ~ will approach y =
E, which corresponds to (48). If M g 0, y = D is no
longer a solution of Eq. (55) for a finite x, but it can still
represent the asymptotic behavior of the typical solution,
because the right-hand side of Eq. (55) vanishes when

y ~ E and x ~ oo. We have checked by numerical
integration of both Eqs. (48) and (55) that this is indeed
the case.

unstable. This in fact is very interesting, for, exactly this
type of behavior, as we shall see in paper II, is generic
for the models with one-dimensional inhomogeneity. So,
while in such simple models as Bianchi I the instability
of these solutions do not cause any reason to worry about
the isotropization, in more complicated models their sta-
bility causes problems.

We have seen that when the constant k, defining the
slope of the potential, is less than 6, the generic late-
time behavior is that of an isotropic FRW model. In
such situations the scalar Beld acts similarly to a positive
cosmological constant.

For k ) 6 the late-time behavior is that of a Kasner-
type universe or, which is the same, of the model filled
with massless minimally coupled scalar Beld. As long as
k ) 6 one has no reason to believe that the model will
isotropize.

To see whether the models infIate one may look at the
sign of the deceleration parameter q. After some algebra
and using the first integral given by the Eq. (27) the sign
of the deceleration parameter q is given by3, ( al—I~G' —

~

km+ —
[
G+ —(km —a)'+ —M. (56)2 3

2 i 2) 6 2

It is easy to see &om this expression that as long as
the anisotropy parameters M and B are switched ofI'

(m = a = 0), the inflation of the solutions depends only
on the slope of the potential given by k. Nevertheless, if
the anisotropy is present, the infIation is not only driven
by the parameter k but depends as well on the rates of
anisotropy. Studying the behavior of Eq. (50) one finds
out that solutions generically inBate for k2 ( 2, confirm-
ing previous results. For k ) 2 most of the solutions do
not infIate, yet depending on the rate of the anisotropy
one may find inQating solutions.
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