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Exact primordial black strings in four dimensions
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A solution of efFective string theory in four dimensions is presented which admits interpretation of
a rotating black cosmic string. It is constructed by taking the tensor product of the three-dimensional
black hole, extended with the Kalb-Ramond axion, with a flat direction. The physical interpretation
of the solution is discussed, with special attention to the axion, which is found to play a role very
similar to a Higgs Geld. Finally, it is pointed out that the solution represents an exact Wess-Zumino-
Witten-Novikov (WZWN) o model on. the string world sheet, to all orders in the inverse string
tension n'.
PACS number(s): 04.20.Jb, 11.17.+y, 98.80.Cq

In recent years we have witnessed a very rapid growth
of the family of "black" configurations, representing grav-
itational fields with event horizons of various topology.
They have ranged from various black holes [1—9], over
stringlike configurations [1,10—13], to p-branes [7,13—14].

In this paper, I will attempt to expand this family by
constructing a solution of the four-dimensional effective
action of string theory which admits the interpretation
as a black cosmic string inside a domain of axion field
gradient. The configuration is primordial, in the sense
that the domain is essential for its existence, because the
"axion charge" (i.e. , the gradient of the pseudoscalar ax-
ion) is what stabilizes the string. Ets geometric structure
is that of the three-dimensional black hole recently found.

by Banados, Teitelboim, and Zanelli (BTZ) [3], extended
with a flat line which is interpreted as the string axis.
The solution could also be viewed in light of toroidal
black holes investigated by Geroch and Hartle [15], and
could be understood as such a black hole, which is bigger
than the cosmological horizon of the Universe in which
it is embedded.

The dynamics of the background field formulation of
string theory is defined with the efFective action which,
in the Einstein frame and to order O(n' ), is
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where R is the Ricci scalar, H~ p
——BL~B„ I

is the
antisymmetric field strength associated with the Kalb-
Ramond field B~, 4' is the dilaton field, and A the
cosmological constant. The metric is of signature +2,
the Riemann tensor is defined according to R~ p
BpI'~ —,and the cosmological constant is defined
with the opposite sign from the more usual general rela-
tivity (GR) conventions: A ) 0 denotes a negative cos-
mological constant. It has been included to represent the
central charge deficit. In the remainder of this paper, I
will work in the Planck mass units: v. = 1.
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along with the Bianchi identity for the axion field
strength, Bt~H ~ I

= 0. The background ansatz is that
of a stationary axially symmetric metric:

ds = p (r)dr + Gsg(r) dxsdx" + q (r)dz (3)

where the 2 x 2 matrix Gsy(r) is of signature 0 as the
metric (3) is Lorentzian and one of the coordinates (x")
is timelike. The z coordinate in (3) is noncompact,
whereas the spacelike x" is compact. The "lapse" func-
tion p2 is kept arbitrary as its variation in (1) yields
the constraint equation. The dilaton C is a function
of r only, and the axion equations OI~H ~

~

= 0 and

B~ g exp —2 24 H~ = 0 are solved in terms of
the dual vector field Vl" by

The simplest way to find the black string solutions is
to investigate the Einstein equations together with the
equations of motion for the axion and dilaton. However,
it is also instructive to investigate dimensional reduction
of the action (1) to three dimensions in order to estab-
lish a further relationship of the four-dimensional black
string to the three-dimensional black hole, and illustrate
the roles played by the degrees of freedom present in the
problem. Hence I will first obtain the solution from in-
specting the equations of motion, and later I will also dis-
cuss the properties of the action (1) in its various forms.

The variational equations of motion derived from the
action (1) are
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H„~ = exp (2~24) ~ge„q V" (4)

and V = Qdz (the topological charge term). This solu-
tion has been discussed at greater length in [16] (see also
[11]).There, it has been argued that the axion equations
of motion can be solved by topological charge terms in
cylindrical backgrounds, since such topologies include a
nontrivial first cohomology from a noncontractible loop
Si in the manifold. The charge Q above can therefore be
thought of as associated with such a loop of string, ex-
cept that the string size is bigger than the cosmological
horizon.

In order to obtain the four-dimensional black string
solution by adding the stringy version of the BTZ black
hole [8—9] a flat direction, one further requires that the
dilaton and the coeKcient of the fourth direction g are
constant. The equations of motion for these two modes
can be written as

and

OV,a (C', g)
04

BV@(C,g)2V lng =

(5)

(6)

where the effective potential is

Q2 2 —V 2@0A
02" ' (8)

This equation can always be satisfied, and actually can
be viewed as the definition of the dilaton vacuum expec-
tation value given the other parameters.

Substituting this ansatz back into the remaining field
equations (2), it is easy to verify that the complete rotat-
ing black string solution of (1) is (after setting go

——1)

d 2

ds =
2 + R (do+% dt)
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with p+ ——M[1 —(J/M)2]i~2, Rz = (QAsD/2)(p2+ M—
p+), and W = —J/2R, with AsD = (A/2i10) e~2@' and
where the identity (8) has been used. The physical black
strings should also satisfy the constraint

~
J~ & M. If

this were not satisfied, one would end up with a singular
structure, manifest by the appearance of closed timelike
curves in the manifold accessible to an external observer,
crossing the point R = 0. Such a voyage has been in-
vestigated in [ll] for the spinless case, and also in [10]
for the vacuum. Moreover, it has been argued that, al-
though the solution (9) does not have curvature singu-

(C, )
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Interestingly, the system of equations (5), (6) is simul-
taneously solved by a "vacuum" 4 = 40, g = go provided
that

larities [R„„ps = 0, R„„g = —AsD(g„pg„—g„g„q)],
they can develop if the metric is slightly perturbed by a
matter distribution [3]. Thus the singularities are hidden
by a horizon if the spin is bounded above by the mass.
By analogy with the BTZ black hole, the solution with
J = M is understood as the extremal black string, and
J = M = 0 as the vacuum. There is a local correspon-
dence between these two cases, as discussed in [9].

The solution (9) describes a rotating black string as is
rather obvious &om the metric. However, it is the ax-
ion which gives further clues regarding the nature of the
string. As was mentioned above, one way to think of
the solution is to imagine it as a loop of string with its
length parametrized by z, which is bigger than the cos-
mological horizon of the Universe where it is embedded.
In this sense, the solution represents an explicit example
of a toroidal black hole [15]. Such an interpretation ob-
viously puts limits on the validity of the approximations
underlying the assumption that the string is straight. A
more interesting picture is obtained if one retains the
image of the string as infinitely long and straight. The
dual axion field strength V = Qdz = da(z) can be inte-
grated between any two spacelike (t = const) hypersur-
faces zi 2

——const to give a(z2) —a(zi) = QAz. Therefore
the axion solution can be understood as a constant gra-
dient of the pseudoscalar axion field. As z~ 2 ~ oo, the
axion diverges. But this is easy to explain: it is merely
a consequence of the assumption that the string is in-
finitely long. In reality, one should expect some cutoff
sufBciently far away along the string. The situation is
precisely analogous to that of the electrostatic potential
between the plates of a parallel plate capacitor in ordi-
nary electromagnetism. There, the cutoff occurs on the
plates of the capacitor, where the potential assumes con-
stant values. The gradient is just V'V = (AV/AI)z.
This analogy shows that the black string solution (9)
should be viewed as a gravitational configuration which
arose inside a transitory region separating two domains
within which the axion is constant: a~ and a2, respec-
tively. The axion gradient inside this region corresponds
to the adiabatic change in the axion vacuum, where the
adiabatic approximation is better if the transitory region
(and hence the string) is bigger. The configuration (9)
then evidently needs the domain of axionic gradient for
its existence (because the axion gradient stops the dila-
ton Rom rolling), and thence can justifiably be labeled
primordial. It is worth noting here that one can object
to the analogy of the solution (9) and the toroidal black
holes of [15] on the grounds that the pseudoscalar axion
a(z) increases linearly with z, and hence apparently is not
periodic as required, even if the z direction is compacti-
fied. This problem is easily solved once one recalls that
the pseudoscalar axion is by definition a coordinate on a
circle U(1), and hence the translations by 2n7r represent
global gauge transformations. Therefore the increase of
the axion is completely artificial and can be safely ig-
nored.

The discussion of the previous paragraph illustrates
only one aspect of the importance of the axion in obtain-
ing the solution (9). In order to gain further insight for
its role, as well as of the dilaton and the mode g, one can
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dimensionally reduce the action (1). The simple form of
the axion allows that it be integrated out &om the ac-
tion, with the help of a Lagrange multiplier, and treating
the solution (4) as a constraint. The resulting effective
action for the dilaton-gravity system is

g —R ——B„Ct9"C — e ~ + Ae~1 1

(2 2 vP )
(10)

Note that the action (1) has been rewritten in the form
similar to Einstein gravity with a minimally coupled self-
interacting scalar field. Also note that the sign of Q is
negative. This is a consequence of the proper replace-
ment of the axion with its charge using the Lagrange
multiplier method, and can be verified &om the inspec-
tion of the equations of motion (2). The background has
three toroidal coordinates (x") and z which are dynam-
ically irrelevant. Hence the problem is effectively one
dimensional and the Kaluza-Klein reduction [17] can be
employed to simplify the action (10). It is instructive
here to perform the Kaluza-Klein reduction in two steps,
in order to isolate the dynamics of the mode g. The erst
step is to integrate out the coordinate z. The result-
ing efFective action in three dimensions (3D) is, after the
rescaling S,ir = 8/ I dz,

q2 2~2@ + + ~2@

The mode g (the "compacton") in this form of the ac-
tion is obviously just a Lagrange multiplier. Its Euler-
Lagrange equation however involves the 3D part of the
metric. Thus, to investigate, it is necessary to write out
the complete set of Einstein's equations in addition to it.
This can be avoided with a conformal rede6nition of the
3D metric such that the 3D Ricci curvature disappears
&om the g equation. The conformal rescaling which en-
sures this is G„„=(1/g )G~ . The resulting action is
just

q' 2v2e + v2c (12)

This action represents ordinary 3D general relativity with
two minimally coupled self-interacting fields C and lng,
with self-interactions described by the effective potential
(7). Thus, the ansatz employed to obtain the solution
(9) corresponds to the "vacuum" sector of the efFective
theory given by (12). The remaining effective action for
gravity in three dimensions under the assumption that
the "matter" modes are in "vacuum" can be obtained
after substituting (8) in (12), and dropping the dynamics
of the dilaton and the compacton. It is

S,ir, = d x~G(2R+ AsD) (13)

and represents just the normal 3D Einstein-Hilbert action
with an effective (negative) cosmological constant AsD =
(A/2ilo) e~ '. Its unique black hole solution is the BTZ
solution, as shown in [3,9]. This is why the metric part of
the black string solution can be written as d8 = dsB&z+
dz after setting go ——l.

Thence, besides providing the extra contribution to the
dilaton-compacton self-interactions, the axion also plays
role of a Higgs field, which is evident from the steps lead-
ing from Eq. (1) to Eq. (10). The axion condensate Q2 in
(4) breaks the normal general covariance group GL(3,1)
of (1) down to GL(2, 1) which is the invariance group of
(10). It should be noted, though, that the Higgs-like be-
havior of the axion is purely topological; indeed, in the
O(a' ) approximation, the axion has no self-interactions,
and hence no potential to minimize. Again, this is not re-
ally a surprise. The behavior of the Peccei-Quinn (PQ)
axion has been found very much the same, and at the
tree level the PQ axion condensate was also purely topo-
logical. It was only after the radiative corrections were
included, that its self-interaction potential arose. Hence,
to investigate the Higgs aspect of the axion further it
would be necessary to inspect higher order corrections to
(1).

This program could be best conducted via the Wess-
Zumino-Witten-Novikov (WZWN) o model approach [2].
Namely, it was demonstrated recently that the BTZ so-
lution can be obtained as either a nongauged WZWN
model on the group SL(2, R)/P or an extremely gauged
WZWN model on the coset [SL(2,B) x A]/(B x P),
where P is a discrete group which represents compact-
i6cation of one of the spacelike coordinates to a circle
[8,9]. In this light, the solution (9) is obviously obtained
by taking either of these two o. models and simply ten-
soring them with an additional Bat direction, which will
be the coordinate along the string. Thus, specifically,
(9) is an extremely gauged WZWN model on the coset
[SL(2,B) x A ]/(B x P). Higher order corrections could
now be investigated following the resummation procedure
established by Tseytlin [18] and by Bars and Sfetsos [19].
It turns out that the black string configuration actually
survives the corrections, and appears to be an exact solu-
tion of string theory to all orders in o.'. The only effect of
the higher order o.' corrections is finite renormalization
of the parameters in (9), and in particular, renormaliza-
tion of the semiclassical expression for the cosmological
constant. The details will be presented elsewhere [20].

There still remains the problem of stability of solution
(9) under small perturbations. Some indications can be
obtained by looking at the "matter" sector of the effec-
tive action 8,& (12), after the conformal rescaling. The
dilaton and the compacton in (12) can be viewed as an
O(2) doublet, with the effective potential (7) manifestly
breaking O(2). As a consequence, the linear combina-
tion ~24 —1ng of the dilaton and compacton picks up
a mass term of order A, whereas its orthogonal comple-
ment remains massless. It would have been preferable
if both the dilaton and the compacton became massive,



48 EXACT PRIMORDIAL BLACK STRINGS IN FOUR DIMENSIONS 4661

because their big masses would de facto decouple them
and improve the stability of the solution (9). As is, the
solution (9) could actually be spoiled by perturbations
of the massless mode, which can accumulate exterior to
the black hole, much like the Goldstone modes present in
global cosmic string backgrounds [21]. This remains to
be investigated further in the future.

In closing, it has been shown that the serendipitous
BTZ 3D black hole has simple generalizations to four
dimensions, where it can be interpreted as a primordial
spinniog black string, which is singularity-&ee. The most
attractive generalization is where it represents a vacuum
solution of tree level string theory, where the dilaton and
compacton have been decoupled due to the axion charge.
In this respect, the axion plays the role of a Higgs field,
since it breaks the invariance group GL(3,1) of the un-
derlying 4D theory down to the invariance group GL(2,1)
of the resulting three-dimensional e8'ective action, and

modifies the efFective scalar potential of the model lead-
ing to the previously mentioned decoupling of the scalar
modes. The dilaton of the configuration is constant and
thus (9) also represents a solution of four-dimensional
Einstein gravity with a minimally coupled 3-form field
strength (see also [22]). Moreover, the solution repre-
sents an exact WZWN 0 model on the world sheet, and
thence can be easily extended to include higher order o,"

corrections, as I will show elsewhere [20]. In the end,
these do not afFect the nature of the solution, and it re-
mains a well behaved singularity-&ee string configuration
with a horizon.
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