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Parametrized post-Newtonian gravitational redshift
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A derivation of the gravitational redshift eFect to order c is presented. The calculation is per-
formed within the framework of the parametrized post-Newtonian formalism for analyzing metric
theories of gravity, which includes corrections to second order in the Newtonian potential, gravitomag-
netic contributions, and preferred-frame terms. We briefly discuss how to generalize our results to in-

clude possible violations of local Lorentz invariance or local position invariance which can arise in non-
metric theories. Our results are useful for analyzing possible new redshift experiments which may be
sensitive to second-order eAects, such as a space mission involving a close solar flyby.

PACS number(s): 04.20.Cv, 04.50.+h, 04.80.+z

I. INTRODUCTION

The gravitational redshift effect is the observed shift to
a lower frequency of an oscillator near a massive body
relative to its frequency at infinity. This is a fundamental
result of the Einstein equivalence principle (EEP), upon
which general relativity and all other metric theories of
gravity are based [1]. If the EEP is valid, then the laws of
physics governing the operation of an oscillator or a
clock should be locally Lorentz invariant and position in-
variant in a gravitational field. By adopting only these
two requirements, it is possible to derive the redshift
eff'ect to first order in the Newtonian potential without
specifying a particular theory of gravity (for example, see
Ref. [2]).

To order c, the frequency shift of a photon pro-
pagated between two points x] and x2 is given in an iner-
tial reference frame by the expression

f2=f, [1—n. (v2 —v, )/c —
—,'(v, v~)/c-

—(n v, )(n v2)/c

+(n v, ) /c —(Ui —Uz)/c ],
where v, is the velocity of the emitter at x&, v2 is the ve-
locity of the receiver at x2, n is a unit vector pointing
from x& to x2, and U, and U2 are the total Newtonian
gravitational potentials at each point, respectively,
defined positively. Equation (1.1) is consistent with the
EEP to first order in U. Any metric theory of gravity,
such as general relativity, must make the same prediction
to this order, provided the theory yields the correct
Newtonian equation of motion.

The first-order prediction has been tested to highest
precision in a 1976 NASA experiment called Gravity
Probe A (CxP-A), in which a hydrogen maser oscillator
was Aown on a Scout rocket in the gravitational field of
the Earth [3]. Additional spacecraft experiments have
been performed at Saturn [4] and in the solar gravitation-
al field [5], but with less stable crystal oscillators. A close
solar probe mission has been studied by NASA for many
years, in which a spacecraft would Ay by the Sun at a

heliocentric distance of only 4 solar radii (for a recent re-
view, see Ref. [6]). Similar missions have been considered
by the European Space Agency (ESA) and by the Russian
Institute for Space Research (IKI). If an atomic frequen-
cy standard, such as a hydrogen maser oscillator, were in-
cluded on the spacecraft, then it might be possible to test
the redshift effect to second order in the Newtonian po-
tential of the Sun at an interesting level of precision. At
second order, the experiment would test not only the
EEP, but also specific theories of gravity. A small group
of scientists has recently been funded by NASA to inves-
tigate this possibility. A group at the Jet Propulsion Lab-
oratory (JPL) is performing a mission simulation and a
detailed covariance analysis. A second group at the
Smithsonian Center for Astrophysics (CfA) is investigat-
ing requirements on the maser Aight unit. At this point,
however, NASA has made no definite commitment to
proceed with the mission.

In a previous study, general relativistic efFects on the
equation of motion of the spacecraft were analyzed to
post-Newtonian accuracy in the PPN formalism [7].
Only coherently transponded Doppler and range data
were included in the analysis; noncoherent one-way
Doppler data were not considered [8]. In this work, we
present a derivation of the gravitational redshift to order
c in support of the new study. We will adopt the
parametrized post-Newtonian (PPN) framework for
analyzing metric theories of gravity. However, we will
restrict our analysis to semiconservative theories of gravi-
ty, in which the PPN parameters Ia3, $„(2,$3, $4] are
identically zero. Furthermore, we will assume a single,
stationary body whose center of mass is at rest, and
which is rotating slowly enough that we may also assume
nearly spherical symmetry; appropriate assumptions for
analyzing a close solar flyby mission. Unlike the first-
order calculation, we will see that it is necessary to in-
clude corrections to the photon equation of motion in or-
der to model the redshift consistently to order c . Al™
though our main focus in this paper is on PPN eftects in
the redshift, we will briefly consider how to include possi-
ble violations of local Lorentz invariance and local posi-
tion invariance.
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The remainder of this paper is organized as follows. In
the next section, we will derive a general form for the
redshift which includes contributions from the photon
wave vector. In Sec. III, we will integrate the photon
equation of motion. Bur anal results are presented in
Sec. IV, and conclusions in Sec. V. For convenience,
units in which 6 =c =1 will be used. Greek indices
range over 0, 1,2,3, whereas Latin indices range over
1,2,3. Partial derivatives are denoted by a comma, and
covariant derivatives with respect to the metric connec-
tion by a semicolon.

II. THE MEASURED FREQUENCY SHIFT

For metric theories of gravity, the frequency f of a
photon measured by an observer at a point (t,x') can be
found by projecting the photon wave vector k onto the
observer's four-velocity u at that point:

co = —k u"= —(kou~+k, u'), (2 1)

where co =2irf . We can expand the components of k
about their Oat spacetime values according to

ko(x) = —co[1—ko(x) ], (2.2a)

k;(x) =co[n;+k;(x)], (2.2b)

where n, is a unit vector along the direction of propaga-
tion. Equation (2.1) then becomes

co =couo[1 —k (x)—n v —k(x) v], (2.3)

where v is the observer's three-velocity. Equation (2.3)
can be used to calculate the ratio of the frequencies which
would be measured at two points x, =(t„x', ) and
x z

= ( tz, x 2 ). Expanded to order U, the result ts

~(xz) u xz)—[1—n(v —v) —n(v —v)[nv+(nv)+(nv) ]
( ) 0( )

2 1 2 1 1 1 1

—[k(xz) vz —k(x, ) vi]+2(n v, )k(x, ) v, —k(xz) vz(n v, ) —k(x, ) v, (n vz)], (2.4)

dx'uo=
d7

r

=( —goo)
'~2 1+2 U~+ U'U'

g oj gij

goo Noo
(2.5)

Under the assumptions stated in Sec. I, the PPN metric
components are given by

goo = —1+2U —2pU —(a, az)w U ——azU(w. r)

+ —,'a, w (r XJ)/r (2.6a)

where we have neglected contributions from ko (to be
justified in the next section). Equation (2.4) provides a
general form for the measurable frequency shift. To
make Eq. (2.4) more useful, we will have to provide
specific expressions for u and the perturbed wave-vector
components (ko, k;).

With proper time defined by d r = —g„dx"dx, then

(rXJ)
go =

—,'5 —
—,'(a, —2az) Uw' az(r. w) U—r~,

I'

(2.6b)

(2.6c)

u =1+U+ —,'U +(—,
' —P)U +(—', +y)UU +—,'v

—
—,'(a, —az)ui U —

—,'azU(w. r)

+ —,'a, w (rXJ)/r +—,'hv (rX J)/r
—

—,'(a, —2az)(v. w)U —azU(v r)(w r) . (2.7)

This expression can be used to calculate the ratio
u (xz) lu (xi ) in Eq. (2.4). The result is

g;. =(1+2@U)5;

where r=x/jx~, 6=4y+4+a„and w is the possible
preferred-frame velocity of the PPN coordinate system
(for example, see Ref. [9]). The vector J represents the
rotational angular momentum of the body. Using these
metric components in Eq. (2.5), we obtain, to order c

0
= 1 —( U 1

—Uz ) ——,
'

( U 1
—u z ) ——,'( U 1

—
U z ) ——'U

1 u z +—,
'

U 1
—[ ( —,

' —p) U 1
—( —,

' —p) Uz + U, Uz ]
u xi

—[(—,'+y)U, , —( —,'+y)U + —,'(U, +U, )]

+—,
' [(a,—az)w (U, —Uz)+az[U, (w r, ) —Uz(w. rz) ]+(a,—2az)[(v, .w)U1 —(vz.w)Uz]

+2az[ U, (v, r, )(w r, ) —Uz(vz. rz)(w. rz)]]
—

—,'Ib[v, (r, XJ)lr, —vz (rzXJ)/rz]+a, w [(r, XJ)lr, —(rzXJ)/rz]] . (2.8)
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III. COMPUTATION
OF THE PHOTON WAVE VECTOR

It is convenient to express the PPN metric in the form

g„=g„+h„ (3.1)

k„..k =0, (3.2)

where g=diag( —1, +1,+1,+1) is the Minkowski ten-
sor and h „ is the metric perturbation. Using this
definition in the equation of motion of the photon,

the source. This is why it was not included in Eq. (2.4).
To integrate Eq. (3.4) for k;, we assume a nearly spher-

ically symmetric source such that U(x) =M/r; the ex-
pression for hoi. is dictated by Eq. (2.6b). The unper-
turbed path of the photon is a straight line with coordi-
nates x(t)=n(t t,—)+x, as a function of t, where (t„x, )

specifies the time and place of emission. To necessary or-
der, this relation can be used to integrate Eq. (3.4). How-
ever, the constant of integration is specified by requiring
that the orthogonal projection of the actual perturbed
path satisfies

results in the expression

dk„ —
—,hp„kk (3.3)

dx i =0,

x' =x' —n'(n x)

(3.5a)

(3.5b)
where A, is an aftine parameter along the photon trajecto-
ry (see Ref. [1] for further details). Expanding k„ac-
cording to Eq. (2.2) and applying the condition k„k"=0,
we obtain from Eqs. (2.6) and (3.3) the result

dk„"=(1+y)U„+ho „nj, (3.4)

d
dt

= [n' —2( 1+y ) Un'+ k'], (3.6)

i.e., that upon emission the photon propagates initially in
the direction n, where

to necessary order, where t is coordinate time. Equation
(3.4) can be integrated to obtain k (x). We note that ko is
zero at this order, given no explicit time dependence of

to the required order. After evaluating several integrals
and collecting terms, we find that, for a photon emitted
from the point x; in an initial direction n,

n(x. x, )
k(x) =(1+y )

d

x, (n x) d(n. x, )+

T

1+, (xi XJ) +
r 3

1 d

n X1
+n[(n XJ) x, ]

r
1

r 3
1

+[nX(nXx&)][(nXJ) x, ]
9 X

r 3

Il X1 +
1

Il X n X1

7'1

+—'(a, —2a )M2 r

n(x.x, ) x,(n x) d(n x&)+
7 d 7. d 7

++2M.
(x, w)x, n (n.w)(x.x, ) (w x, )(n.x) (w d)(n x, ) w I x x,+ + +

7'1 r r r1 d

(n.x, )(n x)

r 2
1—(n w)n

r3
——(n.x)

2 ~ 2 1

r r 2

1 2 2 1 1+ (nx, )
d r1 r1

2 - 2(n x)
r 3

+ (nx, )—
r 3

1

2 ~ 3~ 1 2 2 4 1 2
, (n.x) (n x&), +, +, (n.x,),+

d 7 r d d r 7' d

n.x 1

7
2

1

d2

n.x1 1 1

r 2 d 2
1

2- 2-(n x, )+ (n x, )
r 3 r 3

1

1 2 1 3 1 2
2 (n x)(n x, ) z+ 2

+ (n x, ) +
r d d r, r, d
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&& [(n w)xi+(x, w)n+(x n)(n w)n]

1

r3

(n x)(n.x, )+-
r d r1

(n x, ) +
r( r) d

L

X[(x, w)x, +(n.w)(n x, )x, +(n x, )(x, w)n]

n x 1 2

d r r d
1 2

r 2 d 2
1

(n x, )(w x, )x, -, (3.7)

where d=(nXx, ).

IV. FINA. I, RKSUI.TS

We now have all of the ingredients necessary to calculate the relativistic frequency shift to order c . Using Eq. (2.8)
in Eq. (2.4), we obtain

z=1—n (vz —v, )
—(Ui —Uz) —

—,'(ui —uz) —[(n v, )+(n v, ) +(n v, ) ]n (vz —v, )
X)

—[n (vz —v, )+(n v, ) ][(U, —Uz)+ —,'(ui —uz)] —[(kz vz) —(k, v, )]

+2(n.v, )(k, v, ) —(n v, )(kz vz) —(n vz)(k, v, ) ——', (u, —uz) —
—,'(u, uz —u, )

—[(—', —P)(Ui —Uz) —(U, —Ui Uz)] —[(—,'+y)(U, u, —Uzuz)+ —,'(U, uz+ Uzu, —2U, ui )]

—'
I &[vi '(ri XJ)/r i vz'(rz && I)/rz ]+aiw [(ri && J)/r i (rz & J)/rz ]]

+ —,I(ai —az)iu (U, —Uz)+az[U, (w r, )
—Uz(w rz) ]

+(ai —2az)[(vi w)Ui —(vz w)Uz]+2az[Ui(v, r, )(w ri) —Uz(vz rz)(w rz)]], (4.1)

where k(x) is given by Eq. (3.7). A possible limitation of
Eq. (4.1) is the assumption of the validity of the EEP,
upon which the standard PPN formalism is based. We
would like to incorporate into Eq. (4.1) possible violations
of local Lorentz invariance (LLI) or local position invari-
ance (LPI). To be rigorous, a complete nonmetric for-
malism should be adopted which reduces to the PPN for-
malism in an appropriate limit [10]. However, this would
lead us too far outside the scope of this paper, in which
our intent has been to focus the analysis on the standard
PPN formalism [11]. Nevertheless, it is possible to gen-
eralize to a certain extent the results already at hand.

We see from Eq. (2.3) that in metric theories the mea-
sured frequency of a photon depends upon the time com-
ponent u of the observer's four-velocity, where u is
defined by Eq. (2.5). This factor provides the conversion
between time measured in the observer's rest frame and
coordinate time. An EEP violation can result from the
presence of nonmetric couplings in the equations govern-
ing the operation of an oscillator or a clock, which would

thus modify Eq. (2.5). Therefore, we can account for cer-
tain possible violations by inserting the additional param-
eters (a, e„ez) into Eq. (2.7) such that

u =1+a.U+ —,'e, U +—3e U +. . . (4.2)

where the ellipsis denotes the remaining terms. The PPN
parameters P and y appearing in these remaining terms
should be relabeled in order to absorb other possible LLI-
or LPI-violating terms having similar dependencies. We
accomplish this by simply placing a "tilde" over the pa-
rameters, but leave unchanged the meanings of the gravi-
tomagnetic parameter 6 and the preferred-frame parame-
ters a& and a2. Violations of LLI or LPI could have a
diferent a6'ect on the photon equation of motion. There-
fore, to carry our generalization further, the parameter y
appearing in Eq. (3.7) should be given still a different
name, perhaps by giving it a p subscript (for "photon").
With this in mind, our generalization of Eq. (4.1) is given
by
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=1—n. (vz —v, ) —a(U, —U2) ——(u, —u2) —[(n v, )+(n v, ) +(n v, ) ]n (v2 —v, )
1

—[n (v2 —v, )+(n v&) ] a(U, —U2)+ —(u, —u2) —[(k2 vz) —(k& v, )]

2

+2(n v, )(k, v, )
—(n v, )(k~ v2) —(n v~)(k, .v, ) —e~—,'(u, —u2) ——(u, u2 —u, )

—[(—,
' —P)(U, —U2) —a (U, —U, Uz)] —

( —,'+y)(U, uf —Uzuz)+ (U&uz+ U2u&
—2U, u, )

—
—,'[b.[u, (r, XJ)/»', —v, (r, XJ)/»', ]+a,w [(r, XJ)/»', —(r, XJ)/»', ]]

+ [(~l ~2)w ( Ul U2)++2[ Ul(w rl) U2(w r2)

+(a, —2a2)[(v, w)U, —(v2 w)U2]+2az[U, (v, r, )(w r, ) —U2(v2 r2)(w rz)]] . (4.3)

V. CONCLUSIONS

We have presented a derivation of the gravitational
redshift efFect to order c . The calculation was per-
formed within the framework of the PPN formalism for
metric theories of gravity, but we also briefiy considered
how to include possible violations of the equivalence
principle. As mentioned in the Introduction, our pri-
mary motivation was to model accurately a possible solar
probe test of the redshift.

Currently, our JPL group is planning to use Eq. (4.3),
along with the PPN equation of motion of the spacecraft,
in a covariance analysis of a solar Ayby mission to deter-
mine the expected accuracy of the experiment in the pres-
ence of anticipated error sources. These sources include
stochastic spacecraft accelerations and the e6'ects of the
Earth's troposphere and ionosphere on the radio signals.
We are investigating the applicability of acceleration
noise models to attitude control disturbances and space-
craft bu6eting. Vessot at the CfA has proposed a special
"four-link" radio tracking system to provide time-
correlated frequency data during the mission [12]. This
approach would provide a way to cancel the first-order
classical Doppler shift and to calibrate the eAects of the
troposphere and ionosphere on the one-way downlink.
Therefore, if an atomic frequency standard, such as a hy-
drogen maser, were Gown on the spacecraft, it should be
possible to limit fractional frequency uncertainties to less
than 1 part in 10' during the time of the fiyby (about 18
h).

We can compare the significance of certain terms in
Eq. (4.3) to this limiting fractional frequency uncertainty.
At the periapsis of 4 solar radii, the solar Newtonian po-
tential U is of order 5X10 and U -3X10 ' . The
spacecraft is expected to have a velocity of roughly 300
km/s at perjapsjs, whjch jmpljes that U —10 and
U U-5X10 ' . The gravitomagnetic e6'ect arising from
solar rotation is seen to be of order UJ/r . Based upon
the observed surface rotation rate, the solar angular

momentum J =1.63X10 gem /s, or roughly 0.4 km in
units of G =c = 1 [13]. With these values,
UJ/r —8X10 ' and thus might be barely detectable.

A primary goal of a solar probe redshift experiment
would be to test the PPN parameter P. As listed in Table
14.2 of Ref. [1],P=1.000+0.003 from planetary motion,
assuming that the solar quadrupole moment has the small
value implied by helioseismic observations. These obser-
vations favor a value for the dimensionless quadrupole
moment parameter of J2 = 1.7 X 10, with an accuracy
of about 10% [14]. This knowledge is sufficient to model
the Newtonian potential of the Sun to the required accu-
racy for the experiment (see Ref. [12] for more details).
From the Viking time-delay experiment, the PPN param-
eter y = 1.000+0.002, which is just at sufticient a level of
accuracy to neglect any uncertainty from its contribution
to Eq. (4.1). The PPN parameters a, and a2 are known
to an accuracy of at least 4X 10 from planetary motion
and Earth gravimeter data, respectively. In Eq. (4.1),
these parameters multiply terms of order m U. For a
preferred-frame velocity of roughly w =350 km/s, as im-
plied by the observed dipole anisotropy of the cosmic mi-
crowave background, w U-7X10 ' at 4 solar radii.
With this assumption, the contributions by e& and a2
could be neglected. Thus, it may be possible to test P to
an accuracy comparable to that provided by planetary
motion. By neglecting a, and a2, we can simplify Eq.
(3.7) substantially.

In addition to providing an independent test of P,
perhaps the most important result of a solar probe red-
shift experiment would be a high-precision test of the
EEP in the gravitational field of the Sun. The weak
equivalence principle (equality of free fall) has been tested
to high accuracy in the solar gravitational field by labora-
tory torsion-balance experiments (to 1 part in 10'; see
Sec. 2.4 of Ref. [1]). However, it is possible that these ex-
periments might have been insensitive to certain viola-
tions of local position invariance [15]. The first-order
redshift, parametrized by a in Eq. (4.3), has been tested
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to an accuracy of 2X 10 in the gravitational field of the
Earth [3], but to only 10 in the solar gravitational field
[5]. It may be possible to test the solar redshift to an ac-
curacy of 10 in a future laboratory experiment [16].
However, these accuracies could be greatly exceeded by a
solar probe experiment, which could test a to an accura-
cy of -10 and possible second-order violations to
-3X10 . These estimates will be quantified more pre-
cisely in the planned covariance analysis, based upon the
model provided by Eq. (4.3). A more rigorous theoretical
model and thorough analysis of the effects of nonmetric
theories awaits a future investigation.
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