
PHYSICAL REVIEW D VOLUME 48, NUMBER 10 15 NOVEMBER 1993

Green function for metric perturbations due to cosmological density fluctuations
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We study scalar perturbations to a Robertson-Walker cosmological metric in terms of a pseudo-
Newtonian potential, which emerges naturally from the solution of the field equations. This potential
is given in terms of a Green function for matter density Buctuations of arbitrary amplitude whose
time and spatial dependence are assumed known. The results obtained span both the linearized and
Newtonian limits, and do not explicitly depend on any kind of averaging procedure, but make the
valid assumption that the global expansion rate is that of a Priedmann-Robertson-Walker model.
In addition, we discuss the similarity to di8'usive processes in the evolution of the potential, and
possible applications.

PACS number(s): 98.80.Hw, 04.20.Jb

I. INTRODUCTION

Most observers would agree that the geometry of our
Universe is well described almost everywhere by small
perturbations to a Robertson-Walker metric. These per-
turbations directly afFect our observations of the Uni-
verse, and so a great deal of efFort has been devoted to
understanding their efFects and evolution.

Here we study how a given matter distribution gen-
erates the metric, and hence affects the radiation that
reaches us. Our goal is to find a way of expressing these
perturbations directly in terms of the matter variables,
in a way that may be useful for interpreting or modeling
observations. Most simulations of observable efFects—
gravitational lensing, redshift, and so on—use some kind
of simplifying assumption, such as nearest-neighbor New-
tonian gravitation, weak density contrast (i.e., linearized
theory), etc. Here we attempt to provide an expression
which takes account of all cosmologically relevant efFects,
and which applies over a wide range of density contrasts.

This paper expands on the results presented briefly
in Ref. [1]. We show how to derive the Green function
presented there for any value of the curvature parameter,
as well as its reduction to the Newtonian limit and the
similarity to simple difFusion. The principal results are
summarized by Eqs. (11), (24), (25), and (28) for the
perturbed line element, pseudo-Newtonian potential, and
Green function.

II. CONVENTIONS AND DEFINITIONS

Units are chosen with G = c = 1 so that all quantities
can be expressed as powers of a length. The metric is
written as a perturbation on the static part p b of the
Robertson-Walker background, with signature +2 and
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curvature parameter A: C (—1, 0, 1):
ds' = a'(g)[p s(x) + h t, (rj, x)]dz dx'.

b

h g=0(e ),
V'phab = O(e ),
V, h t, =O(e /v) .

(2a)
(2b)
(2c)
(2d)

These equations serve to define e and v. . Since
h b are considered perturbations, their magnitude is
parametrized by e Newtonian potential/c « 1.
Their derivatives are parametrized by r, which gives the
length scale relative to the particle horizon length I:
K = I/L. In principle e may be either greater or less
than 1; in practice it is usually small. Specific restric-
tions will apply when we consider orders of magnitude
more carefully in Sec. IV.

In addition to taking e (& 1, it is also assumed that
e /r « l. As shown below, this implies that the matter

The coefIicients and coordinates are dimensionless, and
so the scale factor a(rt) (which we write as a function of
conformal time) is a length. Indices a, b, c, . . . run 0—3,
except for i, j, . . . , n (the Fortran integers) which range
over the spatial indices I—3. An extremely useful source
of formulas for the background metric and perturbations,
in both conformal and proper time, is Appendixes A—D
of Kodama and Sasaki [2]. Our notation is similar; in
particular a prime (e.g. , a') always means derivative with
respect to conformal time.

Naturally the perturbations 6 b are assumed small
compared to p b, which are of order unity. Of course this
does not imply that the corresponding matter density
fluctuations are small compared to the background. We
use the scheme of Futamase [3] for parametrizing the size
of the perturbations and their derivatives, which is very
much like the one used in the short wave approximation
for studying gravitational waves in a curved background
(see Isaacson [4]). With this scheme, orders of magnitude
in our problem are
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inhomogeneities always move slowly (nonrelativistically),
and also that the efI'ective stress-energy of the metric
perturbations is negligible.

With this in mind, the expansion of the metric perturba-
tions in terms of the spatial eigenfunctions comes from
Bardeen [8]:

III. THE PEHTU'RHATION EQIJATIDNS
hoo = 2&oo V(~) Q(x ~)&(~ ~) (4-)

V';V'*Q(x, ~I) + q Q = 0,

k =+I: q =0, 3, 8, . . . , (n —I),
k=0: q &0,

g + 1

(3a)

(3b)

(3c)

(3d)

This describes the sort of Gelds resulting from density
fluctuations. Spatial derivatives are longitudinal with or-
der of magnitude t7, Q = O(q) = O(I" ). Vector (rota-
tional) and tensor (transverse) modes are not included,
since it is reasonable to suppose that most observables
(such as lensing and redshift) are dominated by scalar
efI'ects. However, infIation-induced gravitational waves
could have a signiGcant efI'ect on the anisotropy of the
cosmic microwave background; see, e.g. , Davis et al. [7].

Representing the perturbations this way both simpli-
Ges and complicates the interpretation of r. It simpli-
fies in that for a given scalar mode Q, K is just the
reduced wavelength: v = q . It complicates in that
for a real condensed object like a galaxy or cluster, r
must be thought of as characterizing those wavelengths
which contribute the largest physical efI'ect at a point.

I

The homogeneity and isotropy of the background p b

allows separation of space and time dependence in the
Geld equations, and so it is useful to write the perturba-
tions not as spacetime functions h b but as a harmonic
decomposition. (See, e.g. , Harrison [5] and Sasaki [6].)
The perturbations' spatial dependence is expanded in
eigenfunctions, or normal modes, of the covariant Lapla-
cian V';'t7' on the three-dimensional (3D) static back-
ground p,~, reducing the gravitational Geld equations to
a set of equations for the time-dependent amplitudes of
the modes. The Appendix gives some general references
to the (extensive) literature on the eigenfunctions.

In this paper we focus on the scalar modes, represent-
ing perturbations to the metric and matter variables that
can be written entirely in terms of solutions to the equa-
tions

ho.- = p(q) q 'V';Q(x, ~I) B(q, q), (4b)

h.'2 2~'2 dp q K'q 0 9 q +13HT 9 q

+2 dp(II) q V';V, Q(x, q)H~(II, g) . (4c)

h, pp ———2 (5-)

h, o, ——0,

h,„- =+2~,, (5c)

Note that the amplitudes A(Il, II) and H(II, II) are sup-
posed to have the same order of magnitude (e ) as the
metric perturbations themselves.

(Othel' CoI11111oI1Choices fol' the gallge include 11aI'111OI11C

and synchronous. Harmonic gauge is the usual choice for
gravitational waves, and eliminates many higher-order
perturbation terms in the Einstein tensor, but the form
of the metric is more complicated. Synchronous gauge is
also common, and has the advantage of leaving the time
coordinate unchanged. But it suÃers &om being under-
specified, even when there are only scalar modes, allowing
spurious gauge-mode solutions which can be difFicult and
annoying to identify and remove. )

In longitudinal gauge the Einstein tensor is

Integrals over the measure p(g) stand for whatever oper-
ation expresses the completeness of the Q's, depending on
whether the eigenvalue spectra in Eqs. (3) give a discrete
or continuous set of modes. Most linearized calculations
omit the integrals as being implicit, but in this paper we
write them explicitly for clarity in what follows.

Choosing the longitudinal gauge, B = Hz. ——0, simpli-
Ges these expressions greatly. With only scalar perturba-
tions this gauge fully speciGes the metric and lets us think
of the perturbations as local length contractions and time
dilations, making for easy comparison with Newtonian
theory because it leaves the metric diagonal:

(a') '
Goo=3

i

—
i

+k +2 p Q q H+ 3 H'+3k(A —H—).a

Go'=2
a'

p V';Q —A —H'
a (6b)

(a'l ' (a"'l
&V=

I

—
I

—2I —
I

—& ~V —2~V(aJ (a)
12 (a' (a"l a'

p Q —q (A+ H) +
i

— —2
i i (A —H) ——(A.

' —2H') + H"
2 (a )a a

p V', V,.Q(A+ H) .

This includes all terms linear in h b and its deriva-
tives. It does not include nonlinear terms, which are
O(e ), O(e /v), O(e /v ), or smaller, the so-called pseu-

dotensor terms discussed at the end of Sec. IV. The
stress-energy tensor T b for the matter is constructed by
deGning variables in the matter rest frame and then per-
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forming a Lorentz boost into the coordinate frame [8].
The perfect-Huid background model is given (scalar) per-
turbations to density, pressure, and velocity as

To obtain equations for H(q, q), and thus P(q, x), in
terms of the matter variables we use Eq. (10) in the
components of the orthogonality equation

p(g, x) = p(rl) + p(rj) dp(q) Q(x, q)A(rI, q), (7a)

P(rj, x) = P(q) + p(g) dp(q) Q(x, q)II(q, q), (7b)

v;(il, x) =0— p, (q) q 7,Q(», q)v(rl, q) . (7c)

Actually, it is better to call A a density fluctuation be-
cause, as mentioned earlier, it is not necessarily small.
However, the changes in velocity and pressure are always
small, as shown below. (Note that the definition of the
pressure perturbation II differs from Bardeen [8]; this
definition is easier to interpret when P = 0.)

To Grst order in velocity, the boost to the coordinate
frame gives components of T g as

Tpp=a p 1+ d (8a)p Q(2A+ 4)

Tp, ——a'p (1+ o.) p q V';Qv

+ dp q V', Qv dp QA (Sb)

2T~ —a pp~ o-+ )a Q(2oH+ II). (Sc)

p, (V', V'~. Q+ sq p;,.Q)(A+ H) = 0,
which can only be true for arbitrary amplitudes A and
H if

A(rj, q) = H(q, q) + O(e ) —. (10)

Using this in Eqs. (5) and (1) for the perturbations and
the line element puts the metric in the linearized pseudo-
Newtonian form widely used for studies of gravitational
lensing, etc. :

ds = a [
—(1 + 2$)dg + (1 —2P)p;~ dx'de~], (11).

4(n, ) = —-~- = —j~v(~) Q(, ~)&(n, ~)+ &( ')
2

(12)

(o is the background pressure/density ratio. ) Remain-
ders are O(v2); the product term in the time-space com-
ponent is kept because 4 may be greater than 1.

Most approaches to perturbation theory equate terms
with equal orders of magnitude. But deferring order of
magnitude arguments lets us exploit the harmonic de-
composition of the Geld equations first, in essentially the
same way as isolating coeKcients in a Fourier series [see
Eq. (13)]. This has the advantage that the results ob-
tained remain valid as the relative order of magnitude of
terms in the field equations change say, as the density
contrast is either diffuse (large r) or condensed (small tc),
or as its amplitude becomes large or small.

Removing the trace from the Einstein equation G,~—
SmT, ~

= 0 gives a result which looks familiar from lin-
earized gravity (on Hat spacetimes):

V Q*(G g
—SzT g) = 0,

where dV is the proper volume element in the static
three-space p,z (see the Appendix). The density 8uc-
tuations are governed primarily by the time component
a = b = 0. Using Eqs. (6) and (8) for the Einstein and
stress-energy tensors gives

/

3
~

—
~

H'+ (q + Svra p —6k)H = 4vra )pA . (14)

To this level of approximation, the scale factor obeys the
usual Friedman-Robertson-Walker (FRW) equation for
the background density p(rI) [compare Eq. (20) below]:

Sar, f a'') '—(a'~) =
I

—
I

+k.
3 gay

In a formal sense, a must obey this equation in order that
the integration in Eq. (13) give a Dirac h function in po-
sition when applied to the order 1 (background) terms in
the Geld equations, owing to the assumed completeness
of the Q's. This allows us to make free use of substitu-
tions from the background model for terms involving the
scale factor and p in the following sections.

Equations relating the metric perturbations to velocity
and pressure perturbations follow similarly. The equa-
tions for II and v come most readily from the spatial and
space-time components of (13), respectively:

I

H" + 3
i

—
~

H' —(S~a'p~+»)H = —4~a'plI,

(16)

a')'
q H'+

(

—
i
H = —4vra p(1+ o)v[1+ O(A)) .

&a)
(Strictly speaking, the last equation holds only for q g
0—no real restriction, because q = 0 is a constant
mode, merely representing an improper definition of
background. ) We leave the A correction in (17) inexplicit
since products of eigenfunctions add nontrivial compli-
cations to the formalism, but this suffices for order of
magnitude assessment.

IV. ORDERS OF MAGNITUDE

Comparing the perturbations and their relative efFects
on the metric requires careful consideration of the size of
the time derivatives. These are of order one in systems
that are not gravitationally bound, H' = O(e ). How-
ever, in bound systems we expect H' = O(e /v) —for
instance, one can imagine an observer stationed a fixed
distance B from the center of a collapsing dust cloud;
changes in the potential are P(V/R), where V is the
speed of infall for the dust, or e2(e/e) by order of mag-
nitude.

In Eq. (14), the size of the density contrast depends
on the ratio c/lr. [remember that q = O(e i)]. The al-
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lowed regimes are labeled as linear or nonlinear density,
depending on the size of 4:

LDR: ~/~ &&1
NLDR: ~/r )) 1

O(H')
C2

O(A), r. «1
E /K
e /r.

O(&), ~)) 1
2

Not allowed

(.»1)

Strong density Huctuations with large (superhorizon)
scales are not allowed because they create potentials
that cannot be treated as perturbations on the back-
ground metric. (So the results derived here, in particular
the Green function given later, should not be expected
to work in a strongly "tilted" universe. ) However, the
small-scale density fluctuations [nonlinear density regime
(NLDR) with r « 1] should have an order of magnitude
consistent with Newtonian theory. The prediction from
the Poisson equation

, &*&*tioo = 4z-p& (18)

is also that 4 should be O(e /r. ). This holds for weak
density fluctuations as well, again provided that the scale
is small, since Newtonian physics can be expected to ap-
ply in a sufFiciently small region of space.

Orders of magnitude for pressure and velocity pertur-
bations come from Eqs. (16) and (17):

LDR: ~/~ && 1
NLDR: e/K )) 1

O(II)
E2

~'/K'

O(v)
E /K

In the linear density regime the partial time derivative is
most important, and comparing orders of magnitude we
find v = O(e /r) and II = O(c ), as in the table above.
In the nonlinear density regime p is of order r /r, and
again the estimates agree with the results from Eqs. (16)
and (17).

The tables show, not surprisingly, that in any allowed
(subhorizon) regime, the pressure and velocity perturba-
tions are much weaker than the density fluctuations. So
under these conditions the metric perturbations H(ri, q)
are determined primarily by A(q, q); that is, hydrody-
namically the density fluctuations can be treated as the
source.

We also have to consider eKects on the scale factor
a, since it makes an implicit contribution to any order of
magnitude arguments. When nonlinear terms are kept in
the Einstein tensor, their spatial average can be thought
of as an energy density and used to construct an e8'ective
stress-energy tensor for the metric perturbations. (See,
e.g. , Isaacson [9].) Dropping for a moment the require-
ment that a(g) come from the background, on physical

These agree nicely with the simple Newtonian argument
that for bound systems (NLDR) the velocity should be
proportional to the square root of the potential, v
H / e, and the pressure should be II Av e /r
More generally we can use the Euler equation for the
hydrodynamics of a perfect fluid in a gravitational field:

8v = [O,v+ (v . V')v] = —p V'P —V'P .

grounds we expect

a(g) = aFR~[1 + O((e /r ))], (20)
but clearly, the average over even a relatively small
volume must be less than the maximum value; i.e.,
O((e /r })(( e /r &( 1. So using the background scale
factor does not alter the arguments about A, II, and v,
simply because the corrections are even smaller than any
of the terms discussed previously.

V. C KEEN FUNCTION

H(rj, q) = H(qo q)E(go q q) — du I( uq)E( ug, q),

where

E(u, g, q) = exp[ —(q —3k)C(u, g)],
a(u) 2

a(~)
4vr /'a'pl

, ~
~(u, q),

1 ac(u, q) = — du (—;)

(21)

(22a)

(22b)

(22c)

All of this, along with the definitions

V(y} Q*(y, q}4(no y) (23a)

A(u, q) = dV(y) Q*(y, q) A(u, y),

is inserted into Eq. (12). The integrals are re-ordered
to contract the mode sums as much as possible, to give
a kernel against which the initial conditions P(rjo, y) and
source A(u, y) are integrated over space. After some ma-
nipulation this gives

P(q, x) = dV(y') G(qo, q, x, y)P(rip, y)

where

4m " ap
d'tL

3 a'

+O(e )

( ) 3k' (u, v)
a(g)

V(y) G(u, q, x, y)A(u, y)

(24)

dp(q) Q(x, q)Q*(y, q)

(25)

which is the central result of this paper: a Green function
for metric perturbations due to scalar density fluctua-
tions in a Robertson-Walker background. Equation (24)
has several properties expected from an expression for
a pseudo-Newtonian potential; for instance an overden-

Having determined that the scalar metric perturba-
tions are determined primarily by the density fluctua-
tions, we can relate them directly by solving Eq. (14)
for the mode amplitudes H(q, q) and using the result in
(12) to get P(g, x). Equation (14) is of the Riccati type;
the standard solution given in handbooks such as that of
Gradshteyn and Ryzhik [10] is
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sity A(u, y) ) 0 decreases P in its neighborhood. Other
simple cases can be checked with the help of the follow-
ing formulas for special arguments of the Green function,
which come from the completeness and. orthogonality re-
lations, respectively:

G(u, u, x, y) = b(x, y),

VG(, „, , „)= a u) '"~~"~i
a(&)

(26)

VI. ANALOGY WITH DIFFUSION

The most striking thing about Eq. (28) is that it
looks very much like the Green function for diffusion
in a uniform medium, and more generally, the displace-
ment probability distribution for an isotropic random
walk [11]. For instance, we can compare the solution
to the equation of heat conduction:

BT = KV'T+ c„'q. (29)

(In this section, K and j represent thermal diffusivity
and the rate of heat production per unit mass, not the
reduced wavelength and mode numbers used in previous
sections. ) In an infinite uniform medium with no sources
(j = 0) the solution for an arbitrary initial temperature
distribution is [12]

T(r, t) = r ' G(r —r ', t —tp)T(r ', tp), (30a)

G(r —r', t —tp) = exp
[47rK(t —tp)]'~' 4v(t —tp)

(30b)

The first shows that P matches its initial conditions as
g -+ gp in (24). The second, which holds as long as Q =
const is an allowed mode, shows that P is a function of
time alone if L is, which means only that the background
density has been shifted: p ~ pb, (q); of course A = 0 is
also a solution. (Any spatially homogeneous form for the
density fluctuation leads to a standard Robertson-Walker
metric after transformation of the scale factor and time
coordinate. )

Specific forms for the Green function (25) come f'rom

choosing a particular representation (a coordinate sys-
tem, in other words) for the Q's, given k. Regardless of
the representation, in closed or open spaces (k = +1) the
integrals can be very ugly, especially for k = —l. But for
angles smaller than the curvature scale k = 0 is a good
approximation, and under inflation it would hold gener-
ally. In this case we can represent the Q's as plane waves
and carry out the integrals explicitly. Using rectangular
coordinates for q, the integral in (25) is separable, and
completing the square in each exponent gives

a(u)

(28)

The rest of the paper is devoted primarily to examining
this formula and its use in Eq. (24) for the potential.
Henceforth k is implicitly zero, unless noted otherwise.

where Hp is the Hubble liarameter, evaluated at gp in this
particular instance, and At is the proper (rather than
conforrnal) time interval corresponding to (i1 —qp). This
analogue of the difFusivity is consistent with an alternate
approach that comes from converting Eq. (14) for the
mode amplitudes H(g, q) to an equation in (g, x), to form
the analogue of (29). Summed over modes and converted
to physical variables (proper time, standard Laplacian,
etc.) it can be written as

l9t(ag) = (3Hp) V' (aP) ——Hp(aA) (32)

where the Hubble parameter is taken to be a function of
time. This is a diffusion equation for the potential, with
time-dependent diBusivity and "specific heat capacity":

T ++ —aP,
r. ++ (3Hp)

cp ++ 2HO )

q++ aA,

(33a)
(33b)
(33c)
(33d)

in agreement with (31). In simple kinetic theory, the
diffusivity would imply a mean free path of Ho for par-
ticles of average speed c = l. In this approximation,
changes in P travel at all speeds, as can be seen both
from the analogy with diBusion and from the fact that
Eq. (24) assigns a nonzero value to the potential every-
where, even for (spatially) localized density fiuctuations.
This super6cial causality problem comes from dropping
terms O(e4/K2) while constructing (14). Ordinary diffu-
sion cures the causality problem by making the diffusivity
and specific heat capacity temperature dependent [13].
In the gravitational case this means making Ho ——a'a
a function of the metric perturbations which it is, in an
exact treatment, since the scale factor is afFected by the
spatial average of (V'P)2 [cf. Eq. (20)]. But causality
does not represent a problem in the application of (24),
however, because far from the source, "errors" in P are
extremely small —below the level of approximation for
the calculation.

VII. NEWTONIAN LIMIT

The diffusion analogue is easiest to see when consider-
ing the role of the initial conditions. The Newtonian
limit treats the opposite situation, where we consider
compact sources (gravitationally bound systems, for in-
stance) evolving slowly and with negligible initial con-
ditions. If the time derivative is ignored, the gravita-
tional diffusion equation (32) becomes the Poisson equa-

Since there are no sources, the gravitational analogue is
the integral over initial conditions in Eq. (24) for the po-
tential, using the Green function (28). If the integral for
the potential is written with a physical volume element
a (gp)dV, like the temperature integral above, we com-
pare a (gp)G(rjp, g, x, y) with Eq. (30b). Taking qp and

g close together to minimize the kinematic efFects of ex-
pansion, the analogue of the diffusivity and time factors
is just

~(t —to) ~ a (go)C(go, g) = (3Ho) 'At,
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tion (18) for the potential, after replacing IIO2 by 8vr Gp/3.
This makes it reasonable to suppose that the Green-
function expression (24) for the potential, which is essen-
tially derived from the gravitational difFusion equation,
can be reduced to a Newtonian form under appropriate
conditions, providing a useful check of the formula.

We use the formulas for k = 0, but in fact the New-
tonian limit holds in a sufEciently small region of any
cosmological metric [14], and so the results can be ex-
pected to hold for k = +1 as well. [Even when k g 0
the difFusion equation (32) still reduces to the Poisson
equation when only the NLDR leading terms are kept. ]
Using the background equations for the scale factor and
density we write the potential as

V — du —GL —Gp p

the Green function make this academic. ) Another change
of variable to z = Do/i' puts the time integral in nearly
standard form, and we find

dzz / e (37a)

Dp = —~o
3 a'fy —x/'
4 a(il —gp)

The z integral is simply iri~2erfc(b ~ ) or, to a good ap-
proximation when b is small, just vr

/' . This along with
the definition of Do and the ever-present background
equations for the scale factor reduce (37a) to the familiar
Newtonian form

3a' /y
—x['

p =
4

(35b)

This shows a peak at approximately m~ = (2/3)Dp with
a width of about (2/5)Ds. Both are small provided that
the matter distribution A(q, y) is such that the volume
integral restricts Do to small values. More precisely, an
expansion in n is self-consistent if the width of the peak
is small compared to the elapsed conformal time: Dp «
(YJ

—'gp). With the flat background, and using imp: 0,
this means that (omitting overall constants of order one)
we must have

(36a)

or

« 1, (36b)

where the last line follows from the "original" defini-
tion of K as perturbation size divided by particle hori-
zon length. Thus the Newtonian limit holds for density
perturbations that are highly localized, as one would ex-
pect. Furthermore, if the density field changes little in
the time corresponding to the width of the peak, the
source and expansion terms can be evaluated at m = 0
and moved outside the time integral. (Strictly speak-
ing, m„might be a better choice, amounting to a notion
of "retarded time, " but the errors due to approximating

by analogy with the Newtonian form. The contribution
of the initial conditions Gogo is negligible provided that
gp is taken far in the past and we assume that the early
Universe was smooth. Then to evaluate the time inte-
gral, we can imagine that the potential is to be measured
at a point outside a nearby "lump" of matter. In this
situation it is physically reasonable to suppose that the
Green function will peak for values of conformal time u
close to g, corresponding to the time it takes for changes
in the source to inHuence the observer. For small values
of reversed conformal time m = g —u the Green function
IS

s/2
G =

~

—
)

ia ~ exp( —Do/i') + O(w ~ ), (35a)
q4~ a)

pL
a/y —x/

(38)

To summarize, this formula holds when the initial condi-
tions can be neglected, and the spatial dependence of the
density contrast A(u, y) limits b to small values in Eq.
(37a), while the time dependence has a scale much larger
than (any value of) Do. In fact most gravitationally
bound systems satisfy these criteria quite well, and are
also quite uninteresting from a cosmological standpoint.
More interesting are situations where the time evolution
of the density Huctuations makes a significant contribu-
tion to the metric. A theoretical description requires
extending the calculation just given to post-Newtonian
order by expanding the Green function and source terms
in a time series. We hope to show in a forthcoming pa-
per [15] how this is done, and under what conditions Eq.
(24) for the potential predicts significant deviations from
the Newtonian (and LDR) approximations.

VIII. CONCLUSION
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In most situations of observational interest, the Green
function expression (24) for the pseudo-Newtonian po-
tential ofFers a simple and relativistically correct way of
calculating the metric perturbations, taking into account
effects such as multiple (perhaps closely spaced) sources,
deviations from the "thin lens" approximation, nonlinear
density evolution, and the cosmological expansion. The
results can be applied in the calculation of observational
effects such as lensing, redshift, and time delay. We hope
that this will stimulate exploration of situations that are
diKcult to treat with current techniques. An upcom-
ing paper will examine the post-Newtonian limit of the
Green-function expression, with attention to those situ-
ations which predict significant observable efFects.
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with the eigenvalue spectra in Eqs. (3). The angu-
lar functions are ordinary spherical harmonics; good
overviews of the properties of the radial functions and jor
the Q's as a whole are in Harrison [5], Bardeen [8], Ko-
dama and Sasaki [2], and Birrell and Davies [16]. The
last authors write the orthogonality and completeness re-
lations as

& Q*(y, a)Q(y, p) = b(a, p),

dl Q*(x ~)Q(y ~) =b(x-y)

APPENDIX

This appendix gives selected references to the litera-
ture on harmonic functions. Most calculations do not re-
quire an explicit representation; in spherical coordinates
a schematic representation is

Q(x, rI) = II, (n, cr) Yim(0, P),

x = (cr, H, p),

rI = (n, I, m),

q =n —A:,

where dV = (p,'. ) ~ d y is the proper volume element in
the static background three-space and dp is the mea-
sure associated with the eigenvalue spectrum. More de-
tailed information, including explicit representations of
the radial e1genfunctEons and proofs of orthogonality and
completeness, can be found in (see also [5]) Parker and
Fulling [17], and Abbott and Schaeffer [18].

Finally, note that the literature aimed at problems in
quantum Geld theory uses only scalar harmonics, while
in general relativity an arbitrary tensor function may be
colnposed of scalar, vector, and tensor harmonics. The
early sections of Kodama and Sasaki [2] give a good ex-
planation of the distinction.
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