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In principle, the tensor metric (gravity-wave) perturbations that arise in inflationary models can,
beyond probing the underlying inflationary model, provide information about the Universe: ionization
history, presence of a cosmological constant, and epoch of matter-radiation equality. Because tensor
perturbations give rise to the anisotropy of the cosmic background radiation (CBR) solely through the
Sachs-Wolfe effect we are able to calculate analytically their contribution to the variance of the mul-

tipole moments of the CBR temperature anisotropy. In so doing, we carefully take account of the effect
of tensor perturbations that entered the Hubble radius during both the matter-dominated and radiation-
dominated epochs by means of a transfer function. (Previously, only those modes that entered during
the matter era were properly taken into account. ) The striking feature in the spectrum of multipole am-

plitudes is a dramatic falloff for l +l+z„ss, where ztss is the redshift of the last-scattering surface,
which depends upon the ionization history of the Universe. Finally, using our transfer function we pro-
vide a more precise formula for the energy density in stochastic gravitational waves from inflation, and,
using the Cosmic Background Explorer Differential Microwave Radiometer (COBE DMR) quadrupole
normalization, we express this energy density in terms of the "tilt" of the spectrum of tensor perturba-
tions alone and show that it is unlikely that the stochastic background of gravity waves can be detected
directly in the foreseeable future.

PACS number(s): 98.80.Cq, 98.70.Vc, 98.80.Es, 98.80.Hw

I. INTRODUCTION

Quantum fluctuations arising during inflation lead to a
spectrum of scalar (density) [1] and tensor (gravity-wave)
[2] metric perturbations which are nearly scale invariant
[3]. In turn, both give rise to anisotropy in the tempera-
ture of the cosmic background radiation (CBR), with
their relative contributions depending upon the steepness
of the inflationary potential [4,5]. CBR anisotropy and
other astrophysical data, e.g. , redshift surveys, peculiar-
velocity measurements, and data from gravity-wave
detectors, can, in principle, be used to learn much about
the inAationary potential in the narrow interval that
governs the modes that affect astrophysically interesting
scales. For example, they can be used to infer the value
of the inflationary potential, its steepness, and the change
in its steepness [5,6].

In all likelihood, CBR anisotropy provides the cleanest
and most sensitive probe of the metric perturbations
created during inflation. The CBR anisotropies that arise
due to scalar and gravity-wave fluctuations add in-
coherently and can thus be computed separately. The
calculation of the anisotropy that arises due to scalar per-
turbations is complicated and well understood: Anisotro-
py arises due to at least three physical effects, the Sachs-
Wolfe effect [7] (gravitational potential differences on the
last-scattering surface), the velocity of the last-scattering
surface, and intrinsic Auctuations in the CBR tempera-
ture at last scattering. Further, the ionization history
and baryon density are very important [8]. On large-

angular scales, for standard recombination 0~2, the
Sachs-Wolfe effect dominates, and on small-angular
scales the other two effects dominate.

The CBR anisotropy due to tensor perturbations arises
solely from the Sachs-Wolfe effect. It depends
significantly upon the redshift of the last-scattering sur-
face and less significantly upon a possible cosmological
constant and the redshift of matter-radiation equality
(through the value of the Hubble constant). Thus, if the
tensor contribution to CBR anisotropy can be separated
from the scalar contribution, it provides a very direct
probe of cosmology. The tensor contribution has been
computed analytically, but only on large-angular scales
with other simplifying assumptions being made [9] and,
recently, numerically in the case of standard recombina-
tion and a matter-dominated Universe [10].

The purpose of our paper to give simple and accurate
analytic formulas for the tensor contribution to the vari-
ance in the CBR temperature multipoles ( ~a& ~

) ("an-
gular power spectrum" ). In previous analytical work [9],
only the modes that enter the horizon after matter-
radiation equality were properly taken into account, so
that these results are accurate only on large-angular
scales; we take into account the modes that enter the hor-
izon before matter-radiation equality by means of a
transfer function and thereby accurately describe the
CBR anisotropy that arises on all angular scales. The
transfer function also allows us to give a more precise ex-
pression for the energy density in stochastic gravity
waves produced by inflation, and unfortunately, we show
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that the prospects for detecting this background are not
good. We compare our results for CBR anisotropy,
where possible, to the numerical results of Refs. [10] and
discuss how the tensor multipoles depend upon the un-
derlying cosmological parameters: the redshift of last
scattering zLss, the redshift of matter-radiation equality
z, , and the presence of a cosmological constant.

II. GRAVITY WAVES AND (CBR ANISQTRl3PY

A. Qualitative view

In this section we begin simply and gradually add de-
tail, ending with our most general formulas. In that spir-
it we will assume scale-invariant metric perturbations to
begin and then generalize our results to allow for devia-
tion from scale invariance. For scale-invariant perturba-
tions the amplitudes of density perturbations and
gravity-wave perturbations are independent of scale at
horizon crossing in the post-inflationary Universe:
(6p/p)h„—=Es and how —=eT. Horizon crossing is defined
by k~h„, =k /R =H; R is the cosmic-scale factor, and H
is the expansion rate. Throughout we take the scale fac-
tor to be unity at the present epoch, so that comoving
wave number k and physical wave number kphyg are equal
today; comoving wavelength X and wave number are re-
lated by A, =2~/k.

It is useful to define the conformal time today, ~0, and
at the last-scattering event ~Lss..

ra= I dt/R(t)=2HO ',
(1)'LSS

rLss dt/R (t) =ra/'1/ I+zLss
0

hor, k(0)
=cq, 0~ 0,

5T 5p

hor, k(0)
(2)

where k(8) corresponds to the wavelength that si!btends
an angle t9 on the last-scattering surface:

mechanism for reionizing or keeping the Universe ionized
at z ~ 1300, it has been suggested that a very early gen-
eration of stars could have reionized the Universe at a
redshift of order 100 or so [13].

The physics underlying the Sachs-Wolfe effect is very
simple: The temperature Auctuation on a given angular
scale is roughly equal to the metric fluctuation on the
corresponding length scale on the last-scattering surface.
For tensor perturbations, the metric perturbation is equal
to the gravity-wave amplitude. For scalar perturbations,
the metric perturbation is given by the Auctuation in the
Newtonian potential; on length scales that have yet to
enter the horizon at last scattering or that entered the
horizon after matter-radiation equality, the fluctuation in
the Newtonian potential is given by the horizon-crossing
amplitude of the density perturbation. For scales that
enter the horizon while the Universe is still radiation
dominated, the fluctuation in the Newtonian potential de-
creases after horizon crossing, as R

The CBR temperature fluctuation that arises on a
given angular scale due to scalar perturbations through
the Sachs-Wolfe effect alone is roughly

where we assume a fiat, matter-dominated Universe to-
day. The quantities ~o =6000h ' Mpc and k(8)- 200

0
—1

70 ~

ri ss—-6000h ' Mpc/+ I+zLss

correspond to the comoving size of the present horizon
and that at last scattering. The comoving distance to the
last-scattering surface

7 o( 1 1+1+zLss ) —ro

and thus the angle subtended by the horizon scale at last
scattering corresponds to 8i ss —rLss/ro ( —2' for
zi ss: 1 100).

In the standard picture, recombination occurs at a red-
shift of order 1300; i.e., the ionization fraction X, be-
comes small, and last-scattering occurs at a redshift of
about zLss=1100; i.e., the photon mean free path be-
comes greater than the Hubble scale [11]. If the Universe
remains ionized much later or is reionized after recom-
bination, the last-scattering event can occur much later,
1+zLss —-(0.03X,Qiih )

~ where Qs is the fraction of
critical density contributed by baryons, Ho = 100h km s
Mpc ', and GO=1. Taking h =0.4, X, =1, and saturat-
ing the primordial nucleosynthesis bound to the baryon
mass density, Oii h 5 0.02 [12], last scattering could
occur as late as zLss —-76. While the conventional wis-
dom has it that cold dark matter models lack a plausible

Here k,q
is the scale that crossed the horizon at matter-

radiation equality and 8, —I/+ 1+z, -0.3'.
For scale-invariant perturbations and 0 L9, -0.3', the

Sachs-Wolfe contribution to the temperature fluctuation
is independent of angular scale. On small-angular scales
0 ~ 0, , the Sachs-Wolfe contribution to the CBR temper-
ature anisotropy decreases, but is a subdominant contri-
bution to total anisotropy produced by scalar perturba-
tions. On angular scales larger than the horizon at last
scattering, 8 8Lss- I/Ql+zLss ( 2 for zi.ss =1100)
the Sachs-Wolfe effect is the dominant contribution to
CBR anisotropy.

The CBR temperature fluctuation on a given angular
scale due to tensor perturbations arises solely through the
Sachs-Wolfe effect and is roughly

5T
-how[ZLss k(8)], (4)

where how[zLss, k(8)] is the (dimensionless) gravity-
wave amplitude on the scale k(8) at last scattering. For
gravity-wave modes that have yet to reenter the horizon
at last scattering, how(z„ss k) is just equal to ET, once a
mode enters the horizon, its amplitude redshifts as the
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scale factor, so that

~ow(zLss k ) ET(Rh /RLSS)

For modes that enter the horizon during the matter-
dominated epoch, R h„/R Lss

——(k r„ss);for modes that
enter during the radiation-dominated epoch,

R h /R Lss ( k /k )(k 7 i ss )

[A simple way to understand why the amplitude of a
gravity-wave mode redshifts as the scale factor after it
enters the horizon is that such gravity-wave perturba-
tions correspond to massless bosons (gravitons) whose en-

ergy density ( ~ m pik ni,„,h ow ) redshifts as R . ]
For scale-invariant tensor, perturbations, the CBR an-

isotropy due to gravity waves is only independent of scale
for 8 + OLss, on smaller angular scales, it decreases:

6T
~T ~ 0 LSS~

0

2

T
g LSS

00,
FT 2

LSS

On angular scales greater than that subtended by the
horizon at last scattering, OLss —2' in the standard
scenario, the ratio of the tensor to the scalar contribu-
tions to the temperature anisotropy is constant and equal
to ET/ss, in turn, this ratio is related to the steepness of
the inflationary potentia1, evaluated when these scales
crossed outside the horizon during inflation (about 50 e
folds before the end of inflation): ET/Es-xsa
—:(mpi V'/V)~a I4]. On smaller angular scales the tensor
contribution falls as (9 because these scales are dominat-
ed by gravity-wave modes that have entered the horizon
before the epoch of last scattering and have had their am-
plitudes redshifted. On the smallest angular scales the
tensor contribution only decreases as 0, as these scales
are dominated by gravity-wave modes that enter the hor-
izon before matter-radiation equality. The steep faH off
of gravity-wave modes for / ~ g 1+zLss provides a po-
tential signature of zLss and tensor perturbations.

It is conventional to expand the CBR temperature Auc-

tuation on the sky in spherical harmonics:

(the ensemble average) is referred to as the angular power
spectrum' and is related approximately to the CBR tem-
perature fluctuation by

2
5T —/ ~ lai I ~ for /-200'/8 .

To be more precise, the rms temperature fluctuation
averaged over the sky for a given experiment is given by

5T 2l +1

where 8'1 is the appropriate response function for the ex-
periment. For a two-beam experiment, where the tem-
perature difference between two antennas of Gaussian
beam width o. separated by angle 9 is measured,

W&
=2[1 P&(cos—8 ) ]e

For scale-invariant density perturbations, the Sachs-
Wolfe contribution to I times the angular power spec-
trum is roughly constant and equal to c,z for I t', ;
thereafter, it decreases as l . For scale-invariant
gravity-wave perturbations, l times the angular power
spectrum is constant for / ~/ Lss( -35 for standard
recombination); it decreases as / for / ~ /, and as /

for l~l, .
Finally, if the scalar and tensor perturbations are "ti-

tled", that is, not scale invariant, say, 8& ~ A, and

ET ~A, , the previous results for (5T/T)e are modified

by factors of 8 ' and 8 respectively, and for ( l a& l ),—2a& 2(x T
by factors of l and I, respectively. The quanti-
ties a& and aT are related to the power-law indices often
used to characterize the scalar and tensor perturbations
(see below) by

as (1 n )/2 ~ aT = nT/—
The qualitative behavior of the CBR anisotropy due to
scalar and tensor perturbations is shown in Fig. 1.

In [(3T/T) - g / az, I ]
)i

n-1

2

T

5T(x)
TQ 1=2m = —1

where the unobservable monopole term and the dipole
term, which is dominated by the contribution of the
observer's peculiar velocity, are omitted. The multipole

amplitudes depend upon the observer's position r. The
quantity la& l averaged over all observation positions

'More precisely, the average is over all realizations of the Auc-

tuation spectrum; we have implicitly assumed spatial ergodicity.

1/2

LSS

1/p

EQ

= In(4-~oa&&)

FIG. 1. Qualitative behavior expected for CBR anisotropy
arising from scalar and tensor perturbations through the Sachs-
&olfe effect. The horizon-crossing amplitudes of the scalar and
tensor perturbations are taken to be E,&

~ k" "' and
—nT/2

c z- ~k, respectively (scale invariance corresponds to
n —1=nT=O).
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B. Quantitative view

R(r) = [r/r, +R,',"]2 R„, — (10)

where we have assumed a Oat Universe with matter and
radiation (i.e., photons with present temperature 2.726 K
and three massless neutrino species), R p

= 1,
&p

——mp '+1+R„=2Hp ', R„=4.18X10 'h 'is the
value of the cosmic scale factor at the epoch of matter-
radiation equality, and r«=[i/2 —1]R q

'Tp. (The con-
formal age of the Universe today difFers from 2Ho ' by a
small amount due to the tiny contribution of the radia-
tion energy density today:

r„~,y=rp[+I+R, —QR, ]

=2II ( I —QR„)=2II [1—O(1%)],
which we shall henceforth neglect. )

We expand the gravity-wave perturbation in plane
waves:

hjl, (x, r)=(2m. ) I d k hi, (r)F.'I, e

where e'& is the polarization tensor and &'= X, +. The
gravity-wave perturbation satisfies the massless Klein-
Gordon equation

+2 I & +I 2h i —0

where an overdot indicates a derivative with respect to
conformal time and k =-k k.

The growing-mode solutions to this equation have sim-
ple qualitative behavior: Before horizon crossing
(kr && 1), hI, (r) is constant; well after horizon crossing
(kr »1), h i, ~ coskr/R. For modes that cross inside the
horizon during the radiation-dominated era, the exact
solution prior to and including the radiation-dominated
era is jp(kr); for modes that cross inside the horizon dur-
ing the matter-dominated era, the exact solution is
3j,(kr)/kr Here jp(z) =sin.z/z and j,(z) =sinz/z—cosz/z are the spherical Bessel functions of order zero
and one, respectively, and both Bessel-function solutions
have been normalized to unity for &~0.

%'e11 into the matter-dominated era, the temporal
behavior of modes that entered the horizon during the
radiation-dominated era is also given by 3ji(kr)/kr.

Some of what follows is a quick review of previous
treatments included for completeness; for more details,
see Refs. [9]. To begin, we write the line element for a
fiat, Friedmann-Robertson-Walker (FRW) cosmology in
conformal form plus a small perturbation h

g„,=R (r) [i)„,+h„],
where v)„=diag(1, —1, —1, —1) and r is conformal time.
Here we are only interested in gravity-wave perturbations
and work in the transverse-traceless gauge, where the two
independent polarization states are X and + and
boo=ho =0.

It is simple to solve for the evolution of the cosmic-
scale factor in terms of conformal time:

Thus, for ~&)~, , the temporal behavior of all modes is
given by 3j,(k~)/kr, and it is useful to write

3j,(kr)
h I, (r) =h I, (0)T(k/k, ) (13)

is the scale that entered the horizon at matter-radiation
equality. During the oscillatory phase ( k r » 1 ),
3ji(kr)/kr~3 coskr/(kr); in defining and computing
the transfer function, we have neglected the phase of the
graviton oscillations, which, for our purposes, is not im-
portant.

The transfer function has been calculated by integrat-
ing Eq. (12) numerically froin v =0 to rp; a good fit to the
transfer function is

T(y)=[1.0+1.34y+2. 50y ]'~ (15)

where y=k/k, q. It might seem that one could have
computed the transfer function at any time after the
Universe becomes matter dominated and obtained the
same result. However, as we shall emphasize again later,
the Universe becomes matter dominated more slowly
than one might have expected, and for this reason the
transfer function calculated at an earlier epoch is
diferent. Only well into the matter-dominated epoch,
when the radiation content is very negligible, does it take
this functional form. Using the fact that once a mode is
well inside the horizon, hI, (r) ~ coskr/R, it follows that
for modes with k &)kcq the transfer function at an earlier
epoch is related to that today by

T,(k/k, )=(r/rp) R 'T(k/k, q)

=[1+2x—2't/x+x ]Tp(k/k, ), (16)

where x =R, /R(r), T, is the transfer function at con-
formal time ~, and To is the transfer function today. The
evolution of the transfer function is shown in Fig. 2.

Once a mode has crossed inside the horizon, one can
sensibly talk about the corresponding energy density in
gravitons; it is given by

k
CSPI Pl Pyk

(17)
32~'R '

where (hi ~
is the average of ~hI, ( over all directions k

and over several periods.
Inflation-produced tensor perturbations are stochastic

in nature and characterized by a Gaussian random vari-
able. The Fourier components h I, are drawn from a dis-
tribution whose statistical expectation is

(hi,
h Jq) =Pr(k)(2m) 5' '(k —q)5;~, (Ig)

where we define the gravity-wave power spectrum as

iOur notation is by no means standard, cf. Ref. [9].

where the "transfer function" for gravitational waves,
T(k lk«), is only a function of k/k, and

7O Rc
—1 ~ —1/2

k,q
=r,—q' = — ——6.22 X 10 h Mpc ' (14)
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perature anisotropy is given by

=0.606
To 4m.

@pe )

(24)

where the integrals in the previous expressions have been
evaluated numerically; for the quadrupole term, includ-
ing the transfer function does not make a significant
difference. Using the Cosmic Background Explorer
DifFerential Microwave Radiometer (COBE DMR) mea-
surement for the quadrupole anisotropy (derived for
scale-invariant perturbations), b.T& = 17+4 p K [15],as a
rough upper limit to the tensor contribution, V5o can be
bounded [16]:

V5p&6. 4X10 "mp, ——(3.5X10' GeV) (25)

This implies that inflation takes place at a sub-Planck en-

R,

8
a5
V'

R,

8

V

+

I I I I I I I I I I I I

(o)

I I I I I I

5 10 20 50 100

I I I I

1
I I I I I II

(b)

0001
3 10 30 100 300 i000

FIG. 4. Tensor contribution to the angular power spectrum
normalized to its quadrupole and, for reference, the Sachs-
Wolfe part of the scalar contribution normalized to its quadru-
pole (dashed curve; note, for l ~ 100 the Doppler and intrinsic
contributions are more important than that of the Sachs-Wolfe).
Tensor results are shown with (upper curve) and without (lower
curve) the transfer function; in all cases zLss = 1100 and h =0.S.
(a) For l ~ 100; dotted curve shows tensor results with transfer
function for h =1.0 (b) For I ~ 1000.

ergy scale (at least the last 50 or so e-folds that are
relevant for us) and that Qow can be at most about
10 ' . In models of first-order inflation, another, more
potent, source of gravity waves is produced by bubble
collisions during reheating, though this radiation is
peaked over a very narrow range of frequencies,
k =2X 10 '(TRH/10' GeV) Mpc ' [l7].

For reference, the Sachs-Wolfe contribution to the
CBR anisotropy produced by scalar modes, which is the
dominant contribution for I ~ 100, is

& 1ar I &
= A — f "

I Ts(u /u, )
I I jr(u ) I

1024~' ~so
275Ho Pl p)x 5o

(26)

bT
Q-S

5&/a, 32m ~so

m p,x,o

where u =krp, u,q=k, qTp and Ts(y) is the transfer func-
tion for scalar perturbations, which depends upon the
matter content of the Universe. For cold dark matter the
transfer function is [18]

ln(1+0. 146y ) /0. 146y

[1+0.242y+y +(0.340y) +(0.417y) ]'~

C. Finite thickness of the last-scattering surface

Last scattering is not an instantaneous event that oc-
curred simultaneously everywhere in the Universe. The
last-scattering surface has a finite thickness, in comoving
distance from the observer cr and in redshift o, This
fact leads to the damping of the contribution of modes
with large wave number because the contribution to CBR
anisotropy in a given direction averages over last-
scattering events taking place over a finite distance,

The scalar and tensor contributions to a given mul-
tipole are dominated by wave numbers k~o=/. For
scale-invariant perturbations and small I, both the scalar
and tensor contributions to l & lar I ) are approximately
constant. The Sachs-Wolfe contribution of scalar pertur-
bations to l & a& ) begins to decrease for I = l,q

—100
since the scalar contribution to these multipoles is dom-
inated by modes that entered the horizon before matter
domination and are suppressed by the (scalar) transfer
function. (It is important to remember that for l ~ 100
the Doppler and intrinsic contributions to the scalar-
produced CBR anisotropy dominate. ) The contribution
of tensor modes to I &lar I ) begins to decrease for
I —v'p/rLss=V I+~Lss ( 35 for ~Lss 1100) because
the tensor contribution to these multipoles is dominated
by modes that entered the horizon before last scattering
(and hence decayed as R ' until last scattering). The
behavior of the multipole amplitudes is just as expected
from the qualitative picture (cf. Fig. 1) and is illustrated
in Fig. 4.
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which washes out short-wavelength modes, k )kD = cr

This physics is not included in our analysis .Since the lth
multipole is dominated by the contribution of wave num-
bers k ~p = l, this damping only affects multipoles
l ~p/o. , multipoles that were already very small. Thus
our neglect of the finite thickness of the last-scattering
surface does not affect our results in an important way.
(This is not true for scalar perturbations: The finite
thickness of the last-scattering surface reduces the CBR
anisotropy on small-angular scales that would otherwise
be large. )

To be more specific, in the case of standard recombina-
tion, the differential probability that the last-scattering
event occurred at comoving distance x, the visibility
function, can be approximated by a Craussian (see, e.g.,
[11]);

e ' "'=Cexp [
—(x —xLss) /2o ], (28)

where C=182Hp &Lss —2Hp is the center of the last-
scattering surface, and o =2HO '/910 is the thickness
of the last-scattering surface. (In redshift, the thickness
is cr, =80.) Here s(x) is the optical depth from our posi-
tion to a point comoving distance x from us:

(29)

=C exP[ —(x xLss ) /2o ] (30)

where

/+2~ox& xLss 2HO ' [1—1/V 1+zLss ]

o „=2HO ' /+12( 1+zLSS )

The redshift of the last-scattering surface,

1+zLSS ——(0.03X,Q~ h )

In the case of nonstandard recombination, the damping
scale kDio=4+zLSS is smaller because the last-scattering
surface is thicker —but again, this damping only affects
multipoles that were very small anyway,
1 4+)z )L)ssQzLSS (cf. Fig. 5).

D. Comparison with numerical results

In Refs. [10] the coupled Boltzmann equations for the
CBR intensity in a perturbed FRW model were solved
numerically to compute the CBR anisotropy that arises
due to both scalar and tensor perturbations. The authors

where O. T —-0.66X10 cm is the Thomson cross sec-
tion and n, is the number density of free electrons
( =X,ns ). The damping scale associated with the thick-
ness of the last-scattering surface is kD~p=~p/o —910,
which leads to the suppression of the angular power spec-
trum for l )910, where it is already very small (cf. Fig.
4).

In the case of no, or only partial, recombination, the
last-scattering surface is very thick, o, -z„ss. The visi-
bility function can be (less well) approximated by a
Gaussian:

I I I I II I I I I I I

V

R,

V

+

\

\

\
\

1
1

I

1

5 10 20
I I I I I I

50 100

FIG. 5. Tensor contribution to the angular power spectrum
normalized to its quadrupole, for zI ss =76 (solid curve) and, for
comparison, zLss = 1100 {dashed curve); in both cases, h =0.5.

which differs from the matter-dominated result

iLSS=2HO
' QR Lss by a factor of —,'. To correct Eq. (22)

one would have to (i) use the correct exPression for rLSS,
which is easy to do, (ii) modify the transfer function, tak-
ing into account that it is a function of redshift, which
means that it can no longer be taken out of the inner in-

tegral, and (iii) replace the conformal-time derivative of
the growing-mode eigenfunction, the j2(y)/y term, by the
proper expression which must be evaluated numerically
and is a separate function of w and k [points (ii) and (iii)
are not unrelated]. Needless to say, these modifications
eliminate the advantages of the analytic approach.

The parameter that controls the size of the error made

of Refs. [10] have been gracious about comparing their
preliminary results with ours. Where comparison is pos-
sible, the agreement is always qualitatively very good,
though there are quantitative disagreements: for values
of / where the multipoles are of significant size, at most
about 20%%uo. As we shall describe, we believe that we un-
derstand the reason for these disagreements.

For very large I, corresponding to l ~ kD~p, the numeri-
cal results of Refs. [10] fall off more rapidly than ours; as
discussed above, this is because we have not taken ac-
count of the damping due to the finite thickness of the
last scattering surface. The discrepancy here, though
large, is of little practical concern as the multipoles are
very small for such values of I.

A more important discrepancy arises in cases where
last scattering occurs before the Universe is "very matter
dominated. " The matter and radiation energy densities
become equal at a redshift z, =2.4h X10; for h =0.5

and standard recombination, zLss and z,q
differ only by a

factor of 5.4. This means that the Universe is not well
approximated as being matter dominated at last scatter-
ing. In particular, the growing mode gravity-wave per-
turbation is not given by 3j, (kr ) /k r and

rLss =2HO ( 1 ++Re )[QRLss +Re +Re ]
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by assuming that the Universe is matter dominated at last
scattering is zI ss/zeq In thc worst case considcredp stan-
dard recombination and h =0.5, this parameter is about
0.2, which is about equal to the maximum difference be-
tween our analytical results and the numerical results of
Refs. [10]. When ziss/z, q

is smaller, e.g. , a larger Hub-
ble constant or nonstandard recombination, the
discrepancy is much smaller. For example, with h =0.5

and zLss =76, the differenccs between the numerical re-
sults of Refs. [10] and our analytical results are much
smaller, though not as sma11 as one might have expected.
This is because the amplitudes of gravity-wave perturba-
tions change significantly during last scattering which
occurs over Az-zLss, and our analytic treatment uses
the amplitudes at z =zLss.

K. Generalized for tilt

where Fi(u) is defined in Eq. (23), u =kro, y=kr, and
u, =k, ~0.

In Fig. 6 we show the scalar and tensor contributions
to the angular power spectrum for spectra that are tilted
by the same amount, n —1=nT= —0. 15. This is an in-
teresting case because the scalar and tensor contributions
to the quadrupole anisotropy are essentially equal [4].
The efFect of scale noninvariance is to tilt the angular
power spectra, by approximately a factor of I" ' for sca-

nTlar perturbations and l for tensor perturbations.
The analogous expressions for scalar perturbations are

1024n3 V50

75H+" m x0 Pl 50

[I"[3 —
—,'(n —1)]j'

X 2 2

[1+—,'n —
—,'(n —1)]2" '[I ( —,')]

We now extend our results to the general case where
the inAationary perturbations are not precisely scale in-
variant. Since the ratio of the tensor to scalar contribu-
tion to the CBR quadrupole anisotropy increases with
tilt,

2 I

n=1 — +
X 50 mplX 50

n +

ap~
&Ia I

)=g

(33)

g V~o [I ( —,
' —,'nr )]—

~ m pi ( 1 —', n T )2 [I (——,
'

) ]
2

X5p

(31)

nT=-
8vr

Here k50 is the scale that crossed outside the horizon 50
e-folds before the end of inflation, n T measures the devia-
tion from scale invariance, and the expression for AT in-
cludes the O(n T ) correction. (All formulas simplify if the
potential and its derivatives are evaluated at the point
where the present horizon scale crossed outside the hor-
izon, i.e., k5oro= l. ) The variance of the multipole am-
plitudes is given by

& Ia, I'&/& Ia, ') = 7nT—
(nT=0 for scale invariance), the case of non-scale-
invariant perturbations is very relevant in discussing ten-
sor perturbations. The deviations from scale invariance
are most significant for steep potentials (e.g., exponential
potentials) and potentials whose steepness changes rapid-
ly (e.g. , low-order polynomial potentials). To lowest or-
der in the deviation from scale invariance, everything can
be expressed in terms of the value of the potential V~p, its
steepness x~o=(mpi V'/V)~o, and the change in its steep-
ness x&0, all evaluated about 50 e-folds before the end of
inflation when the scales of astrophysical interest crossed
outside the horizon during infiation [5,19].

Beginning with the tensor perturbations and using our
previous notation, the power spectrum is now given by

2

nT 3j,(kr)
I T(k/k„) I'

X 9 Tg Q Qeq J( Q
0 0

where u =kro, u, =k, ro, and Tz(u /u, ) is the transfer
function for scalar perturbations.

By numerically integrating Eqs. (32) and (33), we ob-
tain approximate expressions for the quadrupole anisot-
ropy due to scalar and tensor perturbations in the non-
scale-invariant case:

5& Ia,' I'& v„=2. 22 [ 1+1.1(n —1 )4~ mplx50
+ —,

' [nT —(n —1)]j,
s& Ia,' I'& v„=0.606 (1+1.2nT),4~ mpl

(34)

Vso 6.4X 10

mpl 1 —0. 14nT '

(35)

7"

where all expressions have been expanded to O(nT, 1 n), —
and we have taken k~oro= 1, z„ss=1100 (the results
change very little for ziss =76), and for the scalar case
h =0.5. Using these expressions, the fact that the scalar
and tensor contributions to the quadrupole anisotropy
add incoherently, and the COBE DMR quadrupole mea-
surement, we can solve for the variance of the tensor
quadrupole, equivalently V50/mpl, in terms of the tensor
tilt nT..

T I2) 9.8x10
1 —0. 14nT '

I'( I +3) —nr
&Ia, I') =36~'~, —

X f u"'I T(u/u„)l'I+i(u)I' (32)

where we have implicitly included a term of order nT, as
it appears to be the largest of such terms. These expres-
sions indicate that the more tilted the gravity-wave spec-
trum is, the larger is its amplitude, as noted earlier [4].
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FIG. 6. Same as Fig. 4, except for non-scale-invariant pertur-
bations, n —1 =n &

= —0. 15. The results here correspond
roughly to those in Fig. 4 "tilted" by a factor of (l /2)

The energy density in the stochastic background of
inflation-produced gravitational waves today is given by

dn „V„[l(-', ——,",)]'=4
d ink mp& (1 &n )2"r[1.(3 )]2

X(k/k ) iT(k/k, )i (kro)

2 6X10-"
(k/k5O) iT(k/k, )i (k~o)

1 —0. 14nz '
(36)

where the second expression follows from using the
COBE DMR normalization to express the energy density
in gravity waves in terms of the tilt parameter nz alone.
In Fig. 3 we show the spectrum of stochastic gravitation-
al waves for nz-= —0.003, —0.03, and —0.3, using the
COBE quadrupole normalization.

The total energy density in gravity waves increases
with tilt (i.e., nr (0), as does the tensor contribution to
the CBR quadrupole anisotropy. However, this is not the
entire story; the most sensitive "direct" probes of gravity
waves, millisecond pulsars [20] and future Laser Inter-
ferometer Gravity-Wave Observatories (LIGO's) [21],are
only sensitive to gravity waves with large wave number,
k~o=e, with X-26 for millisecond pulsars and X-48
for envisaged LIGO detectors. Because of the (k/kso)
factor in Eq. (36), tilt depresses the energy density in
gravity waves on the relevant scales. To be more specific,
for k &&k, and h =0.5,

nz. ———0.04, and LIGO's n~ = —0.02, is quite reasonable
in the context of well-motivated inflationary models [5],
the predicted energy density in gravity waves is well
below the sensitivity of either detector, about
AG~-10 ' for advanced LIGO detectors and —10
currently for millisecond pulsars. Thus direct detection
of the stochastic background of gravitational waves does
not seem promising in the near future.

I I I I I I I I I I I I

R,

8

V
Q3

A

6

V

+

5—

III. DISCUSSiON

The tensor contribution to the variance of the mul-
tipole amplitudes depends significantly upon the redshift
of the last-scattering surface and less importantly upon
the redshift of matter-radiation equality through the
value of the Hubble constant (see Fig. 4). For scale-
invariant gravity-wave perturbations, 1 ( ia~ i ) is
roughly constant for I 8+1+z,«, then decreases as l
for I 5+1+z, , and for 1~+1+z, decreases as l
In the case of non-scale-invariant tensor perturbations,

lg z-
these results are modified by a factor of I

In Fig. 5 we show the tensor contribution to the angu-
lar power spectrum for no recombination and zzss =76.
The dramatic fallo6'occurs at a relatively small value of /,

around 10. Thus the tensor angular power spectrum can,
in principle, be used to discriminate between standard
recombination and no recombination, though because of
cosmic variance, the finite "multipole resolution" of ex-
periments, and the difBculty of separating the scalar and
tensor contributions to CBR anisotropy, this is by no
means a simple task. The angular power spectrum also
depends upon the deviation of the tensor perturbations
from scale invariance, both in its amplitude relative to
the scalar perturbations and in its dependence upon l.
The angular power spectrum for tilted tensor perturba-
tions is shown in Fig. 6.

Finally, consider the cold dark matter + cosmological
constant model (ACDM), proposed to reconcile a num-

ber of discrepancies of the CDM model with observation-
al data [22]. It is characterized by Qz —-0.05,

dQ wo(k=e ro ')

d ink

n&N
n z.e=1.9X 10-'4

nz- —0. 14
(37) 5 10 20 50 100

It is simple to show that the energy density in gravity
waves on the scale k=e ~o

' is maximized for a tilt

nz = —1/N, at a value of about 5X10 ' /N. While the
amount of tilt that maximizes the energy density in gravi-

ty waves on scales relevant to both millisecond pulsars,

FICi. 7. Tensor contribution to the angular power spectrum
normalized to its quadrupole for cold dark matter + cosmologi-
cal constant with z&&s = 1100, QA =0.8, and h =0.8 (solid curve)

and, for comparison, zz ss = 1100 Qo and h =0.5 (dashed

curve).
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dR
+0 0 ' Qn~+n~„+n, R'

=3.89HO ',
rLss -—20o Ho /Q 1 +zi ss -0.135Ho

(38)

The angular power spectrum is shown in Fig. 7 for
standard recombination in the ACDM model. Unfor-
tunately, the difFerence between the ACDM and CDM
models is not great.

Finally, it is also straightforward to modify our results

Q, )d-—0. 1S, Qo=—Q~+Q„)d=0.2, Qg—-0.8, and h =0.8.
For tensor perturbations most of the Sachs-%'olfe in-
tegral for the anisotropy arises near the last-scattering
surface where the efFect of a cosmological constant is
negligible. (This is not the case for scalar perturbations,
and the formula for the Sachs-%'olfe contribution must
be modified significantly [23]). Thus Eq. (22) for the con-
tribution of tensor perturbations to the angular power
spectrum is unchanged, with the substitutions

H, +n, ZR„
k, = — —=30Ho,

2&2 —2

R,q=4. 18X10 (Qch ) '=3.27X10

for the energy density in gravitationa1 waves today for
the ACDM mode1:
dhow V5c [I ( —,

' —
—,'nT)]

no
rnpi (1 —Sn )2 T[p( 3 )]2

X(k~k5c) 'l
T(krak„)l'(kl2Ho

) (39)

Since the main change is to reduce the energy density on
a given scale by a factor of Q0-0.04, our conclusions
about the direct detection of inflation-produced gravity
waves remains.

Noted added in proof. The feasibility of directly detect-
ing gravity waves produced during inflation has also been
considered by R. Barkana and P. J. Steinhardt (unpub-
lished), A. Liddle (unpublished), and T. Souradeep and V.
Sahni [4].
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