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Covariant and gauge-invariant formulation of the Sachs-Wolfe efFect
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We derive a formula relating the large-scale temperature anisotropy of the cosmic microwave
background radiation with the cosmological perturbations responsible for them using the local co-
variant and gauge-invariant formalism developed by Ellis and Bruni. Comparisons of our covariant
expression with previously derived Sachs-Wolfe formulas are given. Expanding our covariant vari-
ables in terms of Bardeen quantities, we derive a generalization of a result due to Panek.
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I. INTR, ODUCTION

The important discovery in 1992 by the Cosmic Back-
ground Explorer (COBE) [1,2] makes it of paramount im-
portance to write d.own a formula relating the anisotropy
of the cosmic microwave background radiation (CMBR)
with the cosmological fluctuations responsible for them.
Such a formula was Grst obtained by Sachs and Wolfe
(SW) in 1967 [3]. Unfortunately their formula was de-
rived using a gauge-dependent formalism which, as is
well known in the literature, can lead to unphysical
results due to the appearance of gauge modes, unless
a complete specification or correspondence between the
real perturbed. Universe and the background Friedmann-
Lemaitre-Robertson-Walker (FLRW) model has been
made.

More recently Panek [4] derived formulas for scalar,
vector and tensor perturbations using the gauge-invariant
variables introduced by Bardeen in his seminal paper [5].
Although this was a major step forward, there are in
our view two main problems with the Bardeen variables:
firstly, most of them do not have a transparent geomet-
rical meaning, because they are defined with respect to a
particular coordinate chart, and secondly, they are non-
local due to the nonlocal nature of the Arnowitt-Deser-
Misner (ADM) splitting (e.g. , the splitting of a vector
field is defined up to a constant [6]); indeed locality and
causality are somewhat hidden in the formulas derived
by Panek [7].

Improving some earlier work by Durrer [8], Magueijo
[9] derived a formula using modified Bardeen variables,
which are both gauge invariant and locally defined. How-
ever, the physical meaning of his variables is still unclear.

In a paper by Ellis and Bruni [10], a set of locally de-
IIined covariant and gauge-invariant variables were intro-
duced, which are meaningful in any spacetime. Equations
were derived for these variables and they were linearized

about a FLRW cosmological model, recovering the stan-
dard results for a barotropic perfect fluid. Since then,
this approach has been extended to multicomponent flu-
ids and scalar fields in a number of papers [11—13]. It was
also shown that a physical meaning could be found for
the Bardeen variables, by expanding the covariant vari-
ables to erst order with respect to the perturbed metric
of Bardeen [14].

It is the goal of this paper to derive the most general
formula for the large scale temperature anisotropies of
the cosmic microwave background radiation in terms of
locally defined covariant gauge-invariant variables with-
out the use of any nonlocal splitting or harmonic decom-
position.

In order to motivate this, consider the example of com-
pensated topological defects studied by Magueijo [15]and
Veeraraghaven and Stebbins [16]. In this case a cosmo-
logical perturbation is confined inside a compact domain
0, which may be the causal future of the birth of a galac-
tic seed. In general the Bardeen variables do not become
trivial outside 0 and consequently the various geometri-
cal contributions to bT/T for a photon which has always
been outside 0 may be nonvanishing. It turns out that
these geometrical contributions add up to zero, but this
is far &om obvious. Clearly, since the underlying physics
we wish to study is local, it is much more sensible to try
and derive a formula that is both locally defined, gauge-
invariant and has a transparent physical meaning.

In Sec. II our main formula (10) representing a co-
variant formulation of the SW efFect is given. This for-
mula is valid to first order in quantities that vanish in
the "unperturbed" FLRW universe and it is independent
of the curvature parameter (K = 0, +1,—1); it is also
valid for arbitrary pressure and for an imperfect bary-
onic Quid. For adiabatic fluctuations at recombination
(i.e. , for El~~i

~@ = 0) our result (10) is given by an inte-
gral over covariant, geometrical Ellis-Bruni-type quanti-

0556-2821/93/48(10)/4552(5)/$06. 00 48 4552 1993 The American Physical Society



48 COVARIANT AND GAUGE-INVARIANT FORMULATION OF THE. . . 4553

ties; in this case the precise choice of the integral curve
(light-ray) and the last scattering surface is irrelevant to
first order. If nonadiabatic fluctuations at recombination
are considered we assume the idealized last scattering
surface Z~ and physical conditions on E~ to be given
in a coordinate-independent manner (see, e.g. , Panek [4]
for a physical characterization of Z@) . The main steps
of the derivation of Eq. (10) are also indicated in Sec.
II, whereas details of the derivation can be found in the
Appendix. In Sec. III a simple formula is presented for
the case of a perfect baryonic fluid and adiabatic fluc-
tuations at recombination. Finally it is demonstrated
how the classical results f'rom Sachs and Wolfe [3] and
Panek [4] can be recovered from our main formula (10).
Throughout the paper we use units 8vrG = c = 1; Latin
indices run from 0 to 3 and Greek indices from 1 to 3.
The background (FLRW) metric is taken in the form

ds' = S'(~) ( d~'+—'g pdx dz~) .

II. A COVARIANT FORMULA FOR THE
SACHS-WOLFE EFFECT

reception (emission) point and z is the redshift between
E and R, z = (A~ —A@)/A@. As is well known, the
redshift can be obtained from

where k is the null tangent vector to the light ray p*

and u is the four-velocity of baryons. Our formula is
derived by a first order variation of Eq. (2) (see, e.g. ,
Panek [4], Traschen [17]):

(STD (hTi bz

T)R E T)E z+1
Details of our derivation can be found in the Appendix.
Here we only want to indicate some important relations
used in our derivation. If u (u u = —1) is the four-
velocity of a cosmological fluid (i.e., the baryonic one)
[18], we employed the Ehlers' decomposition of the co-
variant derivative u .b of u

1
ua;b —&ab + ~ab + O Pab aub y

To derive a covariant and gauge-invariant Sachs-Wolfe
formula we idealize the physical situation and consider a
light ray being emitted from baryonic matter at point E
in Fig. 1, lying on a spacelike hypersurface of last scat-
tering Za (i.e. , for large-scale Huctuations details of the
recombination epoch are ignored), traveling through a
"perturbed" FRLW universe until it is observed by some
"fundamental observer" here and now at point B. It is
assumed that these fundamental observers can be repre-
sented by the word lines of baryonic matter. The deriva-
tion of our result starts from the usual expression

Tg+R— )z+1

where

Pab gab + uaub

is the projection tensor into the tangent three-space or-
thogonal to u, a b ——o.

(ab~ ——P Pb"u(, .d~
—

3 OP b

is the shear tensor, u b
——w~abI = P Pb"uC, .gl

vorticity tensor, 0 = u . is the volume expansion and
a = u .bu is the acceleration. The expansion rate ofb

baryonic matter is expressed by means of the energy con-
servation equation. Here we assumed the baryonic fluid
to be noninteracting with other fluids, i.e. , T(b~

and the baryonic energy-momentum tensor to be given
by

where TR (T@) is the temperature of the CMBR at the ~ab —puaub + PPab + 2g(aub) + 7rab

where p is the rest-energy density and p is the pressure,
related by the equation of state

where s is the entropy density, q = P'T, du is the—en-
ergy flux, vr b is the anisotropic pressure, and p contains
a possible contribution from bulk viscosity: p = pi —8(.
With these variables the energy conservation equation for
the baryonic fluid reads

V;-u + (V + p) O + g,.= o .

The goal of our work is a derivation of a SW formula
in terms of covariant and gauge-invariant variables. To

FIG. 1. Geometry in the Sachs-Wolfe effect.
( is the coefficient of bulk viscosity, pz is the pressure in

thermodynamic equilibrium.
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construct such gauge-invariant quantities the Stewart-
Walker lemma [19] can be used. It states that if a quan-
tity vanishes in a FI RW model it is gauge invariant with
respect to linear perturbations of that model. It follows
that the shear o b, the acceleration a, the coefBcient of
bulk viscosity (, and the energy flux q are gauge invari-
ant. In order to describe the CMBR anisotropy we also
need variables that characterize density inhomogeneities.
The most important variable for our work, introduced
by Ellis and Bruni [10], is the &actional gradient of the
energy density L, defined. by

z = p.'"'a—
P

This variable is observable in the sense that it can be de-
termined &om Virial theorem estimates [20]. With these
variables we derived the formula

III. SPECIFIC CASES AND COMPARISONS
WITH PREVIOUS RESULTS

Consider for simplicity a perfect fluid (Q( ~ = 0, (( l =
0) and assume adiabatic perturbations at the time of last
scattering (b, &(

l ——0), taking also the baryonic mat-
ter to be nonrelativistic, i.e., assuming p( ) m( ) 0.
Furthermore for scales much larger than the Hubble ra-
dius corresponding to large-scale anisotropies, we can ne-
glect the sound velocity of matter, c,(b) 0, and assume

a 0. Under these assumptions our fundamental for-(b)

mula (10) reduces to the simple expression

bTq* R (
k +8 kk idA.+ .b

A. The classical Sachs-Wolfe efFect

where

(&i~@)

1 ~(~)y q( ~ ) /@0''tg(~))
(3 (1 + w(bi)

(10) Relation (10) can be used to recover the classical
SW result. We start &om the perturbed metric ds
S (r)(rI b + h b)dx dz for a conformally flat universe
with g b = diag( —1, 1, 1, 1), and use the SW gauge con-
ditions hpp —hp ——bu = 0, then for a perfect (bary-
onic) fluid with p = bp = 0 one obtains a = 0 and a
solution of the perturbed field equations in the form

a(b) ka + g( ) kaka ab

«re, ~ = p/p, q = q,~/pS )@ = 8 /pS, &~b = So~b,
and

~(~b) ~(~) ~(b)

7 2

hp ——bpB+ —B p,10

where the SW functions D p, C, and A were chosen to
vanish. This gives, for the nonvanishing components,

with

() 1 6p
3 (1 + ~(i)) p(i)

g2$ h + +2h

7-2
L = ——V'B

20

(14)

Note that although each 4(') is not gauge invariant, the
difference for two Buids, however, is. The asterisk on
(bT/T)& corresponds to

where the dot indicates a derivative with respect to 7

and h ~ = b~ h~ . Here B is a scalar potential which is
a pure function of spatial coordinates, related with the
growing mode of the density perturbations. Using (10)
we get

(bTi * fbTi (bi

&T)a &T)a

Also here, both (bT/T)& and A& are not gauge invariant

but again the difference is. Since L& is direction inde-
pendent, (bT/T) & is just a renormalization of (bT/T) & .
If the physically meaningful quantity

ET)z kT)~ 2 z

where k = S k = (1, B) and dA =—S 2dA. For
large-angle anisotropies the primordial temperature Huc-
tuations can be neglected and we recover the well-known
SW result in the form

(bT) bT „bT „
r2(T) T T (12)

(T ~ 10

representing the difference of temperature Quctuations
(temperature anisotropy) for two different directions ri
and r2 is considered, then this renormalization becomes
unimportant, i.e. , A (bT/T)& ——b, (bT/T)& .

B. The Panek formula

To compare with the results that were obtained by
Panek [4] we expand the covariant variables to first or-
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der in terms of Bardeen variables [5] and the usual har-
monic functions for scalar, vector, and tensor perturba-
tions (Q( ):—Q, Q, Q &, Q = —k iQ~ etc. ; for
conventions see Panek). Using the results of Bruni et aL
[14] we have

(21)

Since the Bardeen variables are defined in the energy
frame [5,18] we can set the energy flux to zero. For tensor
and vector perturbations we then immediately recover
the results found by Panek:

rV = —k6 Q —3—(1 + tv)v Q (18) (z) R
H )Q R R~dA (22)

a = —v, +v, —k4~ Q + —v +v, Q
/ S (.) (.) & (.) & S & ( )

)
and

rSTi"
U.q.'&a-+ tv&'&q."a a~) di . (n)

8 p = —S kv( )Q(p —S kv( )Q(p) + S H( )Q, (20)

For scalar perturbations our result agrees with that given
by Ellis et al. [21]. It represents a generalization of
Panek's Eq. (41):

(bTI (1 5 ( S l 1 . S (c,be b
—tobenab+ tvbtlb)=/ —~~QI +i vb —&Q +

g T r z q4 r z ~kS ) 3(I+tvb) S ( I+tvb r
e~b +—

—kC Q( )R +kv, b Q pR R~ dA, (24)

where the dagger indicates that (bT/T)It is renormalized
with [(vb —B)QS/kS]It . We would like to remark that
the results (22)—(24) are also valid for nonvanishing cur-
vature parameter.

In conclusion, we have succeeded in deriving a covari-
ant formulation of the Sachs-Wolfe effect. With respect
to previous formulation ours has the advantage of be-
ing independent of gauge conditions, nonlocal splittings
of spacetime, and related Fourier decompositions of per-
turbations around a FI RW metric. Such a formulation
might be of great value for the interpretation of data
for the large-scale fluctuations of the CMBR. We have
demonstrated how several well-known SW formulas can
be derived &om ours with additional assumptions.

While this manuscript was in preparation, we became
aware that a related formulation of the Sachs-Wolfe effect
was under study [23].
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APPENDIX: DERIVATION OF FORMULA (9)

In the following second order terms will be neglected
without exception. We then get, from Eq. (3),

we get
R-

S.k-»-.() +S.~~ k-.()
z+1 b r

Using the geodesic equation k.bk = 0 and remembering

that S is a pure function of 7. and k = S to lowest

order we get

—d(k uii)+Sd(ui. Ik k) dA.
z+1 ~ S2

Using the Ehlers' decomposition (5) and w bk kb = 0 =
k k we obtain
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( S
A

a&(b) + g( ) yayb + a(b) ya + g$ O~(b) pa ~( ) kb + gO(b) ~( )
A bg ~(b) A

ab

z+1 @ (S2 ab 0 b 3 b a

Since o b and a vanish in the background they are already of first order and the b sign can be dropped here. Since
to lowest order 8( ) = 3S/S the last term in the integral cancels with the first one. We use the energy-conservation
equation (8) to substitute 8:

p (»
Z(b)k —q(') +a(')A: +S'"k l' d~z+ 1 @ 3 ( p(b) + p( ) 3 (1+ rv(b))

where we wrote bQ = Q = q, /(pS) and hX = Z
Furthermore, it can be shown that

l'dp/dA)t d ( Sp ) 8rv fop c, bp)
+p) d~ &&+p) S(1+~) ( p ~ &) '

where c2 = p/jc is the square of the sound speed. We

define p = go+ bp and pq
——po 1+ ~ —" see 22

We can now integrate the first term. Using Eq. (4) we
get

fdA,

where f is given in Eq. (11). Our result (10) is then
obtained from the Stefan-Boltzmann law (p, (~) = aT )
in the form

hT 1 fhP(r)b
( l«„(.) )

where p(» = p(»/3 .
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