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Dynamical origin of the entropy of a black hole
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Modes of physical fields which are located inside a horizon and which cannot be observed by
a distant observer are identified with the dynamical degrees of freedom of a black hole. A new
invariant statistical mechanical definition of black-hole entropy is proposed. It is shown that the
main contribution to the entropy is given by thermally excited "invisible" modes propagating in
the close vicinity of the horizon. A calculation based on the proposed definition yields a value of
the entropy which is in good agreement with the usually adopted value A /(4lp&), where A is the
black-hole surface area and lp~ is the Planck length.
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According to the thermodynamical analogy in black-
hole physics, the entropy of a black hole is defined as
S~ = A~/(4lp2&), where A~ is the area of the black-hole
surface and lp~ = (SG/c ) I is the Planck length [1,2].
Hawking's theoretical discovery [3] of quantum black-hole
evaporation proved the reality of the black-hole temper-
ature and fixed the coefBcient relating the entropy of a
black hole with its surface area. The generalized second
law (i.e., the statement that the sum S = S + S of
black-hole entropy and the entropy S of the outside
matter cannot decrease) implies that black-hole entropy
plays the same role as usual entropy and shows to what
extent the energy. contained in a black hole can be used
to produce work [1,2,4]. Four laws of black-hole physics
which form the basis in the thermodynamical analogy
were formulated in [5].

Despite some promising attempts [2,6—9], the dynam-
ical (statistical mechanical) origin of black-hale entropy
has not been well understood. Bekenstein [2] who intro-
duced the notion of black-hole entropy related it with
"the measure of the inaccessibility of information (to
an exterior observer) as to which a particular internal
configuration of the black hole is actually realized in a
given state" (i.e. , for given values of black-hole parame-
ters: mass, charge, and angular momentum). According
to the "standard" interpretation these different internal
states of a black hole are related with different possible
initial conditions which may result in the creation of a
stationary black hole with the same parameters [2]. In
this approach the entropy of a black hole is considered as
the logarithm of the number of distinct ways that hole
might have been made [8,9].
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This definition of the black-hole entropy resembles to
some extent the usual definition of the entropy of matter.
But there is big difference which makes the above "stan-
dard" interpretation not completely satisfactory. The en-
tropy of matter is connected with its real internal dynam-
ical degrees of freedom which exist at given moment and
which can be affected by an external force. By getting in-
formation about the states of some of the internal degrees
of freedom one can reduce the entropy of matter. (The
total entropy of matter and its environment never de-
creases. ) The loophole of the above described "standard"
interpretation is that one cannot indicate dynamical de-
grees of &eedom of a black hole which are responsible for
its entropy.

Even if an observer is falling down into a black hole a
long time after its formation he cannot receive more infor-
mation about the initial state than the exterior observer.
The information concerning the initial conditions is lost
for the interior observer for the same reason as it is lost
for an exterior observer [10]. The collapsing body and
its structure become invisible for the late-time observer
and only a few macroscopic parameters (mass, angular
momentum, and charge) remain measurable. This situa-
tion reminds us of the famous grin of the Cheshire Cat
remaining after the cat himself had disappeared. In this
sense different possible initial states for a black hole are
"Cheshire-Cat" variables [11].

This difFiculty of the "standard" interpretation be-
comes especially vivid if one considers a recently pro-
posed gedanken experiment in which a traversable worm-
hole is used to get information from a black-hole interior
[12]. Namely it was shown that the area of the sur-
face of a black hole decreases if one of the mouths of
a traversable wormhole is falling into a black hole while
the other mouth remains outside it. This decrease con-
tinues until the other mouth crosses the horizon or the
wormhole is destroyed. After this the surface area of a
black hole returns back to its initial value. There is an
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evident mystery in such behavior if in accordance with
the usual rules one identifies the entropy of a black hole
with the loss of information about the possible origin of
a black hole, because the wormhole does not get any new
information about it. One can escape a contradiction
with the generalized second law only if one assumes that
there exist some real internal degrees of freedom hidden
inside the black hole so that additional new information
about the internal states of a black hole can be obtained
by using a wormhole during this process.

York [7) tried to solve the problem of "Cheshire-Cat"
variables by proposing that quasinormal modes of a black
hole can play the role of its dynamical degrees of free-
dom. This attempt also cannot be considered as com-
pletely satisfactory. The entropy of the quasinormal
modes which are thermally excited at the given moment
of time is much smaller than A /(4/p&) (the adopted
value for the entropy of a black hole). In order to ob-
tain the black-hole entropy York [7] makes an additional
assumption that the entropy "results when we add up all
the excited (normal modes) states that disappear if we
allow the hole to evaporate down to a final mass zero. "
In other words the black-hole entropy is again related not
with dynamical degrees of &eedom which are really ex-
cited at the given moment of time but with a number of
difI'erent possibilities to excite them during the lifetime
of a black hole.

In this paper we propose a new approach to the prob-
lem of statistical mechanical calculation of the entropy
of a black hole. The main idea of this approach is to
identify the dynamical degrees of freedom of a black hole
with those states of all physical (quantum) fields which
are located inside a black hole and cannot be seen by a
distant observer. An excitation of these states does not
change the external parameters of the black hole. For
fixed external (macroscopic) parameters there exist many
microscopically different (internal) states which cannot
be distinguished by observations made in the exterior re-
gion. Because of quantum efFects these internal states
become thermally excited and give contribution to the
black-hole entropy. This makes the definition of the en-
tropy and other thermodynamical characteristics of black
holes quite similar to those adopted in the usual statis-
tical mechanical description of matter. In the absence of
mutual interactions one can consider the contribution to
the entropy of each of the physical fields (including grav-
itational perturbations) independently. It will be shown
that the resulting entropy of a black hole does not depend
on the number of Gelds.

In order to make the definition of the black-hole en-
tropy more concrete we assume that there exists a sta-
tionary black hole and denote by p'"' the density matrix.
describing in the Heisenberg representation the initial
state of quantum fields propagating in its background.
One may consider, e.g. , the in-vacuum state for a black
hole evaporating in the vacuum, or the Hartle-Hawking
state for a black hole in equilibrium with thermal radia-
tion. For an exterior observer the system under consid-
eration consists of two parts: a black hole and radiation
outside of it. The state of radiation outside the black hole
is described by the density matrix which is obtained &om

p'"'t by averaging it over the states which are located in-
side the black hole and are invisible in its exterior:

rad r inv init
p =sr p

For an isolated black hole this density matrix p' in
particular describes its Hawking radiation at infinity.

Analogously we define the density matrix describing
the state of a black hole as

0 m vis lnit
p =~r p

The trace operators Tr " and Tr'" in these relations
mean that the trace is taken over the states located either
outside ("visible" ) or inside ("invisible" ) the event hori-
zon correspondingly. We define the entropy of a black
hole as

gH T an~("H l "H)

The proposed definition of the entropy of a black hole is
invariant in the following sense. Independent changes of
vacuum definitions for "visible" and "invisible" states do
not change the value of S . Bogolubov's transformations
describing an independent change of the vacuum states
inside and outside the black hole can be represented by
the unitary operator U = U "U'n where U "and U'"
are unitary operators in the Hilbert spaces of "visible"
and "invisible" particles, correspondingly. The above
used trace operators are invariant under such transfor-
mations.

In order to define the states one usually uses mode ex-
pansion. The modes are characterized by a complete set
of quantum numbers. Because of the symmetry proper-
ties one can choose such a subset J of quantum numbers
connected with conservation laws (such as orbital and
azimuthal angular momenta, helicity, and so on) that
guarantees the factorization of the density matrices.

In the absence of mutual interaction of diferent fields
the subset J necessarily includes also the parameters
identifying the type of the field (e.g. , mass, spin, and
charge).

The factorization in particular means that

init ~ init—WJPJ )

where pJ ' is acting in the Hilbert space 'R J of states
with the chosen quantum numbers J, while the com-
plete Hilbert space is 'R = J'RJ. The factorization also
means that the separation into "visible" and "invisible"
states can be done independently in each subset of modes
with a fixed J so that

H "g II vis initP = 3JPJ ~ PJ = TrJ PJ

gH ) gH
J

where all the operators with subscript J are acting in the
Hilbert space 'BJ.
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d82 = —2BdUdV + x2d~2, d~ = d8 ~ sin Odg,

B = 2x exp(1 —x), UV = (1 —x) exp(x —1),

(7)

where x = r/rs The K.illing vector ( normalized to unity
at infinity in the metric d8 is

("oi„=—,
' (Vav —&au)

For simplicity we consider a conformal massless scalar
Geld p obeying the equation

y —-'Bp = 0.

We begin by calculating S for a nonrotating un-
charged black hole. We suppose that the black hole is
contained inside a spherical cavity B of radius ro with a
mirrorlike boundary. We choose ro small enough to guar-
antee the stable equilibrium of a -black hole with thermal
radiation inside the cavity. The Penrose diagram for the
eternal static black hole is shown in Fig. 1. Instead of
physical metric dsphy it is convenient to use its dimen-

sionless form ds = r ds h, , where rg = 2M and M
is the mass of the black hole. In the Kruskal coordinates
(U, V) the metric ds reads

will be used in our consideration. The functions E"l and
E'l obey the equation

UV+ul + ~l+vl —O)

Wi = x exp(1 —x) [l(l + 1) + I/x]. (12)

(q+i)h
f~ i = 8 / exp(2minv/b) f i dv.

jb

We denote by vJ the average &equency of the wave
packet J and introduce two sets of new modes fg and
f& by the relations

fB [I ~2]—1/2 [fside + ~ fuP]

The up-modes are radiated in the exterior space &om
the horizon and vanish at the past null infinity Q, while
the side-modes are radiated by the inner part (U' & 0) of
the horizon into the black-hole interior [13]. We denote
by o. and n* with the corresponding superscripts the op-
erators of annihilation and creation of particles in these
modes. The normalized wave-packet-type solutions fg
(J = jntm) are constructed from modes f„i as follows
(b ) 0)

The two sets f"P and f"d' of classical complex solutions
of this equation which we call "up" and "side" modes,

fW [I 2]—1/2[f uP + fside]
(i4)

fup, si e —/ ~up, si e(U V)y (g y)
(»)

("B„F„")P———i(v/2)E„"ip, ("B„F„'i' ——i(v/2)F') ',

r=O

where zvg = exp( —7rv~). These modes are of positive
frequencies with respect to the afBne parameter along
the horizon H . In the presence of mirrorlike boundary
surrounding the black hole the vacuum state with respect
to B and TV modes coincides with the Hartle-Hawking
state.

The density matrix corresponding to the Hartle-
Hawking state takes the form (4) with

(i5)

r=O

FIG. 1. The Penrose diagram for the eternal static black
hole. The line H represents a spherical mirrorlike boundary
of radius r = ro inside which the black hole is located. The
line C indicates the position of the centrifugal barrier. Due
to quantum Huctuations the horizon is spreaded. The out
boundary of the spreaded horizon [lying at r = 2M(1 + A)]
is schematically shovrn by the line A. The up-modes of high
frequency (v ) 4y&/~27) penetrate the centrifugal barrier (E
modes, schematically shown by the line 1). The up-modes
of lower frequency (v ( 4@i/~27) are almost completely re-
Sected by the centrifugal barrier (T modes shown by the line
2). The side-modes are radiated into the region II by the part
U ) 0 of the horizon H

where p~& is the normalization constant, and:( . ): means
normal ordering with respect to operators n* and o. which
enter the expression (15). For the Hartle-Hawking state
the up-modes (as well as side-modes) are thermally ex-
cited. That is why for an eternal black hole the density
matrix (15) describes the equilibrium state of a black hole
with thermal radiation in its exterior. If the black hole
is not eternal but is formed in the process of the gravita-
tional collapse the expression for p'"' should be modified.
This modiGcation is important for the modes emitted at
the time close to the moment of black-hole formation.
For late-time modes the expression (15) always provides
an almost exact description. That is why instead of cal-
culating the entropy of a stationary black hole long after
its formation it is possible to calculate the entropy of an
eternal black hole with the same parameters and for the
initial state decribed by the density matrix (15). We use
this (technically more simple) approach.

Consider a null surface V = v. Its intersection with
the horizon (denoted ps at Fig. 1) represents the surface
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of the black hole at a given moment of time. Denote by
Z„a part of this null surface lying between the horizon
and the boundary of the cavity B.

It is evident that side-modes being propagated inside
the black hole never cross Z„and hence according to our
defLnition they are "invisible. " Those up-modes which
reach Z are to be considered as "visible. "

We introduce new coordinates Il, ( in the exterior (U &
0, V & 0) region (the region I in Fig. 1), where up-modes
are propagating:

integration over pI [15]:

OO 27v /16) (2l + 1)O(v2 —16@12/27) = dpI2 = —I,'. .
1=0

(22)

The expression standing under the sum for S does not
depend explicitly on n. Denote by N the total number
of different values of the index n for which a mode with
a given value of j crosses Z„. Then we have

II = —
—,
' ln( —V/U), & = —,'q(*)

q(x) :—x —1 + ln(x —1).

27S = —) N v s(2'-vl )..
2

(23)

Then the wave equation (ll) for modes I"„"I takes the
form

[—0„+0& —V ]FI„",~ = 0, (17)

where Vj = 4(x —1)x [pI —1+x ], p&
——l(l+ 1) + 1.

For / )) 1 the potential Vi has a maximum 16@I/27
at x = x 3/2. We call "escaping" (or brieHy E-
modes) the up-modes with v & 4@i/~27 which (in the
absence of the boundary R) are propagating almost freely
to infinity. We call "trapped" (or briefly T-modes) the
up-modes with v & 4p~/1/27 which are mainly reflected
by the potential barrier and returned to the black-hole
horizon.

Let fP be a "visible" (either Eor T )mo-de, i.e-. , a
mode which crosses Z„. Then the operation (5) of av-
eraging over the states corresponding to this mode gives
the thermal density matrix

H T vis init 0, 2 +side side

z
Sg = s(2Irvg), s(z) = —in[1 —exp( —z)].

exp(z) —1

It is convenient to calculate the separate contributions
S and S of E and T modes and to write

vJ being the frequency v corresponding to the wave
packet J. The standard calculation shows that the con-
tribution of this mode J to the entropy of a black hole is
[i4]

In DeWitt s approximation one can omit VI in Eq. (17)
and to get that N =(u2. —ul)8/27r, where ui 2 are the
values of the retarded time u = Il —( corresponding to
the boundary points of the surface Z„(see Fig. 1).

The value u2 is formally divergent. The necessary cut-
off arises due to the quantum Huctuation of the horizon.
Zero-point fluctuations of the horizon result in its spread-
ing so that due to the quantum noise events happening
closer than xp ——1+1to the horizon cannot be seen from
outside. One can show that

A = nlPI/r, (24)

27S = Au dvv's(27rv),
327' 0

(25)

where Au = q(xo) —in% and the function q(x) is defined
in Eq. (16).

Now we turn to the calculation of the contribution S
of T modes to the black-hole entropy. We write S in
the form

where n is a dimensionless coefficient [7,16,17]. In our
context it means that we are to consider as "visible" only
those particles which cross Z„" which is the part of Z
lying outside x~ (between points pl and p2 shown in Fig.
1).

It should be stressed that for black holes with M )&
mpi (which we consider here) A (( l.

By using this cutoff after changing the summation over

j by integration (b'P 0
——Jo dv) we get

where

SH = SE+ST, (20)

where

S = dv J(v) s(27rv),
0

(26)

S ' ) ) (2l + l)O[+(v —16pi /27)]s(27rvl. ).
jn l=O

The plus sign in the step function 0 stands for E modes,
tile II11Ilils Sigil Stands fol' T modest and flic pl'1111e 111 Q .

means that the summation is taken only over the modes
which cross Z .

In order to get S we change the summation over l by

J(v, ) = b ) (2l + l)N IO(g pI2 —v2),
l=o

and N-& is a number of T modes with given quantum
numbers j and l which cross Z

Note that because of the exponential decrease of s(z)
the frequencies v )) 1/2' do not contribute to S . For
example, to provide the accuracy ~ 10 it is sufBcient
to consider the frequencies v & 2.2. Denote by x(v) a
turning point of a mode of frequency v (VI[x(v))] = v2).
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For large l one has z(v) —1 = vz/4p&~ (( 1. In the region
~x —1] (( 1 one can use the homogeneous-gravitational-
field (HGF) approximation and put W& = p,

&
in Eq. (ll)

and I3 = x = 1 in the metric (7). This approximate
metric can be written in the Rindler-like form

ds = —p dg +dp +du,

where

Sp = dvv s(2vrv) =-H 2

4~% 360A '

27
AS = dvv Q(v)s(2vrv),

3 2' O

where p = 2(2: —1) ~ .
In the HGF-approximation normalized solutions E„"&

of Eq. (11) which take the value (4mv) ~ exp( —ivu) at
the horizon I are

I~~ = A„~vr sinh ~ (7rv) exp( —ivy)K;„(p~p),

where

and Q(v) = xp —2+ ln(27v /16) —g(1 + iv) —@(1—iv).
Numerical calculations give AS (9xp —23) x 10

One cannot expect to determine the entropy with ac-
curacy higher than it is allowed by uncertainties related
with its thermodynamical Quctuations. That is why the
term AS in Eq. (36) which is much smaller than unity
can be neglected. Thus one can identify the black-hole
entropy with Sp . By using Eq. (24) we get

A„~ = i exp( —i—[v ln(p~/2) —P„]),
exp(2ig„) = I'(1+ iv)/I'(1 —iv), (30)

1
360vro.

'

and K„(z) is a Macdonald function.
In order to find N+& we note that each of the modes

which crosses Z„crosses also a spacelike surface Zz lo-
cated between p2 and mirrorlike boundary B and de-
scribed by the equation rI =const (see Fig. 1). It is pos-
sible to show that

N~& = 2' v~bsinh(harv~) dpp K;„(p~p). (31)
2gl/2

After substituting this relation into Eq. (27) and changing
summation over I, by integration over p& we can rewrite
this expression in the form

J(v) = J p(v) + AJ(v), AJ(v) = J (v) —J p(v).

The integrals which enter J —p(v) can be taken exactly
and we get

V2
J-=o(v) =

4~A' (34)

while for 4J(v) one can obtain the approximate expres-
sion

27v
A J(v) = [ln A + ln(27v'/16) —1

327r
—vP(1 ~ iv) —g(1 —iv)]. (35)

Here @(z) is the logarithmic derivative of the I' function.
By adding this expression with the expression (25) for

S we finally get

S =S +AS,

(32)

where a = (27A) ~ v/2. For the frequencies v which
contribute to the black-hole entropy the parameter a is
extremely small a « 1. We write

where AH ——4mr is the surface area of a black hole.
It is important to stress that So does not depend on
rp (the raduis of the mirrorlike boundary). It also does
not depend on the particular choice of the surface Z„we
introduced in order to define the separation into "visible"
and "invisible" modes. For a stationary black hole the
obtained result is evidently invariant under the shift of
the advanced time parameter e.

Instead of a null surface one can also use (without
changing the result) any spacelike surface crossing the
horizon. The result (39) reproduces the standard expres-
sion for the black-hole entropy AH/4lpp for the value of
the parameter n = (360vr)

The calculation of the coefficient o, which enters the
expression (24) for the quantum fiuctuations of the hori-
zon is a delicate problem which requires quantization of
gravity. The following arguments allow one to estimate
its value. By direct measurements of black-hole mass M
during time interval w one expects a measurement un-
certainty b,M = (/~ where ( ) 1/2 [17]. Spontaneous
quantum emission (or absorption) of particles by a black
hole results in the jumps (8aM) ~ of the mass M.
These jumps do not allow one to take the interval v as
long as one wishes without generating new additional un-
certainties. The best accuracy in a single measurement
can be obtained if 7 coincides with the time interval tq
between two subsequent events of emission or absorption
of quanta. The accuracy of defining M can be improved
if instead of a single measurement one makes a sequence
of measurements. Let N be a number of independent
measurements and t; (i = 1, . . . , N) be the time intervals
of these measurements (i.e. , the time intervals between
the emission or absorption of quanta). The probability of
emission of a next quantum at the time interval (t, t+ dt)
after the last previous emission is p(t)dt = exp( —nt)ndt,
where n is the average number of quanta radiated in a
unit of time. An accuracy of the black-hole mass defi-
nition after the large number N of the above described
independent measurements is [18]

a M —m '~'(t )
'~' = (2m)-'~'--
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where (t2) = N
In the above consideration it was inexplicitly assumed

that the only origin of the uncertainty of the measure-
ment of the mass M was connected with the measure-
ment procedure itself. Now we note that the quantum
Huctuations of the horizon do not allow us to determine
the mass M of a black hole absolutely exactly even if
there were no uncertainties in the measurement proce-
dure itself. The sequence of N exact measurements of
M (in case if they were possible) would give an accu-
racy A~M = N / bM where bM is the characteristic
value of fluctuation of M (its dispersion) connected with
quantum Huctuation of the horizon. It is natural to as-
sume that both accuracies [one (AivM) connected with
the quantum uncertainty of the measurement procedure
and the other (AivM) connected with quantum Auctua-
tions of the horizon] are of the same order of magnitude
A~M A~M. Hence one can write

(41)

The value of the average particles number rate of emis-
sion n for a scalar massless field was numerically calcu-
lated by Simkins [19] who found

n = 6.644 x 10 M (42)

[DeWitt s approximation gives the very close result
nD, iv;„= 3 ((3)/(2 vr4M) = 6.5x10 M .] The value
'of the parameter n (8M = n/4M) corresponding to the
expression (42) is

n —1.88 x 10 (43)

This result is quite close to York's estimation of the quan-
I;um fluctuations of the event horizon based on the de8ec-
tion of the apparent horizon from the event horizon for
an evaporating black hole [16].

By using Eq. (43) one gets for the coeKcient p which
enters the expression (39), p —0.47( i. For the oft-
quoted minimal value ( = 1/2 one has p 0.94. This
estimation is in a good accordance with the exact ther-
Lnodynamical value of the black-hole entropy for which

1.
We make now some general remarks concerning the

. obtained result. The entropy of a black hole is of pure
quantum nature. The gravitational field of a black hole
continuously creates pairs of particles. For a lone static
uncharged black hole one of the components of a created
vair is always located inside the horizon while the other
can escape to infinity and contribute to the Hawking radi-
ation. For low frequencies the probability of escape is ex-
ponentially small so that almost all of the components of
such pairs created outside the horizon are rejected by the
potential barrier and finally fall down into the black hole.
The existence of "invisible" (hidden inside the horizon)
modes results in the entropy of the black hole. Equation
(2) shows that only those "invisible" components of pairs
contribute to the entropy of the black hole for which the
other component is "visible. " The lifetime of "visible"
"trapped" modes is of order 7 i e i ln(l2/v2). For
modes with large l ~ A / which give the main contri-

bution to the entropy this "lifetime" is r ln(r /Pp&).
The main contribution to the entropy of a black hole is
given by "invisible" modes which are propagated in the
narrow Ap~ shell region near the horizon.

%le estimated the contribution to entropy of a non-
rotating uncharged black hole by a conformal massless
field. The generalization to the case of stationary (rotat-
ing and charged) black holes and difFerent physical fields
is straightforward. . By using the above arguments one
can expect that the number of thermally excited trapped
modes which contribute to the entropy will be always
proportional to the surface area of a black hole. If there
are present more than one field each of them contributes
to the entropy ad.ditively. On the other hand. the aver-
age rate n of the emission of the particles grows as the
number of fields N. That is why the parameter o. which
enters the expression (39) for the entropy of a black hole
and which characterizes the quantum fluctuations of the
horizon also grow as N. For a large number N of fields
these two eKects cancel each other so that the entropy
does not depend on the number of fields.

In conclusion we return to the gedanken experiment
with a wormhole [12] discussed at the beginning. The
entropy of a black hole (identified with its surface area)
decreases when one of the wormhole's mouths is falling
inside a black hole and returns to its initial value af-
ter the other mouth crosses the horizon or the w'orrnhole
is destroyed. The proposed interpretation of "invisible"
modes as dynamical degrees of freedom of a black hole
allows one to understand this "mysterious" behavior of
entropy. In principle by using a wormhole one can obtain
additional information concerning the quantum states in-
side the black hole. The total number of the originally
"invisible" modes propagating near the gravitational ra-
dius which become "visible" via the wormhole is propor-
tional to the change of the black hole surface area. A
decrease in the number of "invisible" states results in the
decrease of the entropy of the black hole. In principle by
using a wormhole one can change the states of some of
the originally "invisible" modes without changing the ex-
ternal parameters of the black hole [22]. This possibility
is lost after the second mouth of the wormhole crosses
the horizon or the wormhole is destroyed. The "visible"
components of such excited modes continue living outside
the horizon only a short time compared with their "life-
time. " After this they fall down into the black hole and
the corresponding pair does not contribute to the entropy
of the black hole. The system "forgets" an intervention
(if only it did not change the black-hole parameters) and
the entropy of the black hole returns to its initial value.

Note added. After this paper was submitted for publi-
cation a paper by Srediiicki [20] appeared. For the mass-
less scalar field in a Hat spacetime he showed that the
entropy arising after tracing the degrees of &eedom of
the field in the vacuum state residing inside a sphere is
proportional to the area of this sphere. The analogous
result was obtained earlier in Ref. [21]. In the present
paper we have shown that the main contribution to the
black-hale entropy is given by modes, propagating near
its surface, and hence the entropy can also be consid. ered
as the "surface eR'ect. " Despite the formal similarity of
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the results of the Hat spacetime and of the black-hole
calculations there is a big difference between them. The
black-hole horizon is a null surface. Its geometry di8'ers
from the geometry of a timelike surface in Bat spacetime.
The physical meaning and the mathematical description
of modes which contribute to the entropy are quite dif-
ferent in both cases. That is why it is not clear how far
the interesting arguments of Refs. [20,21] based on flat
spacetime calculations can be directly applied to black

holes.
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