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Exploring confinement by cooling: A study of compact three-dimensional QED

Howard D. Trottier
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A lS6

R. M. Woloshyn
TRIUMI', 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T2A3

(Received 24 May 1993)

The role of monopoles in the confining behavior of compact lattice three-dimensional QED (QED3) is

studied using an adiabatic cooling method. Monopole-antimonopole pairs with a large separation sur-

vive cooling and presence or absence of such plasma monopoles provides a useful classification of the lat-

tice gauge-field configurations at large f3. By calculating observables in subsets of gauge-field

configurations which contain or do not contain plasma monopoles it is seen that, in compact QED, ,

rnonopoles dominate the long-distance physics, e.g. , the string tension, linear confining potential, and

dynamical mass generation. On the other hand, the spin-spin interaction is essentially unaffected by

mono poles.

PACS number(s): 11.15.Ha, 11.15.Tk

I. INTRODUCTION

The cooling method was first proposed as a way of ex-
posing topological configurations in lattice field theory
[1,2]. More recently there has been a lot of discussion
about cooling as a probe of confinement dynamics [3—8].
This was motivated by the finding of Campostrini et aI.
[3] that the string tension, i.e., the Creutz ratio of large
Wilson loops, survives a significant amount of cooling.
This invites a semiclassical interpretation for the
confinement mechanism, a theme that was carried over to
a study of quantum chromodynamics (QCD) in 2+ 1 di-
mensions by Duncan and Mawhinney [6,7]. However,
precisely what cooling tells us about the confinement
mechanism is still not completely clear. Teper [9] has ar-
gued that the local nature of the cooling algorithm inevit-
ably leads to persistence of long-distance effects and does
not necessarily reveal the underlying dynamics.

To gain some insight into how cooling can be used to
explore confinement it seems reasonable to study a theory
in which the confinement mechanism is well understood.
In this paper we focus on compact quantum electro-
dynamics in 2+1 dimensions (QED3). In this theory
there is a semiclassical picture of confinement [10,11,7].
The instantons of this theory [which nonetheless are
called monopoles due to their similarity to magnetic
monopoles in (3+1)-dimensional theories] condense in
the vacuum [10,11], producing a "magnetic" supercon-
ductor which confines electric flux. In the lattice QED3 it
is found that monopole-antimonopole pairs which are
separated by more than a few lattice spacings (unbound
or plasma monopoles as we will call them) survive local
adiabatic cooling (see also Ref. [7]). The calculations re-
ported here were done at weak coupling (large Il) where
the density of plasma monopole-antimonopole pairs is
small and they are even absent in some of the gauge-field
configurations produced by the Monte Carlo simulation.
Then by calculating monopole properties in some detail

and comparing observables in gauge-Geld configurations
with and without plasma monopoles, one sees quite clear-
ly the role of monopoles in determining the long-distance
behavior of the theory.

Section II contains a description of the calculational
methods used in this paper. The single plaquette action
is used to describe compact QED3. Gauge-field
configurations were generated using the heat bath algo-
rithm. With periodic boundary conditions it can happen
that a monopole and antimonopole can annihilate leaving
"magnetic" Aux wrapped around the lattice. Once this
happens such configurations are very difficult to change
with local updating [12] so following Ref. [13] a global
Metropolis update which injects a Aux loop is done
periodically to move the system in the space of field
configurations.

Cooling was carried out using an algorithm that allows
only a small local change in the gauge field at any step
[3]. Monopole-antimonopole pairs with a small separa-
tion usually annihilate quite quickly (in terms of cooling
sweeps). After about 20 cooling sweeps the monopoles
become essentially static. Pairs that have a large separa-
tion have no chance of annihilating and further cooling
evolves these configurations to some constant nonzero ac-
tion. For QED3 it is possible therefore to classify gauge-
field configuration according to whether or not they con-
tain monopoles or antimonopoles that survive cooling.

The observables calculated are the string tension and
static potential obtained from Wilson loops, magnetic-
field correlations which are related to the spin-spin in-
teraction and the chiral-symmetry-breaking order param-
eter for staggered fermions. The results are given in Sec.
III. The behavior of Wilson loops has some similarity
with what was found in QCD. Small Wilson loops cool
much more rapidly than large loops. The Creutz ratios
of large loops do not change much under cooling so the
string tension survives with only a small decrease from
the uncooled value. This effect is associated in QED3
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with the fact that plasma monopoles become frozen into
the gauge configurations and has been noted previously
by Duncan and Mawhinney [7].

We can see more directly how monopoles affect the
long-distance behavior of QED3 by considering the static
potential. Separating our ensemble of gauge-field
configurations into a sample that contains monopoles
that survive cooling (plasma monopoles) and a sample in
which all monopoles- antimonopole pairs have small sep-
arations and annihilate, it was found that the static po-
tential for these two samples behaves quite differently at
large distances, even without any cooling. Only in the
sample with plasma monopoles is there any evidence of
confining behavior.

In contrast with the static potential, magnetic-field
correlations, which are related to the spin-spin interac-
tion [14,15], are essentially the same in uncooled
configuration with or without plasma monopoles. Cool-
ing reveals that monopoles (recall that these are the in-
stantons of compact QED3) play a very minor role in the
spin-spin interaction. Since it has been suggested that in-
stantons of QCD are important in the spin-dependent po-
tential of that theory [16—18], there is a natural applica-
tion of the methods used here.

Finally, chiral symmetry breaking in (quenched) com-
pact QED3 was examined. Again by considering
configurations with and without plasma monopoles evi-
dence is presented which suggests that, on the lattice, the
presence of widely separated monopole-antomonopole
pairs dominates dynamical mass generation. A small
part of the chiral symmetry breaking comes from bound
monopoles or quantum fIuctuation effects.

II. METHOD

The usual plaquette action

S=f3 g [1—cos[0„(x)]}

0„(x)=0„(x)+2mn„(x), (2)

where the reduced plaquette angle 0„(x)H ( m, vr]. —.
Summing the oriented reduced plaquette angles associat-

is used for compact QED3. The quantity /3 is the dimen-
sionless coupling constant 1/e in lattice units and the
plaquette angle is

0„(x)=0 (x)+0 (x+p) —0„(x+0)—0 (x)

in terms of link variables. Periodic boundary conditions
in all directions were used for the gauge field. Field
configurations were constructed using a heat bath algo-
rithm.

Compact lattice QED contains field configurations
with nontrivial topology. In our (2+1)-dimensional Eu-
clidean space these are instantons but we follow the con-
ventional nomenclature and use the term monopoles
since these instantons are also the lattice analogs of Dirac
monopoles. A convenient definition of lattice monopoles
is that of DeGrand and Toussaint [19]. The plaquette an-
gles are written as

S=P[1 rcos( 0—+0, ) ), (3)

iO
where re ' is the sum of the "staples" of the plaquettes
containing the link being updated. Clearly, 0~0'= —0,
minimizes S. However, to control the rate of cooling we
adopt the prescription

0~0'= 0+60,
[b0/ =min[5, /0+0, /],
sgnb, 0= —sgn(0+0, ) .

(4a)

(4b)

(4c)

This is the U(1) analogue of the algorithm used by Cam-
postrini et al. [3]. In the numerical calculations, 5=0.05
was used as in Ref. [3].

The results presented in this paper were calculated us-
ing cooling sweeps in which links were updated in a fixed
sequence. However, some tests were done to see if cool-
ing links in a random way introduced any differences. It
was found that for a given starting configuration, the final
position of a "frozen-in" monopole or antimonopole
might occasionally differ by one lattice site between
sequential and random updating. Also, in rare
configurations the monopole number differs after cooling
due to the annihilation of one more or fewer monopole-
antimonopole pairs using fixed versus random updating.
However, this happens sufticiently infrequently that we
expect ensemble averages over large samples to be un-
changed.

The behavior of a number of observables was moni-
tored under cooling. First, the Creutz ratio

W(R, T) W(R —1, T —1)CR, T= —ln
W(R —1, T) W(R, T —1)

(5)

where W(R, T) denotes the R by T rectangular Wilson
loop, can be used to determine the string tension. For
large loops, which obey the area law, C(R,R) gives the
string tension directly. The potential V(R) between stat-
ic charges is also considered. It is calculated by extrapo-
lating Wilson loops to large T:

ed with elementary cubes of the lattice allows one to find
the monopoles essentially by identifying those cubes
which contain the end of a Dirac string. For a finite lat-
tice with periodic boundary conditions the number of an-
timonopoles equals the number of monopoles. On a finite
lattice it can also happen that a monopole and antimono-
pole can annihilate leaving a "magnetic" Aux loop that
winds around the lattice [12]. To cope with the possible
metastability of such configuration Damgaard and Heller
[13] suggested doing periodic global Metropolis updates
which introduce random Aux loops. We use this pro-
cedure here.

Field configurations generated by the heat bath Monte
Carlo algorithm were cooled using a local cooling algo-
rithm containing a parameter 6 which controls the rate of
cooling. Cooling reduces the action monotonically by re-
placing links one at a time. Consider some particular
link, characterized by an angle, call it 0, which is to be
updated. The local contribution to the action can be
written as
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(XX)=—(TrM '( [8] ) ),
V

V(R)= —lim —lnW(R, T) .1

taboo T

where V is the lattice volume and the angular brackets
denote the gauge-field configuration average. A random
source method [21,22] was used to calculate TrM '({8]).
Thirty-two Gaussian random sources were used for each
gauge-field configuration.

In addition to the confining central interactions Dirac
fermions will also have spin-spin and spin-orbit interac-
tions, even in two spatial dimensions. These can be cal-
culated on the lattice [14]. In particular, the spin-spin in-
teraction is related to magnetic field correlations (see Ref.
[15] for a simple derivation). In two spatial dimensions
the magnetic field has only one component related to F12,
the field strength tensor in the spatial directions. The
magnetic-field correlation is then calculated using a %'il-
son loop (say in the X Tpla-ne) with insertion of spatial
plaquettes in the time legs as shown in the Fig. 1. Let
(B(0,ti)B(R, t2)) denote the configuration average of
the type illustrated in Fig. 1. The correlation function we
calculate is

III. RESULTS

The simulation was carried out at P=2. 5 on a 20 lat-
tice. This value of P was chosen so that a significant frac-
tion of the configurations would have no monopoles after
cooling.

After 5000 heat bath Monte Carlo sweeps to equili-
brate, a total of 800 configurations, separated by 150
sweeps, were analyzed. The monopole number changes
relatively slowly and 150 sweeps is roughly the autocorre-
lation time. Each configuration was cooled a total of 80
sweeps using the algorithm of Eq. (4) with 5=0.05. The
average plaquette ((1—cos8„,(x) )) and the average num-
ber of monopoles N (recall number of anti-
monopoles=number of monopoles) for the full sample of
800 configurations are plotted in Fig. 2 as a function of
cooling sweeps. By about 30 cooling sweeps the average
plaquette and monopole number have become essentially
constant.

To better understand what is happening one needs
more information about the monopole excitations in the

(B(0,t, )B(R,t2) )
W(R, T)

(7)
tl =T/2, T/2+1 t2 =1,T—1

1 i8 (x) iO (x)
Sf =—g rl„(x)[X(x)e " X(x+p) X~ +&~e

"—X(x)]
X, Q

10+ g rn X(x )X(x ) (8a)

g10

10

=XM( I 8] )X, (Sb)

where X,X are single component fermion fields, g„(x) is
the staggered fermion phase [20] and m is the mass in lat-
tice units. Antiperiodic boundary conditions were used
for the fermion fields in all directions.

The chiral symmetry order parameter is calculated
from the inverse of the fermion matrix M of Eq. (8b):

10

10
30 60
cooHng smeey

90

T,RT,O

30 60
cooLing suttee~

90

0,0 O,R
FICx. 2. (a) Average plaquette and (b) number of monopoles

N as a function of a cooling sweep for the full sample of 800
configurations.

FIG. 1. Example of a Wilson loop with spatial plaquette in-
sertions.

which, up to some (R-independent) factors, gives an esti-
mate of the spin-spin interaction. In practice, the
magnetic-field insertion 8 that was used was the average
over the four spatial plaquettes whose corners lie on the
Wilson loop W(R, T) corresponding to operator II of
Ref. [14].

Chiral symmetry breaking was also calculated. Stag-
gered fermions were used with the usual action
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vacuum. This is provided in Fig. 3. The monopole-
antimonopole correlation parameter C counts the num-
ber of times a monopole, located in an elementary cube
on the lattice, has an antimonopole in a neighboring
cube. From Fig. 3(a), it is seen that all "bound"
monopole-antimonopole pairs, i.e., pairs on neighboring
cubes, annihilate under cooling. Comparing C and X
one sees that only a small fraction of the monopoles that
are not initially in neighboring cubes annihilate. A more
detailed examination of a few configurations showed that
pairs separated by a distance greater than &3 lattice
units, i.e., without a face, edge, or point in common, very
rarely annihilate. This rejects the lack of mobility of the
monopoles under slow local cooling. After cooling, what
we call plasma monopoles are left. This is shown in
another way in Fig. 3(b) where the average minimum sep-
aration between a monopole and the nearest antimono-
pole is plotted.

Figure 4 shows the Creutz ratio C(R, R ) for the full set
of configurations with no cooling and with 16, 32, and 80
cooling sweeps. The features are the same as observed in
previous calculations [3,7]. Small Wilson loops cool
much more rapidly than large loops. The statistical Auc-
tuations also decrease very rapidly making the string ten-
sion visible after a small amount of cooling. However, as
also noted by Duncan and Mawhinney [7], the apparent
string tension from slightly cooled configurations may be
an overestimate of the true asymptotic string tension.
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I

FIG. 4. The Creutz C(R,R) as a function of loop size 8 for
the full sample of 800 configurations with no cooling (4), 16
cooling sweeps {A), 32 cooling sweeps (0), and 80 cooling
sweeps (E).

We would like to see the role of monopoles as directly
as possible. Since at least some monopoles survive cool-
ing it is natural to classify configurations according to
whether they contain monopoles and antimonopoles after
cooling (N' %0) or whether they do not (N~ =0). Recall
that configurations in which monopole-antimonopole
pairs annihilate leaving Aux wrapped around the lattice
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FIG. 3. (a) Number of neighboring monopole-antimonopole
pairs C and (b) average minimum monopole-antimonopole
separation (r,„) as a function of a cooling sweep for the full
sample of 800 configurations.

FIG. 5. (a) Average plaquette and (b) number of monopoles
as a function of a cooling sweep for the N'WO sample of

488 configurations ( ) and the N' =0 sample of 145
configurations (O ).
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can occur. These are excluded from the X' =0 sample.
Out of a total 800 configurations, 488 went into the
N' WO sample and 145 had ¹

=0.
The properties of the two samples, with and without

monopoles that survive cooling, are compared in Figs. 5
and 6. Note, in particular, Fig. 6(b) which shows for the
X' =0 sample that it is essentially only monopole-
antimonopole pairs separated by less than two lattice
units that annihilate.

The Creutz ratio C(R, R) for the ¹
=0 and X' WO

ensembles are compared in Fig. 7 using unco oled
configurations. Results with 16, 32, and 80 cooling
sweeps are shown in Fig. 8. The large Wilson loops with
no cooling are very noisy so a definitive statement is not
possible but a trend is evident in Fig. 7: configurations
without widely separated (plasma) monopole-
antimonopole pairs show no sign of a string tension.
With a small amount of cooling the situation becomes
quite clear: without monopoles [Fig. 8(b)] large Wilson
loops are not suppressed by an area law; i.e., the Cruetz
ratio becomes trivial. With monopoles [Fig. 8(a)], Wilson
loops on the scale of the average monopole-antimonopole
separation are suppressed and a string tension remains
even with extreme cooling. Evidently with extreme cool-
ing the string tension can be extracted from C(R, R) only
for R much larger than the average monopole-
antimonopole separation.
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FIG. 7. The Creutz ratio C(R, R) as a function of loop size R
with no cooling for the N' WO sample of 488 configurations ( )

and the N' =0 sample of 145 configurations (o ).

The above effect is seen even more nicely by consider-
ing the static potential directly. Figure 9 shows the static
potential, Eq. (6), calculated using ¹ WO, X' =0, and
full uncooled gauge configuration samples. At short dis-
tances all potentials are the same suggesting that quan-
tum tluctuations dominate [5]. However, the X' =0
sample, from which plasma monopoles are excluded,
yields a potential which shows a pronounced flattening at
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FIG. 6. (a) Number of neighboring monopole-antimonopole
pairs C and (b) average minimum monopole-antimonopole
separation ( r;„) as a function of a cooling sweep for the
N' %0 sample of 488 configurations ( ) and the N' =0 samples
of 145 configurations (C) ).

FIG. 8. The Creutz ratio C(R,R) as a function of loop size
with 16 cooling sweeps (A), 32 cooling sweeps (0), and 80 cool-
ing sweeps (~) (a) for the N' WO sample and (b) for the N' =0
sample.
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FIG. 9. The potential between static charges V(R) versus
separation R with no cooling for the full sample of 800
configurations (6), the N' WO sample ( ), and the N' =0 sam-

ple (o).

FIG. 11. The magnetic-field correlation (7) versus separation
R with no cooling for the N' =0 sample ( ), a subset of the
N' =0 configuration of the configurations which contain mono-
poles that annihilate when cooled (O), and a subset of the
N' =0 configurations which contain no monopoles even before
cooling (E).

large distance. After cooling the situation is shown in
Fig. 10. The string tension extracted from the last few
points of the uncooled N' WO potential (open squares) is
about 0.018 while after 80 cooling steps (solid squares) a
string tension of about 0.013 is obtained. The Creutz ra-
tio C(R, R) [Fig. 8(a)] is apparently just in between which
is reasonable since the potentials with cooled and un-
cooled configurations approach the limiting linear
behavior with the opposite curvature [23].

In QCD we normally consider the spin-spin interaction
as due to the exchange of gluons. However, there exist
suggestions that a substantial part of the hyperfine in-
teraction is due to instanton effects [16—18). If this is so,
we would expect magnetic-field correlations, which mea-
sure the spin-spin interaction [15], to be very different in
configurations with difFerent instanton properties. Also
strong magnetic-field correlations would be expected to
persist if instantons survive cooling. A calculation to test
this directly has not yet been done for QCD (see however

.5

o
X

.ZO

. 'I5

o . fO

Ref. [8]). For QED3 the results are shown in Figs. 11 and
12. The squares in Fig. 11 show the magnetic-field corre-
lation [Eq. (7)] calculated using the uncooled ¹ %0
gauge-field sample. The N' =0 sample was further divid-
ed into two sets of configurations: those which contain
monopoles which annihilate under cooling and those
configurations which contain no monopoles even before
cooling. The magnetic-field correlation calculated with
these two sets of uncooled configurations is shown in Fig.
11 by triangles and circles, respectively. Essentially no
difI'erence is discernible between the three calculations.
Note also the magnetic-field correlation observed here is
qualitatively the same as seen in QCD4 (compare, for ex-
ample, with the "operator II" results of Fig. 3 in Ref.
[14]). Figure 12 shows the magnetic-field correlation for
the N'WO sample after 80 cooling sweeps (note the
change in scale from Fig. 11). For QED3 at least, mono-
poles (instantons) apparently play a very small role in the

.0

FIG. 10. The potential between static charges V(R) versus
separation R for the N'%0 sample with no cooling (0) and
after 80 cooling sweeps (~). Also shown is the result for the
N' =0 sample after 80 cooling sweeps (0).

.00

FIG. 12. The magnetic-field correlation (7) versus separation
R after 80 cooling sweeps for the N' %0 sample.
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FIG. 13. The chiral order parameter (gy) versus fermion
mass I (in lattice units) with no cooling calculated for a subset
of N'%0 configurations ( ) a subset of N' =0 configurations
which contain monopoles that annihilate when cooled (0) and
subset of N' =0 configurations which contain no monopoles
even before cooling (6).

FICs. 14. The chiral order parameter (gy) versus fermion
mass m (in lattice units) after 80 cooling sweeps calculated for a
subset of N' WO configurations (~), a subset of N' =0
configurations which contain monopoles that annihilate when
cooled () and a subset of N' =0 configurations which contain
no monopoles even before cooling (&).

spin-spin interaction which is due predominantly to
short-distance quantum fluctuations.

In addition to linear confinement of charge, compact
QED3 has another property which is also important in
QCD&, namely, chiral symmetry breaking. It is natural
to seek a common mechanism behind these two phenom-
ena [24]. We calculated the chiral-symmetry-breaking
parameter (gy) for staggered fermions for a subset (400)
of our quenched gauge-field configurations. The mass
range for the calculations was 0.02 —0.1 in lattice units.
A nonzero value in the limit of zero fermion mass indi-
cates chiral symmetry breaking. The results for uncooled
configurations are shown in Fig. 13. As with the
magnetic-field correlation it is instructive to consider
three subsets of configurations: configurations containing
monopoles after cooling (X' %0), configurations contain-
ing only monopoles that annihilate when cooled, and
those with no monopoles at all. Figure 13 shows that the
presence of plasma monopoles, which leads to linear
confinement, also significantly enhances dynamical mass
generation. Configurations containing monopole-
antimonopole pairs separated only by short distances give
essentially the same value of (gy) as configurations that
contain only nontopological quantum fluctuations. In
the continuum limit, /3~ ~, monopole fluctuations
disappear [19] but chiral symmetry breaking is expected
to persist (see [25] and references therein). Our results
are qualitatively consistent with this expectation. Deter-
mining a precise value for (jy) at zero fermion mass is
very difficult (see example Ref. [26]) but a qualitative con-
clusion, for example, by linearly extrapolating from the
last few mass points in Fig. 13, is that (gg) ~ o is
nonzero in all subsets of configurations; i.e., nonopologi-
cal quantum fluctuation can give chiral symmetry break-
ing. At P=2. 5 dynamical mass generation, however,
seems to be dominated by plasma monopoles even though
the density of such monopoles is not very large. After 80

cooling surveys we get the results in Fig. 14. Chiral sym-
metry breaking persists in those configurations which
contain plasma monopoles not annihilated under cooling.

IV. SUMMARY

In this paper we show how cooling can be used to
correlate the long-distance confining behavior of compact
QED& with the presence of separated monopole-
antimonopole pairs in the vacuum. Such plasma mono-
poles survive cooling in QED~ and therefore it is possible
to use their presence as a way of classifying gauge-field
configurations. The difference between our work and
previous studies is that after determining the monopole
properties by cooling we go back to recalculate and com-
pare observables in subsets of gauge-field configuration
with different long-distance monopole characteristics.
What emerges is a consistent picture: the Creutz ratio
C(R, R) and the static potential V(R) are determined at
large R by the presence of monopole-antimonopole pairs
with separation comparable to R. Cooling out quantum
Auctuations or monopole-antimonopole pairs with small
separation does not change the long-distance behavior
appreciably.

Chir al symmetry breaking, which is also a long-
distance phenomenon, was also seen to be dominated at
/3= 2. 5 by plasma monopoles. On the other hand,
magnetic-field correlations which determine the spin-spin
interaction seem to be determined by short-distance
effects. After cooling, only a very small correlation from
plasma monopoles remains.

Our study of QED3 points to some calculations that
can be done in QCD4. Obviously instanton effects can be
looked for in the same way as done here. However, there
are other kinds of topological excitations that one may
try to examine, for example, Abelian monopoles [27] or
vortices [28]. These type of objects apparently do not get
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frozen in under cooling [29] so some modification of our
method would be necessary. However one lesson can be
learned from the present study, that is, one needs to
correlate the behavior of observables with more detailed
vacuum properties rather than simply focusing on, for ex-
ample, the monopole density as has been done in many
papers up to now [29,30].
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